Compressed Nonlinear Equalizers for 112-Gbps Optical Interconnects: Efficiency and Stability
Abstract
:1. Introduction
2. Principle of Pruned Nonlinear Equalizers
2.1. Volterra Series and Neural Network-Based Equalizer
2.2. Pruning Algorithm
3. Experiment and Results
3.1. Experiment Setup
3.2. Efficiency Comparison
3.3. Stability Comparison
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
VE | Volterra series-based equalization |
NNE | Neural network-based equalization |
VCSEL | Vertical cavity surface emitting laser |
BER | Bit error rate |
IM-DD | Intensity modulation and direct detection |
PAM | Pulse amplitude modulation |
CAP | Carrier-less amplitude phase modulation |
DMT | Discrete multi-tone modulation |
SNR | Signal–noise ratio |
RIN | Relative intensity noise |
MPN | Mode partition noise |
DSP | Digital signal processing |
PRBS | Pseudo-random binary sequence |
VOA | Variable optical attenuator |
PD | Photodetector |
TIA | Transimpedance amplifier |
DSO | Digital storage oscilloscope |
B2B | Back-to-back |
Tanh | Tangent hyperbolic |
ReLU | Rectified linear unit |
References
- Wu, X.; van den Borne, D.; Maki, J.J.; Alleston, S.; Di Mola, D. Interoperable Coherent Pluggables Beyond 400ZR. In Proceedings of the 2019 Asia Communications and Photonics Conference (ACP), Chengdu, China, 2–5 November 2019; pp. 1–3. [Google Scholar]
- Zhang, W.; Liang, C.; Ge, L.; He, Z. Multimode optical interconnects based on VCSEL and MMF for more than 100-Gb/s/lane and 100 m transmission. In Semiconductor Lasers and Applications VIII; SPIE/COS Photonics Asia; SPIE: Paris, France, 2018; Volume 10812, p. 10. [Google Scholar]
- Ge, L.; Zhang, W.; Liang, C.; He, Z. Threshold-Based Pruned Retraining Volterra Equalization for 100 Gbps/Lane and 100-m Optical Interconnects Based on VCSEL and MMF. J. Lightwave Technol. 2019, 37, 3222–3228. [Google Scholar] [CrossRef]
- Dong, X.; Bamiedakis, N.; Cunningham, D.G.; Penty, R.V.; White, I.H. 112 Gb/s CAP-based Data Transmission over 100 m MMF Links using an Artificial Neural Network Equalizer. In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 5–10 May 2019; Optical Society of America: Rochester, NY, USA, 2019; p. SM1G.3. [Google Scholar] [CrossRef]
- Diamantopoulos, N.P.; Yamazaki, H.; Yamaoka, S.; Nagatani, M.; Nishi, H.; Tanobe, H.; Nakao, R.; Fujii, T.; Takeda, K.; Kakitsuka, T.; et al. Net 321.24-Gb/s IMDD Transmission Based on a >100-GHz Bandwidth Directly-Modulated Laser. In Proceedings of the Optical Fiber Communication Conference Postdeadline Papers, San Diego, CA, USA, 8–12 March 2020; Optical Society of America: Rochester, NY, USA, 2020; p. Th4C.1. [Google Scholar] [CrossRef]
- Zhang, K.; Zhuge, Q.; Xin, H.; Hu, W.; Plant, D.V. Performance comparison of DML, EML and MZM in dispersion-unmanaged short reach transmissions with digital signal processing. Opt. Express 2018, 26, 34288–34304. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Du, J.B.; Liu, J.C.; Chen, B.; Xu, K.; Liu, B.; Lu, C.; He, Z.Y. Intelligent 2-Dimensional Soft Decision Enabled by K-Means Clustering for VCSEL-Based 112-Gbps PAM-4 and PAM-8 Optical Interconnection. J. Lightwave Technol. 2019, 37, 6133–6146. [Google Scholar] [CrossRef]
