Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,359)

Search Parameters:
Keywords = typhoon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2914 KB  
Article
Machine Learning-Based Short-Term Forecasting of Significant Wave Height During Typhoons Using SWAN Data: A Case Study in the Pearl River Estuary
by Mengdi Ma, Guoliang Chen, Sudong Xu, Weikai Tan and Kai Yin
J. Mar. Sci. Eng. 2025, 13(9), 1612; https://doi.org/10.3390/jmse13091612 - 23 Aug 2025
Viewed by 47
Abstract
Accurate wave forecasting under typhoon conditions is essential for coastal safety in the Pearl River Estuary. This study explores the use of Random Forest (RF) and Long Short-Term Memory (LSTM) models to predict significant wave heights, using SWAN-simulated data from 87 historical typhoon [...] Read more.
Accurate wave forecasting under typhoon conditions is essential for coastal safety in the Pearl River Estuary. This study explores the use of Random Forest (RF) and Long Short-Term Memory (LSTM) models to predict significant wave heights, using SWAN-simulated data from 87 historical typhoon events. Ten representative typhoons were reserved for independent testing. Results show that the LSTM model outperforms RF in 3 h forecasts, achieving a lower mean RMSE and higher R2, particularly in capturing wave peaks under highly dynamic conditions. For 6 h forecasts, both models exhibit decreased accuracy, with RF performing slightly better in stable scenarios, while LSTM remains more responsive in complex wave evolution. Generalization tests at three nearby stations demonstrate that both models, especially LSTM, retain strong predictive skill beyond the training location. These findings highlight the potential of combining numerical wave models with machine learning for short-term, data-driven wave forecasting in typhoon-prone and observation-sparse regions. The study also points to future improvements through integration of wind field predictors, model updating strategies, and ensemble meteorological data. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

25 pages, 8170 KB  
Article
Energy Migration and Groundwater Response to Irregular Wave Forcing in Coastal Aquifers: A Spectral and Wavelet Analysis
by Weilun Chen, Jun Kong, Saihua Huang, Huawei Xie, Jun Wang and Chao Gao
Water 2025, 17(17), 2513; https://doi.org/10.3390/w17172513 - 22 Aug 2025
Viewed by 165
Abstract
In recent years, the irregular wave characteristics of ocean dynamics have often been overlooked in the study of the driving mechanism of groundwater movement in coastal aquifers. To clarify the propagation mechanisms of groundwater fluctuations driven by irregular waves in beach aquifers, we [...] Read more.
In recent years, the irregular wave characteristics of ocean dynamics have often been overlooked in the study of the driving mechanism of groundwater movement in coastal aquifers. To clarify the propagation mechanisms of groundwater fluctuations driven by irregular waves in beach aquifers, we employed spectral analysis based on numerical simulations to examine the energy migration processes and evolution characteristics of wave signals at different frequencies. It elucidates the response mechanism of groundwater movement characteristics (head, velocity) to irregular waves in the sea. The energy density in the low-frequency region is enhanced compared to the incident wave and continuously increases in the direction away from the sea within the aquifer. The wavelet power corresponding to the 1/2 spectral peak frequency is significantly enhanced. The energy density in the high-frequency region is generally weaker than that of the incident waves, and the wavelet power corresponding to double spectral peak frequency is enhanced. The correlation between incident waves and groundwater fluctuations is highest near the spectral peak period. This study addresses some problems in modeling surface water–groundwater interactions under irregular wave conditions and provides a theoretical reference for investigating the impacts of extreme climate events (such as typhoon waves and low-frequency offshore oscillations generated by storm surges) on seawater intrusion into coastal groundwater systems. Full article
(This article belongs to the Special Issue Coastal Management and Nearshore Hydrodynamics, 2nd Edition)
Show Figures

