Numerical Model of SPAD-Based Direct Time-of-Flight Flash LIDAR CMOS Image Sensors
Abstract
:1. Introduction
2. Simulator Architecture Overview
3. System Features Modeling
3.1. Optical Model
- Target topology, assumed to be a Lambertian surface with a given reflectivity value .
- Illumination source, a laser with emitted pulse power , divergence , wavelength and square or circular spot shape.
- Optical system, composed of a lens with f-number and a field of view over the horizontal () and vertical () direction.
- Ambient optical power density due to the background light level, .
3.2. Illumination Source-Modeling of the Laser Emission Profile
4. Montecarlo Simulation
4.1. Generation of Spad-Related Events
4.2. Asynchronous Spad Model
4.3. Performance Assessment
5. Experimental Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sansoni, G.; Trebeschi, M.; Docchio, F. State-of-The-Art and Applications of 3D Imaging Sensors in Industry, Cultural Heritage, Medicine, and Criminal Investigation. Sensors 2009, 9, 568–601. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Takasawa, T.; Yasutomi, K.; Aoyama, S.; Kagawa, K.; Kawahito, S. A Time-of-Flight Range Image Sensor With Background Canceling Lock-in Pixels Based on Lateral Electric Field Charge Modulation. IEEE J. Electron. Devices Soc. 2015, 3, 267–275. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J.D.K.; Han, S.; Kang, B.; Lee, K.; Kim, C. A 640 × 480 image sensor with unified pixel architecture for 2D/3D imaging in 0.11 μm CMOS. In Proceedings of the 2011 Symposium on VLSI Circuits-Digest of Technical Papers, Kyoto, Japan, 14–17 June 2011; pp. 92–93. [Google Scholar]
- Kim, S.; Kang, B.; Kim, J.D.K.; Lee, K.; Kim, C.; Kim, K. A 1920 × 1080 3.65 μm-pixel 2D/3D image sensor with split and binning pixel structure in 0.11 pm standard CMOS. In Proceedings of the 2012 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 19–23 February 2012; pp. 396–398. [Google Scholar]
- Bamji, C.S.; Mehta, S.; Thompson, B.; Elkhatib, T.; Wurster, S.; Akkaya, O.; Payne, A.; Godbaz, J.; Fenton, M.; Rajasekaran, V.; et al. IMpixel 65nm BSI 320MHz demodulated TOF Image sensor with 3 μm global shutter pixels and analog binning. In Proceedings of the 2018 IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, 11–15 February 2018; pp. 94–96. [Google Scholar]
- Remondino, F.; Stoppa, D. (Eds.) TOF Range-Imaging Cameras; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Keel, M.; Jin, Y.; Kim, Y.; Kim, D.; Kim, Y.; Bae, M.; Chung, B.; Son, S.; Kim, H.; An, T.; et al. A 640 × 480 Indirect Time-of-Flight CMOS Image Sensor with 4-tap 7-μm Global-Shutter Pixel and Fixed-Pattern Phase Noise Self-Compensation Scheme. In Proceedings of the 2019 Symposium on VLSI Circuits, Kyoto, Japan, 9–14 June 2019; pp. C258–C259. [Google Scholar]
- Henderson, R.K.; Johnston, N.; Hutchings, S.W.; Gyongy, I.; Abbas, T.A.; Dutton, N.; Tyler, M.; Chan, S.; Leach, J. 5.7 A 256 × 256 40nm/90nm CMOS 3D-Stacked 120dB Dynamic-Range Reconfigurable Time-Resolved SPAD Imager. In Proceedings of the 2019 IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, 17–21 February 2019; pp. 106–108. [Google Scholar]
- Hutchings, S.W.; Johnston, N.; Gyongy, I.; Al Abbas, T.; Dutton, N.A.W.; Tyler, M.; Chan, S.; Leach, J.; Henderson, R.K. A Reconfigurable 3-D-Stacked SPAD Imager With In-Pixel Histogramming for Flash LIDAR or High-Speed Time-of-Flight Imaging. IEEE J. Solid State Circuits 2019, 54, 2947–2956. [Google Scholar] [CrossRef] [Green Version]
- Beer, M.; Thattil, C.; Haase, J.F.; Brockherde, W.; Kokozinski, R. 2 × 192 Pixel CMOS SPAD-Based Flash LiDAR Sensor with Adjustable Background Rejection. In Proceedings of the 2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Bordeaux, France, 9–12 December 2018; pp. 17–20. [Google Scholar]
- Beer, M.; Schrey, O.M.; Haase, J.F.; Ruskowski, J.; Brockherde, W.; Hosticka, B.J.; Kokozinski, R. SPAD-based flash LiDAR sensor with high ambient light rejection for automotive applications. In Quantum Sensing and Nano Electronics and Photonics XV; International Society for Optics and, Photonics; Razeghi, M., Brown, G.J., Lewis, J.S., Leo, G., Eds.; SPIE: Philadelphia, PA, USA, 2018; Volume 10540, pp. 320–327. [Google Scholar]