- You, Y.; Zhang, W.; Sun, L.; Du, J.; Liang, C.; Yang, F.; He, Z. Time skewing and amplitude nonlinearity mitigation by feedback equalization for 56 Gbps VCSEL-based PAM-4 links. Opt. Commun. 2018, 410, 909–915. [Google Scholar] [CrossRef]
- Tatum, J.A.; Landry, G.D.; Gazula, D.; Wade, J.K.; Westbergh, P. VCSEL-Based Optical Transceivers for Future Data Center Applications. In Proceedings of the 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 11–15 March 2018; pp. 1–3. [Google Scholar]
- Lavrencik, J.; Pavan, S.K.; Thomas, V.A.; Ralph, S.E. Noise in VCSEL-Based Links: Direct Measurement of VCSEL Transverse Mode Correlations and Implications for MPN and RIN. J. Lightwave Technol. 2017, 35, 698–705. [Google Scholar] [CrossRef]
- Liang, C.; Zhang, W.; Ge, L.; He, Z. Mode partition noise mitigation for VCSEL-MMF links by using wavefront shaping technique. Optics Express 2018, 26, 28641–28650. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.; Zhang, W.; Liang, C.; He, Z. Compressed Neural Network Equalization Based on Iterative Pruning Algorithm for 112-Gbps VCSEL-Enabled Optical Interconnects. J. Lightwave Technol. 2020, 38, 1323–1329. [Google Scholar] [CrossRef]
- Yi, L.; Liao, T.; Huang, L.; Xue, L.; Li, P.; Hu, W. Machine Learning for 100 Gb/s/λ Passive Optical Network. J. Lightwave Technol. 2019, 37, 1621–1630. [Google Scholar] [CrossRef]
- Tian, F.K.; Zhou, Q.Y.; Yang, C.C. Gaussian mixture model-hidden Markov model based nonlinear equalizer for optical fiber transmission. Opt. Express 2020, 28, 9728–9737. [Google Scholar] [CrossRef] [PubMed]
- Wan, Z.Q.; Yu, Z.M.; Shu, L.; Liang, C.Y.; Zhang, W.J.; Zhang, T.; Li, J.Q.; Xu, K. Volterra equalizer with MLSD for 100 Gb/s PAM4 over up to 160 m OM3-MMF using 20 GHz class 850 nm VCSEL. In Proceedings of the 17th International Conference on Optical Communications and Networks, Zhuhai, China, 16–19 November 2018; Li, Z., Ed.; Spie-Int Soc Optical Engineering: Paris, France, 2019; Volume 11048. [Google Scholar] [CrossRef]
- Lin, Y.Y.; Chen, C.J.; Nguyen, H.M.; Chuang, C.Y.; Wei, C.C.; Chen, J.; Shi, J.W. Reduction in Complexity of Volterra Filter by Employing ℓ0-Regularization in 112-Gbps PAM-4 VCSEL Optical Interconnect. In Proceedings of the Optical Fiber Communication Conference (OFC), San Diego, CA, USA, 8–12 March 2020; Optical Society of America: Rochester, NY, USA, 2020; p. Th2A.51. [Google Scholar] [CrossRef]
- Chuang, C.Y.; Chang, W.F.; Wei, C.C.; Ho, C.J.; Huang, C.Y.; Shi, J.W.; Henrickson, L.; Chen, Y.K.; Chen, J. Sparse Volterra Nonlinear Equalizer by Employing Pruning Algorithm for High-Speed PAM-4 850-nm VCSEL Optical Interconnect. In Proceedings of the 2019 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 3–7 March 2019; p. 3. [Google Scholar]
- Huang, W.; Chang, W.; Wei, C.; Liu, J.; Chen, Y.; Chi, K.; Wang, C.; Shi, J.; Chen, J. 93% Complexity Reduction of Volterra Nonlinear Equalizer by ℓ1-Regularization for 112-Gbps PAM-4 850-nm VCSEL Optical Interconnect. In Proceedings of the 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 11–15 March 2018; pp. 1–3. [Google Scholar]