Figure 1

32 pages, 33105 KB  
Article
Quantifying Spatiotemporal Evolution of Sandy Shorelines in Northern China Using DSAS: A Case Study from Dalian World Peace Park
by Panqing Lin, Xiangxu Wei, Yaxuan Zhang, Pengfei Lv, Ming Liu, Yi Yang and Xiangke Dong
Sustainability 2025, 17(17), 7591; https://doi.org/10.3390/su17177591 - 22 Aug 2025
Viewed by 131
Abstract
This study analyzed shoreline evolution (2000–2024) at Dalian World Peace Park’s sandy tourist beach using GEE, CoastSat, and DSAS. At the same time, combined with the grain size analysis of beach sediments before and after typhoons, the impact of extreme events on the [...] Read more.
This study analyzed shoreline evolution (2000–2024) at Dalian World Peace Park’s sandy tourist beach using GEE, CoastSat, and DSAS. At the same time, combined with the grain size analysis of beach sediments before and after typhoons, the impact of extreme events on the shoreline line changes was explored. The DSAS shows a spatial differentiation pattern of the southern shoreline retreat trend zone, the central shoreline dynamic balance trend zone and the northern shoreline advance trend zone. The 2008 reclamation project altered hydrodynamics, creating an artificial headland effect that triggered significant northern shoreline advancement (max 74.16 m) and southern retreat (27.14 m), demonstrating unforeseen long-term trade-offs of large-scale interventions. Subsequent cobble structures, acting as a nature-based solution, enhanced sediment retention and wave energy refraction, promoting dynamic equilibrium and shoreline resilience. However, the 2017 double typhoon caused instantaneous retreat with finer, poorly sorted sediment, highlighting persistent vulnerability to extreme events. This study underscores the critical need for adaptive management within a sustainable shoreline development framework. Full article
Show Figures

Figure 1

20 pages, 18751 KB  
Article
Identifying Slope Hazard Zones in Central Taiwan Using Emerging Hot Spot Analysis and NDVI
by Kieu Anh Nguyen, Yi-Jia Jiang and Walter Chen
Sustainability 2025, 17(16), 7428; https://doi.org/10.3390/su17167428 - 17 Aug 2025
Viewed by 242
Abstract
Landslides pose persistent threats to mountainous regions in Taiwan, particularly in areas such as Nanfeng Village, Nantou County, where steep terrain and concentrated rainfall contribute to chronic slope instability. This study investigates spatiotemporal patterns of vegetation change as a proxy for identifying potential [...] Read more.
Landslides pose persistent threats to mountainous regions in Taiwan, particularly in areas such as Nanfeng Village, Nantou County, where steep terrain and concentrated rainfall contribute to chronic slope instability. This study investigates spatiotemporal patterns of vegetation change as a proxy for identifying potential landslide-prone zones, with a focus on the Tung-An tribal settlement in the eastern part of the village. Using high-resolution satellite imagery from SPOT 6/7 (2013–2023) and Pléiades (2019–2023), we derived annual NDVI layers to monitor vegetation dynamics across the landscape. Long-term vegetation trends were evaluated using the Mann–Kendall test, while spatiotemporal clustering was assessed through Emerging Hot Spot Analysis (EHSA) based on the Getis-Ord Gi* statistic within a space-time cube framework. The results revealed statistically significant NDVI increases in many valley-bottom and mid-slope regions, particularly where natural regeneration or reduced disturbance occurred. However, other valley-bottom zones—especially those affected by recurring debris flows—still exhibited declining or persistently low vegetation. In contrast, persistent low or declining NDVI values were observed along steep slopes and debris-flow-prone channels, such as the Nanshan and Mei Creeks. These zones consistently overlapped with known landslide paths and cold spot clusters, confirming their ecological vulnerability and geomorphic risk. This study demonstrates that integrating NDVI trend analysis with spatiotemporal hot spot classification provides a robust, scalable approach for identifying slope hazard areas in data-scarce mountainous regions. The methodology offers practical insights for ecological monitoring, early warning systems, and disaster risk management in Taiwan and other typhoon-affected environments. By highlighting specific locations where vegetation decline aligns with landslide risk, the findings can guide local authorities in prioritizing slope stabilization, habitat conservation, and land-use planning. Such targeted actions support the Sustainable Development Goals, particularly SDG 11 (Sustainable Cities and Communities), SDG 13 (Climate Action), and SDG 15 (Life on Land), by reducing disaster risk, enhancing community resilience, and promoting the long-term sustainability of mountain ecosystems. Full article
(This article belongs to the Special Issue Landslide Hazards and Soil Erosion)
Show Figures

