A Novel Approach to Double the Sensitivity of Polarization Maintaining Interferometric Fiber Optic Gyroscope
Abstract
:1. Introduction
2. Working Principle
3. Experimental Verification
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Groves, P.D. Principles of GNSS, Inertial, and Multi-sensor Integrated Navigation Systems. Ind. Robot 2013, 3, 191–192. [Google Scholar]
- King, A.D. Inertial Navigation—Forty Years of Evolution. GEC Rev. 1998, 3, 140–149. [Google Scholar]
- Yan, Z.; Chen, X.; Tang, X. A Novel Linear Model Based on Code Approximation for GNSS/INS Ultra-Tight Integration System. Sensors 2020, 20, 3192. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Hu, B.; Li, A.; Qin, F. Strapdown inertial navigation system alignment based on marginalised unscented Kalman filter. IET Sci. Meas. Technol. 2013, 2, 128–138. [Google Scholar] [CrossRef]
- Castaneda, N.; Lamy-Perbal, S. An improved shoe-mounted inertial navigation system. In Proceedings of the 2010 International Conference on Indoor Positioning and Indoor Navigation, Zurich, Switzerland, 15–17 September 2010; pp. 1–6. [Google Scholar]
- Braden, K.; Browning, C.; Gelderloos, H.; Smith, F.; Marttila, C.; Vallot, L. Integrated inertial navigation system/Global Positioning System (INS/GPS) for manned return vehicle autoland application. In Proceedings of the IEEE Symposium on Position Location and Navigation. A Decade of Excellence in the Navigation Sciences, Las Vegas, NV, USA, 20 March 1990; pp. 74–82. [Google Scholar]
- Tucek, J.; Kardos, M.; Tomastik, J. First experience with pedestrian Inertial Navigation System application under forest conditions. Zpravy Lesnickeho Vyzkumu 2016, 3, 203–212. [Google Scholar]
- Stelkens-Kobsch, T.H. Further Development of a High Precision Two-Frame Inertial Navigation System for Application in Airborne Gravimetry. In Observation of the Earth System from Space; Springer: Berlin/Heidelberg, Germany, 2006; pp. 479–494. [Google Scholar]
- Wang, H.G.; Williams, T.C. Strategic inertial navigation systems—High-accuracy inertially stabilized platforms for hostile environments. Control Syst. IEEE 2008, 1, 65–85. [Google Scholar] [CrossRef]
- Ahrens, S.; Levine, D.; Andrews, G.; How, J.P. Vision-based guidance and control of a hovering vehicle in unknown, GPS-denied environments. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 2643–2648. [Google Scholar]
- Shkel, A.M. Precision navigation and timing enabled by microtechnology: Are we there yet? In Proceedings of the IEEE Sensors 2010 Conference, Pittsburgh, PA, USA, 1–4 November 2011; pp. 5–9. [Google Scholar]
- Zhou, Y.; Lai, J.; Guo, X.; Yang, J. A research on all source navigation and positioning and its critical technology. In Proceedings of the 6th China Satellite Navigation Conference, Xi’an, China, 13–15 May 2015; pp. 801–808. [Google Scholar]
- Wang, L.; Zhang, C. Modeling of FOG and application in inertial navigation system. J. Chin. Inert. Technol. 2006, 4. [Google Scholar]
- Zhang, D.; Zhao, Y.; Zhou, W.; Fu, W.; Liu, C.; Shu, X.; Che, S. A software-compensation method to orthogonal magnetic field drift in a depolarized fiber-optic gyroscope. Optik 2014, 11, 2565–2567. [Google Scholar] [CrossRef]
- Dranitsyna, E.V.; Egorov, D.A.; Untilov, A.A.; Deineka, G.B.; Sharkov, I.A.; Deineka, I.G. Reducing the effect of temperature variations on FOG output signal. Gyrosc. Navig. B 2013, 2, 92–98. [Google Scholar] [CrossRef]
- Feng, L.S.; Nan, S.Z.; Jin, J. Research on modeling and compensation technology for temperature errors of FOG. J. Astronaut. 2006, 5, 939–941. [Google Scholar]
- Chen, X.; Shen, C. Study on temperature error processing technique for fiber optic gyroscope. Optik 2013, 9, 784–792. [Google Scholar] [CrossRef]
- Moslehi, B.; Yahalom, R.; Oblea, L.; Faridian, F.; Black, R.J.; Ha, J.C.; Berarducci, M. Low-cost and compact fiber-optic gyroscope with long-term stability. In Proceedings of the 2011 Aerospace Conference, Big Sky, MO, USA, 5–12 May 2011; pp. 1–9. [Google Scholar]
