A Smart Multi-Plane Detector Design for Ultrafast Electron Beam X-ray Computed Tomography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Principle of Multi-Plane Detectors for UFXCT Imaging
- (a)
- Which scintillation material and photodetector can be applied to obtain sufficient scintillation light yield, time response, and electrical current, respectively, i.e., a sufficient signal-to-noise ratio?
- (b)
- Is a measurable electrical detector current linearly proportional to the X-ray flux at each height of the scintillator and over a wide dynamic signal range?
- (c)
- Is there a quantifiable scintillation light yield reduction with the distance to the photodetector?
- (d)
- What is the influence of additional optically clear material that is stacked between the scintillation materials to enhance the functionality and geometric assembling of the detector design?
- (e)
- What is the cross-talk between individually defined neighboring detector volumes, i.e., how deep interacts X-ray photons outside a masked detector volume height?
2.2. Experimental Setup
2.2.1. Detector Module
2.2.2. Test Setup and Procedure
- (a)
- Signal quality, timing and noise
- (b)
- Signal long-term stability
- (c)
- Signal response versus various electron beam currents and detector exposition height
3. Results and Discussion
3.1. Detector Signal Analysis
3.2. Long-Term Signal Stability
3.3. Performance at Various Detector Heights and Electron Beam Currents
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Toye, D.; Crine, M.; Marchot, P. Imaging of liquid distribution in reactive distillation packings with a new high-energy X-ray tomograph. Meas. Sci. Technol. 2005, 16, 2213–2220. [Google Scholar] [CrossRef]
- Toye, D.; Marchot, P.; Crine, M.; L’Homme, G. Modelling of the liquid distribution in a trickle flow packed column based upon X-ray tomography images. Chem. Eng. Commun. 1999, 175, 131–142. [Google Scholar] [CrossRef]
- Green, C.W.; Farone, J.; Briley, J.K.; Eldridge, R.B.; Ketcham, R.A.; Nightingale, B. Novel application of X-ray computed tomography: Determination of gas/liquid contact area and liquid holdup in structured packing. Ind. Eng. Chem. Res. 2007, 46, 5734–5753. [Google Scholar] [CrossRef]
- Calvo, S.; Beugre, D.; Crine, M.; Léonard, A.; Marchot, P.; Toye, D. Phase distribution measurements in metallic foam packing using X-ray radiography and micro-tomography. Chem. Eng. Process. Process. Intensif. 2009, 48, 1030–1039. [Google Scholar] [CrossRef]
- Wallenstein, M.; Hafen, N.; Heinzmann, H.; Schug, S.; Arlt, W.; Kind, M.; Dietrich, B. Qualitative and quantitative insights into multiphase flow in ceramic sponges using X-ray computed tomography. Chem. Eng. Sci. 2015, 138, 118–127. [Google Scholar] [CrossRef]
- Johansen, G.A.; Hampel, U.; Hjertaker, B.T. Flow imaging by high speed transmission tomography. Appl. Radiat. Isot. 2010, 68, 518–524. [Google Scholar] [CrossRef]
- Rack, A.; Zabler, S.; Mueller, B.R.; Riesemeier, H.; Weidemann, G.; Lange, A.; Goebbels, J.; Hentschel, M.; Goerner, W. High resolution synchrotron-based radiography and tomography using hard X-rays at the BAMline (BESSY II). Nucl. Instrum. Methods Phys. Res. A 2008, 586, 327–344. [Google Scholar] [CrossRef]
- Rack, A.; Weitkamp, T.; Bauer Trabelsi, S.; Modregger, P.; Cecilia, A.; dos Santos Rolo, T.; Rack, T.; Haas, D.; Simon, R.; Heldele, R.; et al. The micro-imaging station of the TopoTomo beamline at the ANKA synchrotron. Nucl. Instrum. Methods Phys. Res. B 2009, 267, 1978–1988. [Google Scholar] [CrossRef]
- Boden, S.; dos Santos Rolo, T.; Baumbach, T.; Hampel, U. Synchrotron radiation microtomography of Taylor bubbles in capillary two-phase flow. Exp. Fluids 2014, 55, 1768. [Google Scholar] [CrossRef]
- Homan, T.; Mudde, R.; Lohse, D.; Meer, D. High-speed X-ray imaging of a ball impacting on loose sand. J. Fluid Mech. 2015, 777, 690706. [Google Scholar] [CrossRef] [Green Version]
- Hori, K.; Fujimoto, T.; Kawanishi, K. Development of ultra-fast X-ray computed tomography scanner system. IEEE Trans. Nucl. Sci. 1998, 45, 2089. [Google Scholar] [CrossRef]