- Beer, M.; Haase, J.; Ruskowski, J.; Kokozinski, R. Background Light Rejection in SPAD-Based LiDAR Sensors by Adaptive Photon Coincidence Detection. Sensors 2018, 18, 4338. [Google Scholar] [CrossRef] [Green Version]
- Perenzoni, M.; Perenzoni, D.; Stoppa, D. A 64 × 64-Pixels Digital Silicon Photomultiplier Direct TOF Sensor With 100-MPhotons/s/pixel Background Rejection and Imaging/Altimeter Mode with 0.14% Precision up to 6 km for Spacecraft Navigation and Landing. IEEE J. Solid State Circuits 2017, 52, 151–160. [Google Scholar] [CrossRef]
- Niclass, C.; Soga, M.; Matsubara, H.; Kato, S.; Kagami, M. A 100-m Range 10-Frame/s 340 × 96-Pixel Time-of-Flight Depth Sensor in 0.18-μm CMOS. IEEE J. Solid State Circuits 2013, 48, 559–572. [Google Scholar] [CrossRef]
- Buttgen, B.; Seitz, P. Robust Optical Time-of-Flight Range Imaging Based on Smart Pixel Structures. IEEE Trans. Circuits Syst. Regul. Pap. 2008, 55, 1512–1525. [Google Scholar] [CrossRef]
- Zhang, C.; Lindner, S.; Antolović, I.M.; Mata Pavia, J.; Wolf, M.; Charbon, E. A 30-frames/s, 252 × 144 SPAD Flash LiDAR With 1728 Dual-Clock 48.8-ps TDCs, and Pixel-Wise Integrated Histogramming. IEEE J. Solid State Circuits 2019, 54, 1137–1151. [Google Scholar] [CrossRef]
- Stoppa, D.; Pancheri, L.; Scandiuzzo, M.; Gonzo, L.; Dalla Betta, G.; Simoni, A. A CMOS 3-D Imager Based on Single Photon Avalanche Diode. IEEE Trans. Circuits Syst. Regul. Pap. 2007, 54, 4–12. [Google Scholar] [CrossRef]
- Erdogan, A.T.; Walker, R.; Finlayson, N.; Krstajić, N.; Williams, G.; Girkin, J.; Henderson, R. A CMOS SPAD Line Sensor With Per-Pixel Histogramming TDC for Time-Resolved Multispectral Imaging. IEEE J. Solid State Circuits 2019, 54, 1705–1719. [Google Scholar] [CrossRef] [Green Version]
- Vornicu, I.; Darie, A.; Carmona-Galán, R.; Rodríguez-Vázquez, Á. Compact Real-Time Inter-Frame Histogram Builder for 15-Bits High-Speed ToF-Imagers Based on Single-Photon Detection. IEEE Sensors J. 2019, 19, 2181–2190. [Google Scholar] [CrossRef] [Green Version]
- Ximenes, A.R.; Padmanabhan, P.; Lee, M.; Yamashita, Y.; Yaung, D.N.; Charbon, E. A 256 × 256 45/65 nm 3D-stacked SPAD-based direct TOF image sensor for LiDAR applications with optical polar modulation for up to 18.6dB interference suppression. In Proceedings of the 2018 IEEE International Solid - State Circuits Conference (ISSCC), San Francisco, CA, USA, 11–15 February 2018; pp. 96–98. [Google Scholar]
- Gyongy, I.; Davies, A.; Gallinet, B.; Dutton, N.A.; Duncan, R.R.; Rickman, C.; Henderson, R.K.; Dalgarno, P.A. Cylindrical microlensing for enhanced collection efficiency of small pixel SPAD arrays in single-molecule localisation microscopy. Opt. Express 2018, 26, 2280–2291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beer, M.; Schrey, O.M.; Hosticka, B.J.; Kokozinski, R. Modelling of SPAD-based time-of-flight measurement techniques. In Proceedings of the 2017 European Conference on Circuit Theory and Design (ECCTD), Catania, Italy, 4–6 September 2017; pp. 1–4. [Google Scholar]
- Padmanabhan, P.; Zhang, C.; Charbon, E. Modeling and Analysis of a Direct Time-of-Flight Sensor Architecture for LiDAR Applications. Sensors 2019, 19, 5464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naboulsi, A.; Sizun, H.; Fornel, D. Propagation of optical and infrared waves in the atmosphere. Proc. Union Radio Sci. Int. 2005, 43, 319–329. [Google Scholar]
- Song, W.; Lai, J.; Ghassemlooy, Z.; Gu, Z.; Yan, W.; Wang, C.; Li, Z. The effect of fog on the probability density distribution of the ranging data of imaging laser radar. AIP Adv. 2018, 8, 025022. [Google Scholar] [CrossRef]
- Wahl, M.; Leifgen, M.; Berlin, M.; Röhlicke, T.; Rahn, H.J.; Benson, O. An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements. Appl. Phys. Lett. 2011, 98, 171105. [Google Scholar] [CrossRef]