- Chuang, C.Y.; Wei, C.C.; Lin, T.C.; Chi, K.L.; Liu, L.C.; Shi, J.W.; Chen, Y.K.; Chen, J. Employing Deep Neural Network for High Speed 4-PAM Optical Interconnect. In Proceedings of the 2017 European Conference on Optical Communication (ECOC), Gothenburg, Sweden, 17–21 September 2017; p. 3. [Google Scholar] [CrossRef]
- Zhou, Q.Y.; Yang, C.C.; Liang, A.Z.; Zheng, X.L.; Chen, Z.Y. Low computationally complex recurrent neural network for high speed optical fiber transmission. Opt. Commun. 2019, 441, 121–126. [Google Scholar] [CrossRef]
- Qingyi, Z.; Chuanchuan, Y. AdaNN: Adaptive Neural Network-based Equalizer via Online Semi-supervised Learning. arXiv 2019, arXiv:1907.10258. [Google Scholar]
- Zhang, Q.W.; Jiang, Y.T.; Zhou, H.; Deng, C.L.; Duan, S.H.; Wang, Z.C.; Li, Y.C.; Song, Y.X.; Chen, J.; Zhang, J.J.; et al. 137 Gb/s PAM-4 Transmissions at 850 nm over 40 cm Optical Backplane with 25 G Devices with Improved Neural Network-Based Equalization. Appl. Sci. 2019, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Diamantopoulos, N.P.; Kobayashi, W.; Nishi, H.; Takeda, K.; Kakitsuka, T.; Matsuo, S. 56-Gb/s VSB-PAM-4 over 80-km Using 1550-nm EA-DFB Laser and Reduced-Complexity Nonlinear Equalization. In Proceedings of the 2017 European Conference on Optical Communication (ECOC), Gothenburg, Sweden, 17–21 September 2017; p. 3. [Google Scholar]
- Wan, Z.; Li, J.; Shu, L.; Lu, M.; Li, X.; Fu, S.; Xu, K. Nonlinear equalization based on pruned artificial neural networks for 112-Gb/s SSB-PAM4 transmission over 80-km SSMF. Opt. Express 2018, 26, 10631–10642. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.; Zhang, W.; Zhang, Y.; Liang, C.; Du, J.; He, Z. Compressed Nonlinear Equalizers for Optical Interconnects: Efficiency and Stability. In Proceedings of the Optical Fiber Communication Conference (OFC), San Diego, CA, USA, 8–12 March 2020; p. W3D.5. [Google Scholar] [CrossRef]
- Stojanovic, N.; Karinou, F.; Qiang, Z.; Prodaniuc, C. Volterra and Wiener Equalizers for Short-Reach 100G PAM-4 Applications. J. Lightwave Technol. 2017, 35, 4583–4594. [Google Scholar] [CrossRef]
- Shu, L.; Li, J.; Wan, Z.; Zhang, W.; Fu, S.; Xu, K. Overestimation Trap of Artificial Neural Network: Learning the Rule of PRBS. In Proceedings of the 2018 European Conference on Optical Communication (ECOC), Rome, Italy, 23–27 September 2018; pp. 1–3. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Ge, L.; Zhang, Y.; Liang, C.; He, Z. Compressed Nonlinear Equalizers for 112-Gbps Optical Interconnects: Efficiency and Stability. Sensors 2020, 20, 4680. https://doi.org/10.3390/s20174680
Zhang W, Ge L, Zhang Y, Liang C, He Z. Compressed Nonlinear Equalizers for 112-Gbps Optical Interconnects: Efficiency and Stability. Sensors. 2020; 20(17):4680. https://doi.org/10.3390/s20174680
Chicago/Turabian StyleZhang, Wenjia, Ling Ge, Yanci Zhang, Chenyu Liang, and Zuyuan He. 2020. "Compressed Nonlinear Equalizers for 112-Gbps Optical Interconnects: Efficiency and Stability" Sensors 20, no. 17: 4680. https://doi.org/10.3390/s20174680
APA StyleZhang, W., Ge, L., Zhang, Y., Liang, C., & He, Z. (2020). Compressed Nonlinear Equalizers for 112-Gbps Optical Interconnects: Efficiency and Stability. Sensors, 20(17), 4680. https://doi.org/10.3390/s20174680