- Misawa, M.; Tiseanu, I.; Prasser, H.-M.; Ichikawa, N.; Akai, M. Ultra-fast X-ray tomography for multi-phase flow interface dynamic studies. Kerntechnik 2003, 68, 85–90. [Google Scholar]
- Morton, E.J.; Luggar, R.D.; Key, M.J.; Kundu, A.; Távora, L.M.N.; Gilboy, W.B. Development of a high speed X-ray tomography system for multiphase flow imaging. Ieee Trans. Nucl. Sci. 1999, 46, 380. [Google Scholar] [CrossRef]
- Fischer, F.; Hoppe, D.; Schleicher, E.; Mattausch, G.; Flaske, H.; Bartel, R.; Hampel, U. An ultra fast electron beam x-ray tomography scanner. Meas. Sci. Technol. 2008, 19, 094002. [Google Scholar] [CrossRef]
- Boyd, D.-P.; Lipton, M.-J. Cardiac Computed Tomography. P. IEEE. 1983, 71, 298–307. [Google Scholar] [CrossRef]
- Fischer, F.; Hampel, U. Ultrafast electron beam X-ray computed tomography for two-phase flow measurement. Nucl. Eng. Des. 2010, 240, 2254–2259. [Google Scholar] [CrossRef] [Green Version]
- Neumann-Kipping, M.; Bieberle, A.; Hampel, U. Investigations on bubbly two-phase flow in a constricted vertical pipe. Int. J. Multiph. Flow 2020, 130, 103340. [Google Scholar] [CrossRef]
- Barthel, F.; Franz, R.; Hampel, U. Experimental investigations of single and two-phase flow in a heated rod bundle. Kerntechnik 2013, 78, 60–67. [Google Scholar] [CrossRef]
- Janzen, A.; Schubert, M.; Barthel, F.; Hampel, U.; Kenig, E.Y. Investigation of dynamic liquid distribution and hold-up in structured packings using ultrafast electron beam X-ray tomography. Chem. Eng. Process. Process. Intensif. 2013, 66, 20–26. [Google Scholar] [CrossRef]
- Zalucky, J.; Wagner, M.; Schubert, M.; Lange, R.; Hampel, U. Hydrodynamics of descending gas-liquid flows in solid foams: Liquid holdup, multiphase pressure drop and radial dispersion. Chem. Eng. Sci. 2017, 168, 480–494. [Google Scholar] [CrossRef]
- Rabha, S.; Schubert, M.; Grugel, F.; Banowski, M.; Hampel, U. Visualization and quantitative analysis of dispersive mixing by a helical static mixer in upward co-current gas-liquid flow. Chem. Eng. J. 2015, 262, 527–540. [Google Scholar] [CrossRef]
- Schäfer, T.; Meitzner, C.; Lange, R.; Hampel, U. A study of two-phase flow in monoliths using ultrafast single-slice X-ray computed tomography. Int. J. Multiph. Flow 2016, 86, 56–66. [Google Scholar] [CrossRef]
- Bieberle, M.; Barthel, F. Combined phase distribution and particle velocity measurement in spout fluidized beds by ultrafast X-ray computed tomography. Chem. Eng. J. 2016, 285, 218–227. [Google Scholar] [CrossRef]
- Bieberle, M.; Schleicher, E.; Fischer, F.; Koch, D.; Menz, H.-J.; Mayer, H.-G.; Hampel, U. Dual-plane ultrafast limited-angle electron beam x-ray tomography. Flow Meas. Instrum. 2010, 21, 233–239. [Google Scholar] [CrossRef]
- Barthel, F.; Bieberle, M.; Hoppe, D.; Banowski, M.; Hampel, U. Velocity measurement for two-phase flows based on ultrafast x-ray tomography. Flow Meas. Instrum. 2015, 46, 196–203. [Google Scholar] [CrossRef]
- Neumann, M.; Bieberle, M.; Wagner, M.; Bieberle, A.; Hampel, U. Improved axial plane distance and velocity determination for ultrafast electron beam X-ray computed tomography. Meas. Sci. Technol. 2019, 30, 084001. [Google Scholar] [CrossRef]
- Stürzel, T.; Bieberle, M.; Laurien, E.; Hampel, U.; Barthel, F.; Menz, H.-J.; Mayer, H.-G. Experimental facility for two- and three-dimensional ultrafast electron beam x-ray computed tomography. Rev. Sci. Instrum. 2010, 82, 023702. [Google Scholar] [CrossRef]
- Hampel, U.; Barthel, F.; Bieberle, M.; Sturzel, T. Transparent target for ultrafast electron beam tomography. Nucl. Instrum. Methods Phys. Res. A 2011, 635, 8–12. [Google Scholar] [CrossRef]
- Kak, A.; Slaney, M. Principles of Computerized Tomographic Imaging; IEEE Press: New York, NY, USA, 1988. [Google Scholar]
- Bieberle, M.; Stürzel, T.; Hampel, U.; Laurien, E. Ultrafast 3D X-ray tomography of a wire-mesh sensor in operation in a two-phase flow. In Proceedings of the 7th World Congress on Industrial Process Tomography, WCIPT7, Krakow, Poland, 2–5 September 2013; pp. 595–604. [Google Scholar]