- Su, H.C.; Wang, L.A. A highly efficient polarized superfluorescent fiber source for fiber-optic gyroscope applications. IEEE Photonics Technol. Lett. 2003, 10, 1357–1359. [Google Scholar] [CrossRef]
- Li, X.Y.; Zhang, R.P.; Wu, L.; Zhang, Y.G. Suppression for light source intensity noise in high-precision FOG. J. Chin. Inert. Technol. 2010, 18, 600–603. [Google Scholar]
- Kintner, E.C. Polarization control in optical-fiber gyroscopes. Opt. Lett. 1981, 3, 154–156. [Google Scholar] [CrossRef]
- Chen, X.; Yang, J.H.; Zhou, Y.L.; Shu, X. The application of low-noise DC-DC power source in fiber-optic gyroscope system. Opto-Electron. Eng. 2018, 1, 170517. [Google Scholar]
- Toyama, K.; Fesler, K.A.; Kim, B.Y.; Shaw, H.J. Digital integrating fiber-optic gyroscope with electronic phase tracking. Opt. Lett. 1991, 15, 1207–1209. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, C.; Wang, X.; Wang, Z. All-digital signal-processing open-loop fiber-optic gyroscope with enlarged dynamic range. Opt. Lett. 2013, 24, 5422–5425. [Google Scholar] [CrossRef]
- Shupe, D.M. Thermally induced nonreciprocity in the fiber-optic interferometer. Appl. Opt. 1980, 5, 654–655. [Google Scholar] [CrossRef] [Green Version]
- Mohr, F. Thermooptically induced bias drift in fiber optical Sagnac interferometers. J. Lightwave Technol. 2002, 1, 27–41. [Google Scholar] [CrossRef]
- Hotate, K.; Tabe, K. Drift of an optical fiber gyroscope caused by the Faraday effect: Influence of the earth’s magnetic field. Appl. Opt. 1986, 7, 1086–1092. [Google Scholar] [CrossRef]
- Liu, P.; Li, X.; Guang, X.; Li, G.; Guan, L. Bias Error Caused by the Faraday Effect in Fiber Optical Gyroscope with Double Sensitivity. IEEE Photonics Technol. Lett. 2017, 15, 1273–1276. [Google Scholar] [CrossRef]
- Hotate, K.; Saida, T. General formula describing drift of interferometer fiber-optic gyro due to Faraday effect: Reduction of the drift in twin-depo-I-FOG. J. Lightwave Technol. 1999, 2, 222. [Google Scholar]
- Song, N. Analysis of vibration error in digital closed-loop fiber optic gyroscope. J. Beijing Univ. Aeronaut. Astronaut. 2004, 8, 702–704. [Google Scholar]
- Liang, C.; Zhang, D.; Zhou, Y.; Shu, X.; Che, S.; Liu, C. Coupling effect of a single-mode fiber coil under time-varying temperature and magnetic field. J. Lightwave Technol. 2019, 13, 3208–3213. [Google Scholar] [CrossRef]
- Zhou, K.; Pan, S.; Liu, S.; Hu, K. Fiber gyroscope with a double sensitivity employing a polarization splitter. Opt. Lett. 2013, 8, 1337–1339. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhou, K.; Lu, C.; Xian, T. Open-loop fiber-optic gyroscope with a double sensitivity employing a polarization splitter and Faraday rotator mirror. Opt. Lett. 2018, 23, 5861–5864. [Google Scholar] [CrossRef]
- Board, I. IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros; IEEE Std.: Piscataway, NJ, USA, 1998. [Google Scholar]
Positive before Improvement | Negative before Improvement | Positive after Improvement | Negative after Improvement | |
---|---|---|---|---|
Theoretical data (°/h) | 7.5 | −7.5 | 7.5 | −7.5 |
Average data acquired (°/h) | 7.4895 | −7.5105 | 7.5126 | −7.4874 |
Angle random walk () | 0.0013 | 0.0013 | 0.0007 | 0.0007 |
Bias stability (°/h) | 0.0182 | 0.0208 | 0.0091 | 0.0120 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Liang, C.; Li, N. A Novel Approach to Double the Sensitivity of Polarization Maintaining Interferometric Fiber Optic Gyroscope. Sensors 2020, 20, 3762. https://doi.org/10.3390/s20133762
Zhang D, Liang C, Li N. A Novel Approach to Double the Sensitivity of Polarization Maintaining Interferometric Fiber Optic Gyroscope. Sensors. 2020; 20(13):3762. https://doi.org/10.3390/s20133762
Chicago/Turabian StyleZhang, Dengwei, Cui Liang, and Nan Li. 2020. "A Novel Approach to Double the Sensitivity of Polarization Maintaining Interferometric Fiber Optic Gyroscope" Sensors 20, no. 13: 3762. https://doi.org/10.3390/s20133762
APA StyleZhang, D., Liang, C., & Li, N. (2020). A Novel Approach to Double the Sensitivity of Polarization Maintaining Interferometric Fiber Optic Gyroscope. Sensors, 20(13), 3762. https://doi.org/10.3390/s20133762