Classification and Prediction of Typhoon Levels by Satellite Cloud Pictures through GC–LSTM Deep Learning Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite Cloud Images and Data Sources
2.2. Traditional Convolutional Neural Network
2.3. Deep Learning GCN Algorithm
2.4. LSTM Neural Network Algorithm
2.5. Construction of the GCN–LSTM Fusion Model
2.6. Model Verification and Optimization
- (1)
- Model accuracy (ACC): It is the part that passes the true correct rate. If the number of real typhoons in the i sample of all n satellite cloud picture samples is y, and the data predicted by the model is Oi, then the correct rate of the classification of the typhoon satellite cloud picture model is calculated as follows; if the number predicted by satellite cloud pictures is more consistent with the real number, the correct rate of model classification is greater.
- (2)
- Precision (Pre): It indicates the proportion of processed samples that are correctly divided into positive samples [25].
- (3)
- Recall (Rec): It represents the proportion of positive samples in the original positive samples [26]. It indicates the proportion of the total number of correctly predicted numbers after the typhoon satellite cloud picture prediction model.
- (4)
- Recognition Rate (RR): It is the ratio of the wrongly recognized image/the recognized image [27].
- (5)
- Matching Speed (MS): It refers to the time from the completion of image acquisition to the completion of model prediction.
3. Results
3.1. Performance Analysis of Different Models
3.2. Determination of Optimal Model Parameters
3.3. Application Analysis of Model Examples
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Uson, M.A.M. Natural disasters and land grabs:The politics of their intersection in the Philippines following super typhoon Haiyan. Can. J. Dev. Stud. Rev. Can. D’études Dév. 2017, 38, 414–430. [Google Scholar] [CrossRef]
- Chen, L.L.; Tseng, C.H.; Shih, Y.H. Climate-related economic losses in Taiwan. Int. J. Glob. Warm. 2017, 11, 449–463. [Google Scholar] [CrossRef]
- Ding, X.; Chen, Y.; Pan, Y.; Reeve, D. Fast ensemble forecast of storm surge along the coast of China. J. Coast. Res. 2016, 75, 1077–1081. [Google Scholar] [CrossRef] [Green Version]
- Corcione, V.; Nunziata, F.; Migliaccio, M. Megi typhoon monitoring by X-band synthetic aperture radar measurements. IEEE J. Ocean. Eng. 2017, 43, 184–194. [Google Scholar] [CrossRef]
- Rüttgers, M.; Lee, S.; Jeon, S.; You, D. Prediction of a typhoon track using a generative adversarial network and satellite images. Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef]
- Su, X. Using Deep Learning Model for Meteorological Satellite Cloud Image Prediction. Available online: https://ui.adsabs.harvard.edu/abs/2017AGUFMIN13B0064S/abstract (accessed on 9 September 2020).
- Zhao, L.; Chen, Y.; Sheng, V.S. A real-time typhoon eye detection method based on deep learning for meteorological information forensics. J. Real Time Image Process. 2020, 17, 95–102. [Google Scholar] [CrossRef]
- Liou, Y.A.; Liu, J.C.; Liu, C.P.; Liu, C.C. Season-dependent distributions and profiles of seven super-typhoons (2014) in the Northwestern Pacific Ocean from satellite cloud images. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2949–2957. [Google Scholar] [CrossRef]
- Chen, S.T. Probabilistic forecasting of coastal wave height during typhoon warning period using machine learning methods. J. Hydroinform. 2019, 21, 343–358. [Google Scholar] [CrossRef]
- Olander, T.L.; Velden, C.S. The Advanced Dvorak Technique (ADT) for estimating tropical cyclone intensity: Update and new capabilities. Weather Forecast. 2019, 34, 905–922. [Google Scholar] [CrossRef]
- Lu, J.; Feng, T.; Li, J.; Cai, Z.; Xu, X.; Li, L.; Li, J. Impact of assimilating Himawari-8-derived layered precipitable water with varying cumulus and microphysics parameterization schemes on the simulation of Typhoon Hato. J. Geophys. Res. Atmos. 2019, 124, 3050–3071. [Google Scholar] [CrossRef]
- Gao, S.; Zhao, P.; Pan, B.; Li, Y.; Zhou, M.; Xu, J.; Zhong, S.; Shi, Z. A nowcasting model for the prediction of typhoon tracks based on a long short term memory neural network. Acta Oceanol. Sin. 2018, 37, 8–12. [Google Scholar] [CrossRef]
- Krapivin, V.F.; Soldatov, V.Y.; Varotsos, C.A.; Cracknell, A.P. An adaptive information technology for the operative diagnostics of the tropical cyclones; solar–terrestrial coupling mechanisms. J. Atmos. Sol. Terr. Phys. 2012, 89, 83–89. [Google Scholar] [CrossRef]
- Varotsos, C.A.; Krapivin, V.F.; Soldatov, V.Y. Monitoring and forecasting of tropical cyclones: A new information-modeling tool to reduce the risk. Int. J. Disaster Risk Reduct. 2019, 36, 101088. [Google Scholar] [CrossRef]
- Zhu, Z.; Peng, G.; Chen, Y.; Gao, H. A convolutional neural network based on a capsule network with strong generalization for bearing fault diagnosis. Neurocomputing 2019, 323, 62–75. [Google Scholar] [CrossRef]