- Bieberle, A.; Kronenberg, J.; Schleicher, E.; Hampel, U. Design of a high-resolution gamma-ray detector module for tomography applications. Nucl. Instrum. Methods Phys. Res. A 2007, 572, 668–675. [Google Scholar] [CrossRef]
- Crystals, S.G. Physical Properties of Common Inorganic Scintillators; Saint-Gobain Crystals: Newbury, OH, USA, 2006. [Google Scholar]
- Tian, C.; Liu, S.; Xie, Y.; Guo, L.; Chen, D.; Liu, Y.; Zhong, Z. Study on the mechanism of afterglow in CsI: Tl and the afterglow suppression in CsI: Tl, Eu. J. Radioanal. Nucl. Chem. 2019, 320, 123–128. [Google Scholar] [CrossRef]
- Kappers, L.A.; Bartram, R.H.; Hamilton, D.S.; Lempicki, A.; Brecher, C.; Gaysinskiy, V.; Ovechkina, E.E.; Nagarkar, V.V. Scintillation, Afterglow and Thermoluminescence of CsI:Tl, Sm IOP Conference Series: Materials Science and Engineering 15. In Proceedings of the 11th Europhysical Conference on Defects in Insulating Materials (EURODIM 2010), Pécs, Hungary, 12–16 July 2010; p. 012091. [Google Scholar] [CrossRef]
- Zhu, R.-Y. Radiation Damage Effects. In Handbook of Particle Detection and Imaging; Grupen, C., Buvat, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Renker, D.; Lorenz, E. Advances in solid state photon detectors. J. Instrum. 2009, 4, P04004. [Google Scholar] [CrossRef]
- Hamamatsu Photonics, K.K. Datasheet: Si APD array –S8550-02, 4x8 Element APD Array with Low Noise and Enhanced Short-Wavelength Sensitivity. 2012. Available online: https://www.hamamatsu.com/resources/pdf/ssd/s8550-02_kapd1031e.pdf (accessed on 6 August 2020).
- Saint-Gobain Ceramics & Plastics. Datasheet: LYSO Scintillation Material. 2018. Available online: https://www.crystals.saint-gobain.com/sites/imdf.crystals.com/files/documents/lyso-material-data-sheet.pdf (accessed on 6 August 2020).
style="border-top:solid thin;border-bottom:solid thin">Scintillation Material | style="border-top:solid thin;border-bottom:solid thin">Light Yield [photons/keV] | style="border-top:solid thin;border-bottom:solid thin">1/e Decay Time [ns] | style="border-top:solid thin;border-bottom:solid thin">Wavelength of Maximum Emission λm [nm] | style="border-top:solid thin;border-bottom:solid thin">Refraction Index at λm | style="border-top:solid thin;border-bottom:solid thin">Density [g/cm3] | style="border-top:solid thin;border-bottom:solid thin">Hygro-Scopic |
---|---|---|---|---|---|---|
BGO | 8–10 | 300 | 480 | 2.15 | 7.13 | no |
CsI(TI) | 54 | 1000 | 550 | 1.79 | 4.51 | slightly |
NaI(TI) | 38 | 250 | 415 | 1.85 | 3.67 | yes |
LYSO:Ce | 32 | 41 | 420 | 1.81 | 7.1 | no |
LSO | 32 | 40 | 435 | 1.82 | 7.4 | no |
YAP | 18 | 27 | 350 | 1.94 | 5.55 | no |
style="border-top:solid thin;border-bottom:solid thin"> | style="border-top:solid thin">Signal Ratios of Scintillation Bar Versus Sandwich Detector | ||
---|---|---|---|
style="border-bottom:solid thin">8 mA | style="border-bottom:solid thin">16 mA | style="border-bottom:solid thin">32 mA | |
>z1 = 49 mm | >2.63 | >2.75 | >2.63 |
>z2 = 39 mm | >2.59 | >2.50 | >2.68 |
style="border-bottom:solid thin">z3 = 29 mm | style="border-bottom:solid thin">2.57 | style="border-bottom:solid thin">2.68 | style="border-bottom:solid thin">2.64 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bieberle, A.; Windisch, D.; Iskander, K.; Bieberle, M.; Hampel, U. A Smart Multi-Plane Detector Design for Ultrafast Electron Beam X-ray Computed Tomography. Sensors 2020, 20, 5174. https://doi.org/10.3390/s20185174
Bieberle A, Windisch D, Iskander K, Bieberle M, Hampel U. A Smart Multi-Plane Detector Design for Ultrafast Electron Beam X-ray Computed Tomography. Sensors. 2020; 20(18):5174. https://doi.org/10.3390/s20185174
Chicago/Turabian StyleBieberle, André, Dominic Windisch, Kerolos Iskander, Martina Bieberle, and Uwe Hampel. 2020. "A Smart Multi-Plane Detector Design for Ultrafast Electron Beam X-ray Computed Tomography" Sensors 20, no. 18: 5174. https://doi.org/10.3390/s20185174