Figure 1

30 pages, 9947 KB  
Article
Structural Improvement of Sugarcane Harvester for Reducing Field Loss When Harvesting Lodged Canes
by Jiaoli Jiang, Xueting Han, Qingting Liu, Hai Xu, Tao Wu, Jiamo Feng, Xiaoping Zou and Yuejin Li
Agriculture 2025, 15(16), 1759; https://doi.org/10.3390/agriculture15161759 - 16 Aug 2025
Viewed by 235
Abstract
Sugarcane, a key sugar crop in China, is predominantly manually harvested. In the main sugarcane-producing areas of China, typhoons cause canes to become lodged, resulting in high field losses and low harvesting efficiency. This study aimed to reduce these losses by analyzing the [...] Read more.
Sugarcane, a key sugar crop in China, is predominantly manually harvested. In the main sugarcane-producing areas of China, typhoons cause canes to become lodged, resulting in high field losses and low harvesting efficiency. This study aimed to reduce these losses by analyzing the causes: ineffective stalk pickup, transfer, and conveyance. The tests showed the stalk–steel static friction coefficient (SFC) was lower than the stalk–soil SFC. Conventional basecutters use raised patterns to enhance friction, but soil adhesion makes them ineffective, hindering lodged stalk pickup. Bent stalks also struggle to enter butt lift rollers or pass through roller trains, increasing losses. The proposed improvements included adding toothed plates on the cutter discs, optimized disc–roller positioning, and using fewer rollers (one butt lift and one feed roller pair). Theoretical analysis confirmed the toothed plates improved pickup via grabbing force, while using fewer rollers stopped the stalks detaching from and blocking the roller train. A prototype was tested via orthogonal experiments, showing a field loss ratio of 1.21%, a feed rate of 13.09 kg/s, and a billet qualification rate of 95.82% with optimal settings (chopper speed: 390 rpm; 10 stalks/group; roller speed: 230 rpm; ground speed: 1.41 m/s). Field tests achieved 2.0% loss, demonstrating effectiveness for severely lodged cane, a significant improvement over the conventional harvesters (15–20% loss). These findings aid low-loss-level harvester development. Full article
Show Figures

Figure 1

17 pages, 10829 KB  
Article
Vertical Profiling of PM1 and PM2.5 Dynamics: UAV-Based Observations in Seasonal Urban Atmosphere
by Zhen Zhao, Yuting Pang, Bing Qi, Chi Zhang, Ming Yang and Xuezhu Ye
Atmosphere 2025, 16(8), 968; https://doi.org/10.3390/atmos16080968 - 15 Aug 2025
Viewed by 300
Abstract
Urban particulate matter (PM) pollution critically impacts public health and climate. However, traditional ground-based monitoring fails to resolve vertical PM distribution, limiting understanding of transport and stratification-coupled mechanisms. Vertical profiles collected by an unmanned aerial vehicle (UAV) over Hangzhou, a core megacity in [...] Read more.
Urban particulate matter (PM) pollution critically impacts public health and climate. However, traditional ground-based monitoring fails to resolve vertical PM distribution, limiting understanding of transport and stratification-coupled mechanisms. Vertical profiles collected by an unmanned aerial vehicle (UAV) over Hangzhou, a core megacity in China’s Yangtze River Delta, reveal the spatiotemporal heterogeneity and multi-scale drivers of regional PM pollution during two intensive ten-day campaigns capturing peak pollution scenarios (winter: 17–26 January 2019; summer: 21–30 August 2019). Results show stark seasonal differences: winter PM1 and PM2.5 averages were 2.6- and 2.7-fold higher (p < 0.0001) than summer. Diurnal patterns were bimodal in winter and unimodal (single valley) in summer. Vertically consistent PM1 and PM2.5 distributions featured sharp morning (08:00) concentration increases within specific layers (winter: 250–325 m; summer: 350–425 m). Analysis demonstrates multi-scale coupling of synoptic systems, boundary layer processes, and vertical wind structure governing pollution. Key mechanisms include a winter “Transport-Accumulation-Reactivation” cycle driven by cold air, and summer typhoon circulation influences. We identify hygroscopic growth triggered by inversion-high humidity coupling and sea-breeze-driven secondary aerosol formation. Leveraging UAV-based vertical profiling over Hangzhou, this study pioneers a three-dimensional dissection of layer-coupled PM dynamics in the Yangtze River Delta, offering a scalable paradigm for aerial–ground networks to achieve precision stratified control strategies in megacities. Full article
(This article belongs to the Special Issue Air Pollution in China (4th Edition))
Show Figures