- Scher, S. Toward data-driven weather and climate forecasting: Approximating a simple general circulation model with deep learning. Geophys. Res. Lett. 2018, 45, 616–622. [Google Scholar] [CrossRef] [Green Version]
- Kaba, K.; Sarıgül, M.; Avcı, M.; Kandırmaz, H.M. Estimation of daily global solar radiation using deep learning model. Energy 2018, 162, 126–135. [Google Scholar] [CrossRef]
- Xiao, C.; Chen, N.; Hu, C.; Wang, K.; Xu, Z.; Cai, Y.; Xu, L.; Chen, Z.; Gong, J. A spatiotemporal deep learning model for sea surface temperature field prediction using time-series satellite data. Environ. Model. Softw. 2019, 120, 104502–104521. [Google Scholar] [CrossRef]
- Wang, H.; Shao, N.; Ran, Y. Identification of Precipitation-Clouds Based on the Dual-Polarization Doppler Weather Radar Echoes Using Deep–Learning Method. IEEE Access 2018, 7, 12822–12831. [Google Scholar] [CrossRef]
- Devika, G.; Ilayaraja, M.; Shankar, K. Optimal Radial Basis Neural Network (ORB-NN) For Effective Classification of Clouds in Satellite Images with Features. Int. J. Pure Appl. Math. 2017, 116, 309–329. [Google Scholar]
- Chang, P.; Grinband, J.; Weinberg, B.; Bardis, M.; Khy, M.; Cadena, G.; Su, M.Y.; Cha, S.; Filippi, C.; Bota, D. Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas. Am. J. Neuroradiol. 2018, 39, 1201–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winkler, J.K.; Fink, C.; Toberer, F.; Enk, A.; Deinlein, T.; Hofmann-Wellenhof, R.; Thomas, L.; Lallas, A.; Blum, A.; Stolz, W. Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition. JAMA Dermatol. 2019, 155, 1135–1141. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Cui, G.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and applications. arXiv 2018, arXiv:1812.08434. [Google Scholar]
- Fischer, T.; Krauss, C. Deep learning with long short-term memory networks for financial market predictions. Eur. J. Oper. Res. 2018, 270, 654–669. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Zhang, Z.; Chen, Y.C.; Zhao, Z.Y.; Yin, X.D.; Jiang, H.B. A deep learning-based radiomics model for differentiating benign and malignant renal tumors. Transl. Oncol. 2019, 12, 292–300. [Google Scholar] [CrossRef]
- Grabler, P.; Sighoko, D.; Wang, L.; Allgood, K.; Ansell, D. Recall and cancer detection rates for screening mammography: Finding the sweet spot. Am. J. Roentgenol. 2017, 208, 208–213. [Google Scholar] [CrossRef]
- Lee, H.J.; Ullah, I.; Wan, W.; Gao, Y.; Fang, Z. Real-time vehicle make and model recognition with the residual SqueezeNet architecture. Sensors 2019, 19, 982. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, A.; Hassanzadeh, P.; Subramanian, D.; Palem, K. Data-Driven prediction of a multi-scale Lorenz 96 chaotic system using a hierarchy of deep learning methods: Reservoir computing, ANN, and RNN-LSTM. EarthArXiv 2019, 21, 654–660. [Google Scholar]
- Lian, J.; Dong, P.; Zhang, Y.; Pan, J. A Novel Deep Learning Approach for Tropical Cyclone Track Prediction Based on Auto-Encoder and Gated Recurrent Unit Networks. Appl. Sci. 2020, 10, 3965. [Google Scholar] [CrossRef]
- Heming, J.T.; Prates, F.; Bender, M.A.; Bowyer, R.; Cangialosi, J.; Caroff, P.; Coleman, T.; Doyle, J.D.; Dube, A.; Faure, G. Review of recent progress in tropical cyclone track forecasting and expression of uncertainties. Trop. Cyclone Res. Rev. 2019, 8, 181–218. [Google Scholar] [CrossRef]
- Ouyang, H.-T. Input optimization of ANFIS typhoon inundation forecast models using a Multi-Objective Genetic Algorithm. J. Hydro Environ. Res. 2018, 19, 16–27. [Google Scholar] [CrossRef]
Typhoon Level | Maximum Wind Speed/kt | Maximum Wind Speed/(m/s) |
---|---|---|
Tropical depression | <34 | <17 |
Typhoon | >34–<64 | >17–<33 |
Strong typhoon | >64–<85 | >33–<44 |
Super Typhoon | >85–<105 | >44–<54 |
Categorical Data | Tropical Depression (0-) | Typhoon (1-) | Strong Typhoon (2-) | Super Typhoon (3-) |
---|---|---|---|---|
Tropical depression | 83.36 | 12.67 | 9.59 | 3.28 |
Typhoon | 1 | 95.12 | 0 | 0 |
Strong typhoon | 1 | 1 | 93.24 | 7.24 |
Super Typhoon | 0 | 0 | 1 | 95.12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Xiang, J.; Huang, S. Classification and Prediction of Typhoon Levels by Satellite Cloud Pictures through GC–LSTM Deep Learning Model. Sensors 2020, 20, 5132. https://doi.org/10.3390/s20185132
Zhou J, Xiang J, Huang S. Classification and Prediction of Typhoon Levels by Satellite Cloud Pictures through GC–LSTM Deep Learning Model. Sensors. 2020; 20(18):5132. https://doi.org/10.3390/s20185132
Chicago/Turabian StyleZhou, Jianyin, Jie Xiang, and Sixun Huang. 2020. "Classification and Prediction of Typhoon Levels by Satellite Cloud Pictures through GC–LSTM Deep Learning Model" Sensors 20, no. 18: 5132. https://doi.org/10.3390/s20185132