- Dutton, N.; Vergote, J.; Gnecchi, S.; Grant, L.; Lee, D.; Pellegrini, S.; Rae, B.; Henderson, R. Multiple-event direct to histogram TDC in 65nm FPGA technology. In Proceedings of the 2014 10th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Grenoble, France, 30 June–3 July 2014; pp. 1–5. [Google Scholar]
- Dutton, N.A.W.; Gnecchi, S.; Parmesan, L.; Holmes, A.J.; Rae, B.; Grant, L.A.; Henderson, R.K. 11.5 A time-correlated single-photon-counting sensor with 14GS/S histogramming time-to-digital converter. In Proceedings of the 2015 IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 22–26 February 2015; pp. 1–3. [Google Scholar]
- Vornicu, I.; Darie, A.; Carmona-Galán, R.; Rodríguez-Vázquez, A. ToF Estimation Based on Compressed Real-Time Histogram Builder for SPAD Image Sensors. In Proceedings of the 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Hokkaido, Japan, 26–29 May 2019; pp. 1–4. [Google Scholar]
- Werner, S.; Schäfer, H.; Hullin, M.B. A new operation mode for depth-focused high-sensitivity ToF range finding. arXiv 2019, arXiv:1909.02759. [Google Scholar]
- Espinosa Moreno, L.; Bacca Rodriguez, J.; Prieto, F.; Lasaygues, P.; Brancheriau, L. Accuracy on the Time-of-Flight Estimation for Ultrasonic Waves Applied to Non-Destructive Evaluation of Standing Trees: A Comparative Experimental Study. Acta Acust. United Acust. 2018, 104, 429–439. [Google Scholar] [CrossRef] [Green Version]
- THORLABS. DET10A/M - Si Detector, 200–1100 nm, 1 ns Rise Time. Available online: www.thorlabs.com/thorProduct.cfm?partNumber=DET10A/M (accessed on 11 September 2020).
- Xu, H.; Pancheri, L.; Betta, G.F.D.; Stoppa, D. Design and characterization of a p+/n-well SPAD array in 150nm CMOS process. Opt. Express 2017, 25, 12765–12778. [Google Scholar] [CrossRef]
- Janecek, M. Reflectivity Spectra for Commonly Used Reflectors. IEEE Trans. Nucl. Sci. 2012, 59, 490–497. [Google Scholar] [CrossRef] [Green Version]
- Moreno-García, M.; Pancheri, L.; Perenzoni, M.; del Río, R.; Guerra Vinuesa, Q.; Rodríguez-Vázquez, A. Characterization-Based Modeling of Retriggering and Afterpulsing for Passively Quenched CMOS SPADs. IEEE Sensors J. 2019, 19, 5700–5709. [Google Scholar] [CrossRef]
- Tzou, B.W.; Wu, J.Y.; Lee, Y.S.; Lin, S.D. Method to evaluate afterpulsing probability in single-photon avalanche diodes. Opt. Lett. 2015, 40, 3774–3777. [Google Scholar] [CrossRef] [PubMed]
- Ziarkash, A.W.; Joshi, S.K.; Stipčević, M.; Ursin, R. Comparative study of afterpulsing behavior and models in single photon counting avalanche photo diode detectors. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Value | Unit |
---|---|---|
Pixel | ||
PDP | 25 | % |
Fill factor | 26.5 | % |
Pixel Area | 3600 | μm2 |
Dead time | 15 | ns |
Median DCR | 6.8 | kHz |
TDC LSB | 250 | ps |
Emitter | ||
Central wavelength | 405 | nm |
Pulse energy | 6.2 | pJ |
Pulse FWHM | ≃250 | ps |
Beam divergence | ≃1.7 | |
Optical elements | ||
Filter bandwidth FWHM | 10 | nm |
Transmittance | 66 | % |
Focal length | 6 | mm |
Diameter | 5 | mm |
Environment | ||
Reflectivity | 75 | % |
Background flux | ≃90 | MPh/s/pixel |
System | ||
Nr. histogram points | 250 | |
Global jitter FWHM | 1500 | ps |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tontini, A.; Gasparini, L.; Perenzoni, M. Numerical Model of SPAD-Based Direct Time-of-Flight Flash LIDAR CMOS Image Sensors. Sensors 2020, 20, 5203. https://doi.org/10.3390/s20185203
Tontini A, Gasparini L, Perenzoni M. Numerical Model of SPAD-Based Direct Time-of-Flight Flash LIDAR CMOS Image Sensors. Sensors. 2020; 20(18):5203. https://doi.org/10.3390/s20185203
Chicago/Turabian StyleTontini, Alessandro, Leonardo Gasparini, and Matteo Perenzoni. 2020. "Numerical Model of SPAD-Based Direct Time-of-Flight Flash LIDAR CMOS Image Sensors" Sensors 20, no. 18: 5203. https://doi.org/10.3390/s20185203
APA StyleTontini, A., Gasparini, L., & Perenzoni, M. (2020). Numerical Model of SPAD-Based Direct Time-of-Flight Flash LIDAR CMOS Image Sensors. Sensors, 20(18), 5203. https://doi.org/10.3390/s20185203