Figure 1

20 pages, 10486 KB  
Article
Improving the Assimilation of T-TREC-Retrieved Wind Fields with Iterative Smoothing Constraints During Typhoon Linfa
by Huimin Bian, Haiyan Fei, Yuqing Mao, Cong Li, Aiqing Shu and Jiajun Chen
Remote Sens. 2025, 17(16), 2821; https://doi.org/10.3390/rs17162821 - 14 Aug 2025
Viewed by 270
Abstract
Enhancing radar data assimilation at cloud-resolving scales is essential for advancing typhoon analysis and forecasting. This study focuses on Typhoon Linfa, the 10th Pacific Typhoon of 2015, and proposes T-TREC-IS (Typhoon Circulation Tracking Radar Echo by Correlations with Iterative Smoothing), an enhanced version [...] Read more.
Enhancing radar data assimilation at cloud-resolving scales is essential for advancing typhoon analysis and forecasting. This study focuses on Typhoon Linfa, the 10th Pacific Typhoon of 2015, and proposes T-TREC-IS (Typhoon Circulation Tracking Radar Echo by Correlations with Iterative Smoothing), an enhanced version of the T-TREC algorithm. The enhancement incorporates an iterative smoothing constraint into the T-TREC algorithm, which improves the continuity of the retrieved wind field and mitigates the effects of velocity aliasing in radar data, thereby increasing the operational feasibility of the method. Building on this improvement, we evaluate the effectiveness of assimilating the T-TREC-IS-retrieved wind field for analyzing and forecasting Typhoon Linfa. The results demonstrate that the iterative smoothing constraint effectively filters out velocity de-aliasing errors during radar data quality control, enhances wind field intensity near the typhoon core, and retrieves the typhoon circulation more accurately. The refined wind field exhibits improved consistency and continuity, resulting in superior performance in subsequent assimilation analyses and forecasts. Full article
Show Figures

Figure 1

31 pages, 9665 KB  
Article
Motor Airgap Torque Harmonics Due to Cascaded H-Bridge Inverter Operating with Failed Cells
by Hamid Hamza, Ideal Oscar Libouga, Pascal M. Lingom, Joseph Song-Manguelle and Mamadou Lamine Doumbia
Energies 2025, 18(16), 4286; https://doi.org/10.3390/en18164286 - 12 Aug 2025
Viewed by 290
Abstract
This paper proposes the expressions for the motor airgap torque harmonics induced by a cascaded H-bridge inverter operating with failed cells. These variable frequency drive systems (VFDs), are widely used in oil and gas applications, where a torsional vibration evaluation is a critical [...] Read more.
This paper proposes the expressions for the motor airgap torque harmonics induced by a cascaded H-bridge inverter operating with failed cells. These variable frequency drive systems (VFDs), are widely used in oil and gas applications, where a torsional vibration evaluation is a critical challenge for field engineers. This paper proposes mathematical expressions that are crucial for an accurate torsional analysis during the design stage of VFDs, as required by international standards such as API 617, API 672, etc. By accurately reconstructing the electromagnetic torque from the stator voltages and currents in the (αβ0) reference frame, the obtained expressions enable the precise prediction of the exact locations of torque harmonics induced by the inverter under various real-world operating conditions, without the need for installed torque sensors. The neutral-shifted and peak-reduction fault-tolerant control techniques are commonly adopted under faulty operation of these VFDs. However, their effects on the pulsating torques harmonics in machine air-gap remain uncovered. This paper fulfils this gap by conducting a detailed evaluation of spectral characteristics of these fault-tolerant methods. The theoretical analyses are supported by MATLAB/Simulink 2024 based offline simulation and Typhoon based virtual real-time simulation results performed on a (4.16 kV and 7 MW) vector-controlled induction motor fed by a 7-level cascaded H-bridge inverter. According to the theoretical analyses- and simulation results, the Neutral-shifted and Peak-reduction approaches rebalance the motor input line-to-line voltages in the event of an inverter’s failed cells but, in contrast to the normal mode the carrier, all the triplen harmonics are no longer suppressed in the differential voltage and current spectra due to inequal magnitudes in the phase voltages. These additional current harmonics induce extra airgap torque components that can excite the lowly damped eigenmodes of the mechanical shaft found in the oil and gas applications and shut down the power conversion system due torsional vibrations. Full article
Show Figures

Figure 1

18 pages, 3354 KB  
Article
Hydrological Modeling of the Chikugo River Basin Using SWAT: Insights into Water Balance and Seasonal Variability
by Francis Jhun Macalam, Kunyang Wang, Shin-ichi Onodera, Mitsuyo Saito, Yuko Nagano, Masatoshi Yamazaki and Yu War Nang
Sustainability 2025, 17(15), 7027; https://doi.org/10.3390/su17157027 - 2 Aug 2025
Viewed by 644
Abstract
Integrated hydrological modeling plays a crucial role in advancing sustainable water resource management, particularly in regions facing seasonal and extreme precipitation events. However, comprehensive studies that assess hydrological variability in temperate river basins remain limited. This study addresses this gap by evaluating the [...] Read more.
Integrated hydrological modeling plays a crucial role in advancing sustainable water resource management, particularly in regions facing seasonal and extreme precipitation events. However, comprehensive studies that assess hydrological variability in temperate river basins remain limited. This study addresses this gap by evaluating the performance of the Soil and Water Assessment Tool (SWAT) in simulating streamflow, water balance, and seasonal hydrological dynamics in the Chikugo River Basin, Kyushu Island, Japan. The basin, originating from Mount Aso and draining into the Ariake Sea, is subject to frequent typhoons and intense rainfall, making it a critical case for sustainable water governance. Using the Sequential Uncertainty Fitting Version 2 (SUFI-2) approach, we calibrated the SWAT model over the period 2007–2021. Water balance analysis revealed that baseflow plays dominant roles in basin hydrology which is essential for agricultural and domestic water needs by providing a stable groundwater contribution despite increasing precipitation and varying water demand. These findings contribute to a deeper understanding of hydrological behavior in temperate catchments and offer a scientific foundation for sustainable water allocation, planning, and climate resilience strategies. Full article
Show Figures

Figure 1

18 pages, 6642 KB  
Article
Flood Impact and Evacuation Behavior in Toyohashi City, Japan: A Case Study of the 2 June 2023 Heavy Rain Event
by Masaya Toyoda, Reo Minami, Ryoto Asakura and Shigeru Kato
Sustainability 2025, 17(15), 6999; https://doi.org/10.3390/su17156999 - 1 Aug 2025
Viewed by 485
Abstract
Recent years have seen frequent heavy rainfall events in Japan, often linked to Baiu fronts and typhoons. These events are exacerbated by global warming, leading to an increased frequency and intensity. As floods represent a serious threat to sustainable urban development and community [...] Read more.
Recent years have seen frequent heavy rainfall events in Japan, often linked to Baiu fronts and typhoons. These events are exacerbated by global warming, leading to an increased frequency and intensity. As floods represent a serious threat to sustainable urban development and community resilience, this study contributes to sustainability-focused risk reduction through integrated analysis. This study focuses on the 2 June 2023 heavy rain disaster in Toyohashi City, Japan, which caused extensive damage due to flooding from the Yagyu and Umeda Rivers. Using numerical models, this study accurately reproduces flooding patterns, revealing that high tides amplified the inundation area by 1.5 times at the Yagyu River. A resident questionnaire conducted in collaboration with Toyohashi City identifies key trends in evacuation behavior and disaster information usage. Traditional media such as TV remain dominant, but younger generations leverage electronic devices for disaster updates. These insights emphasize the need for targeted information dissemination and enhanced disaster preparedness strategies, including online materials and flexible training programs. The methods and findings presented in this study can inform local and regional governments in building adaptive disaster management policies, which contribute to a more sustainable society. Full article
Show Figures

Figure 1

18 pages, 3114 KB  
Article
Heavy Rainfall Induced by Typhoon Yagi-2024 at Hainan and Vietnam, and Dynamical Process
by Venkata Subrahmanyam Mantravadi, Chen Wang, Bryce Chen and Guiting Song
Atmosphere 2025, 16(8), 930; https://doi.org/10.3390/atmos16080930 - 1 Aug 2025
Viewed by 599
Abstract
Typhoon Yagi (2024) was a rapidly moving storm that lasted for eight days and made landfall in three locations, producing heavy rainfall over Hainan and Vietnam. This study aims to investigate the dynamical processes contributing to the heavy rainfall, concentrating on enthalpy flux [...] Read more.
Typhoon Yagi (2024) was a rapidly moving storm that lasted for eight days and made landfall in three locations, producing heavy rainfall over Hainan and Vietnam. This study aims to investigate the dynamical processes contributing to the heavy rainfall, concentrating on enthalpy flux (EF) and moisture flux (MF). The results indicate that both EF and MF increased significantly during the typhoon’s intensification stage and were high at the time of landfall. Before landfalling at Hainan, latent heat flux (LHF) reached 600 W/m2, while sensible heat flux (SHF) was recorded as 80 W/m2. Landfall at Hainan resulted in a decrease in LHF and SHF. LHF and SHF subsequently increased to 700 W/m2 and 100 W/m2, respectively, as noted prior to the landfall in Vietnam. The increased LHF led to higher evaporation, which subsequently elevated moisture flux (MF) following the landfall in Vietnam, while the region’s topography further intensified the rainfall. The mean daily rainfall observed over Philippines is 75 mm on 2 September (landfall and passing through), 100 mm over Hainan (landfall and passing through) on 6 September, and 95 mm at over Vietnam on 7 September (landfall and after), respectively. Heavy rainfall was observed over the land while the typhoon was passing and during the landfall. This research reveals that Typhoon Yagi’s intensity was maintained by a well-organized and extensive circulation system, supported by favorable weather conditions, including high sea surface temperatures (SST) exceeding 30.5 °C, substantial low-level moisture convergence, and elevated EF during the landfall in Vietnam. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

18 pages, 1738 KB  
Article
Extreme Wind Speed Prediction Based on a Typhoon Straight-Line Path Model and the Monte Carlo Simulation Method: A Case for Guangzhou
by Zhike Lu, Xinrui Zhang, Junling Hong and Wanhai Xu
Appl. Sci. 2025, 15(15), 8486; https://doi.org/10.3390/app15158486 - 31 Jul 2025
Viewed by 301
Abstract
The southeastern coastal region of China has long been affected by typhoon disasters, which pose significant threats to the safety of offshore structures. Therefore, predicting extreme wind speeds corresponding to various return periods on the basis of limited typhoon samples is particularly important [...] Read more.
The southeastern coastal region of China has long been affected by typhoon disasters, which pose significant threats to the safety of offshore structures. Therefore, predicting extreme wind speeds corresponding to various return periods on the basis of limited typhoon samples is particularly important for wind-resistant design. This study systematically predicts extreme typhoon wind speeds for various return periods and quantitatively assesses the sensitivity of key parameters by employing a Monte Carlo stochastic simulation framework integrated with a typhoon straight-line trajectory model and the Yan Meng wind field model. Focusing on Guangzhou (23.13° N, 113.28 °E), a representative coastal city in southeastern China, this research establishes a modular analytical framework that provides generalizable solutions for typhoon disaster assessment in coastal regions. The probabilistic wind load data generated by this framework significantly increases the cost-effectiveness and safety of wind-resistant structural design. Full article
(This article belongs to the Special Issue Transportation and Infrastructures Under Extreme Weather Conditions)
Show Figures

Figure 1

29 pages, 16630 KB  
Article
Impact of Radar Data Assimilation on the Simulation of Typhoon Morakot
by Lingkun Ran and Cangrui Wu
Atmosphere 2025, 16(8), 910; https://doi.org/10.3390/atmos16080910 - 28 Jul 2025
Viewed by 304
Abstract
The high spatial resolution of radar data enables the detailed resolution of typhoon vortices and their embedded structures; the assimilation of radar data in the initialization of numerical weather prediction exerts an important influence on the forecasting of typhoon track, intensity, and structures [...] Read more.
The high spatial resolution of radar data enables the detailed resolution of typhoon vortices and their embedded structures; the assimilation of radar data in the initialization of numerical weather prediction exerts an important influence on the forecasting of typhoon track, intensity, and structures up to at least 12 h. For the case of typhoon Morakot (2009), Taiwan radar data was assimilated to adjust the dynamic and thermodynamic structures of the vortex in the model initialization by the three-dimensional variation data assimilation system in the Advanced Region Prediction System (ARPS). The radial wind was directly assimilated to tune the original unbalanced velocity fields through a 3-dimensional variation method, and complex cloud analysis was conducted by using the reflectivity data. The influence of radar data assimilation on typhoon prediction was examined at the stages of Morakot landing on Taiwan Island and subsequently going inland. The results showed that the assimilation made some improvement in the prediction of vortex intensity, track, and structures in the initialization and subsequent forecast. For example, besides deepening the central sea level pressure and enhancing the maximum surface wind speed, the radar data assimilation corrected the typhoon center movement to the best track and adjusted the size and inner-core structure of the vortex to be close to the observations. It was also shown that the specific humidity adjustment in the cloud analysis procedure during the assimilation time window played an important role, producing more hydrometeors and tuning the unbalanced moisture and temperature fields. The neighborhood-based ETS revealed that the assimilation with the specific humidity adjustment was propitious in improving forecast skill, specifically for smaller-scale reflectivity at the stage of Morakot landing, and for larger-scale reflectivity at the stage of Morakot going inland. The calculation of the intensity-scale skill score of the hourly precipitation forecast showed the assimilation with the specific humidity adjustment performed skillful forecasting for the spatial forecast-error scales of 30–160 km. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

22 pages, 17693 KB  
Article
Mooring Observations of Typhoon Trami (2024)-Induced Upper-Ocean Variability: Diapycnal Mixing and Internal Wave Energy Characteristics
by Letian Chen, Xiaojiang Zhang, Ze Zhang and Weimin Zhang
Remote Sens. 2025, 17(15), 2604; https://doi.org/10.3390/rs17152604 - 27 Jul 2025
Viewed by 263
Abstract
High-resolution mooring observations captured diverse upper-ocean responses during typhoon passage, showing strong agreement with satellite-derived sea surface temperature and salinity. Analysis indicates that significant wind-induced mixing drove pronounced near-surface cooling and salinity increases at the mooring site. This mixing enhancement was predominantly governed [...] Read more.
High-resolution mooring observations captured diverse upper-ocean responses during typhoon passage, showing strong agreement with satellite-derived sea surface temperature and salinity. Analysis indicates that significant wind-induced mixing drove pronounced near-surface cooling and salinity increases at the mooring site. This mixing enhancement was predominantly governed by rapid intensification of near-inertial shear in the surface layer, revealed by mooring observations. Unlike shear instability, near-inertial horizontal kinetic energy displays a unique vertical distribution, decreasing with depth before rising again. Interestingly, the subsurface peak in diurnal tidal energy coincides vertically with the minimum in near-inertial energy. While both barotropic tidal forcing and stratification changes negligibly influence diurnal tidal energy emergence, significant energy transfer occurs from near-inertial internal waves to the diurnal tide. This finding highlights a critical tide–wave interaction process and demonstrates energy cascading within the oceanic internal wave spectrum. Full article
(This article belongs to the Special Issue Remote Sensing for Ocean-Atmosphere Interaction Studies)
Show Figures

Figure 1

24 pages, 17460 KB  
Article
Improved Pacific Decadal Oscillation Prediction by an Optimizing Model Combined Bidirectional Long Short-Term Memory and Multiple Modal Decomposition
by Hang Yu, Junbo Lei, Pengfei Lin, Tao Zhang, Hailong Liu, Huilin Lai, Lindong Lai, Bowen Zhao and Bo Wu
Remote Sens. 2025, 17(15), 2537; https://doi.org/10.3390/rs17152537 - 22 Jul 2025
Viewed by 482
Abstract
The Pacific Decadal Oscillation (PDO), as the dominant mode of decadal sea surface temperature variability in the North Pacific, exhibits both interannual and decadal fluctuations that significantly influence global climate. The complexity associated with PDO changes poses challenges for accurate predictions. This study [...] Read more.
The Pacific Decadal Oscillation (PDO), as the dominant mode of decadal sea surface temperature variability in the North Pacific, exhibits both interannual and decadal fluctuations that significantly influence global climate. The complexity associated with PDO changes poses challenges for accurate predictions. This study develops a BiLSTM-WOA-MMD (BWM) model, which integrates a bidirectional long short-term memory network with a whale optimization algorithm (WOA) and multiple modal decomposition (MMD), to forecast PDO at both interannual and decadal time scales. The model successfully predicts monthly/annual average PDO index of up to 15 months/5 years in advance, achieving a correlation coefficient of 0.56/0.55. By utilizing the WOA to effectively optimize hyperparameters, the model enhances the PDO prediction skill compared to existing deep learning PDO prediction models, improving the correlation coefficient from 0.47 to 0.68 at a 6-month lead time. The combination of MMD and WOA further minimizes prediction errors and extends the forecasting effective time to 15 months by capturing essential modes. The BWM model can be employed for future PDO prediction and the predicted PDO will remain in its cool phase in the next year both using the PDO index from NECI and derived from near-time satellite data. This proposed model offers an effective way to advance the prediction skill of climate variability on multiple time scales by utilizing all kinds of data available including satellite data, and provides a large-scale background to monitor marine heatwaves. Full article
Show Figures

Graphical abstract

Back to TopTop