Deep Quality Assessment of a Solar Reflector Based on Synthetic Data: Detecting Surficial Defects from Manufacturing and Use Phase
Abstract
:1. Introduction
2. State of the Art
3. Approach
3.1. Quality Control System Design Approach Based On 5C Architecture
3.2. Acceleration of the Quality Assessment Algorithm’s Development
3.3. Case Study & Experimental Setup
3.4. Model Selection
3.5. Model Development Utilizing a Synthetic Dataset
3.6. Transfer Learning Using the Trained CNN
4. Results
5. Conclusions and Future Outlooks
Author Contributions
Funding
Conflicts of Interest
References
- Rajala, R.; Westerlund, M.; Lampikoski, T. Environmental sustainability in industrial manufacturing: Re-examining the greening of Interface’s business model. J. Clean. Prod. 2016, 115, 52–61. [Google Scholar] [CrossRef]
- Stavropoulos, P.; Alexopoulos, H.; Papacharalampopoulos, A.; Mourtzis, D. Automotive weather strip manufacturing: Process modeling and extrudate dimensional accuracy evaluation. Procedia CIRP 2018, 72, 375–380. [Google Scholar] [CrossRef]
- Alcácer, V.; Cruz-Machado, V. Scanning the Industry 4.0: A Literature Review on Technologies for Manufacturing Systems. Eng. Sci. Technol. 2019, 22, 899–919. [Google Scholar] [CrossRef]
- Nandini, V.; Vishal, R.D.; Prakash, C.A.; Aishwarya, S. A Review on Applications of Machine Vision Systems in Industries. Indian J. Sci. Technol. 2016, 9. [Google Scholar] [CrossRef]
- Prakash, A. Vision Algorithm for Seam Tracking in automatic Welding System. Int. J. Recent Adv. Mech. Eng. 2015, 4, 125–131. [Google Scholar] [CrossRef]
- Derbel, N.; Ghommam, J.; Zhu, Q. Diagnosis, Fault Detection & Tolerant Control; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Davies, E. Machine vision in the food industry. In Robotics and Automation in the Food Industry; Elsevier: Amsterdam, The Netherlands, 2013; pp. 75–110. [Google Scholar]
- Chen, T.Q.; Zhang, J.; Zhou, Y.; Murphey, Y.L. A Smart Machine Vision System for PCB Inspection. Comput. Vis. 2001, 2070, 513–518. [Google Scholar]
- Zhang, X.W.; Ding, Y.Q.; Lv, Y.; Shi, A.; Liang, R. A vision inspection system for the surface defects of strongly reflected metal based on multi-class SVM. Expert Syst. Appl. 2011, 36, 5930–5939. [Google Scholar]
- Di Leo, G.; Liguori, C.; Pietrosanto, A.; Sommella, P. A vision system for the online quality monitoring of industrial manufacturing. Opt. Lasers Eng. 2017, 89, 162–168. [Google Scholar] [CrossRef]
- Chang, M.; Chen, B.-C.; Gabayno, J.L.; Chen, M.-F. Development of an optical inspection platform for surface defect detection in touch panel glass. Int. J. Optomechatronics 2016, 10, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Çelik, H.I.; Dülger, L.; Topalbekiroğlu, M. Development of a machine vision system: Real-time fabric defect detection and classification with neural networks. J. Text. Inst. 2013, 105, 575–585. [Google Scholar] [CrossRef]
- Athanasopoulou, L.; Papacharalampopoulos, A.; Stavropoulos, P. Context awareness system in the use phase of a smart mobility platform: A vision system for a light-weight approach. Procedia CIRP 2020, 88, 560–564. [Google Scholar] [CrossRef]
- Jordan, M.; Kleinberg, J.; Schölkopf, B. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006. [Google Scholar]
- Sun, J.; Wang, P.; Luo, Y.-K.; Li, W. Surface Defects Detection Based on Adaptive Multiscale Image Collection and Convolutional Neural Networks. IEEE Trans. Instrum. Meas. 2019, 68, 4787–4797. [Google Scholar] [CrossRef]
- Lin, W.-Y.; Lin, C.-Y.; Chen, G.-S.; Hsu, C.-Y. Steel Surface Defects Detection Based on Deep Learning. In Advances in Intelligent Systems and Computing; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2018; Volume 789, pp. 141–149. [Google Scholar]
- Lee, J.; Bagheri, B.; Kao, H.-A. A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manuf. Lett. 2015, 3, 18–23. [Google Scholar] [CrossRef]
- Vogel-Heuser, B.; Lee, J.; Leitão, P. Agents enabling cyber-physical production systems. At-Automatisierungstechnik 2015, 63, 777–789. [Google Scholar] [CrossRef] [Green Version]
- Han, D.; Liu, Q.; Fan, W. A new image classification method using CNN transfer learning and web data augmentation. Expert Syst. Appl. 2018, 95, 43–56. [Google Scholar] [CrossRef]
- Seshadrinathan, K.; Pappas, T.N.; Safranek, R.J.; Chen, J.; Wang, Z.; Sheikh, H.R.; Bovik, A.C. The Essential Guide to Image Processing; Academic Press: Cambridge, MA, USA, 2009; pp. 553–595. [Google Scholar]
- Khalid, S.; Khalil, T.; Nasreen, S. A survey of feature selection and feature extraction techniques in machine learning. In Proceedings of the 2014 Science and Information Conference, London, UK, 27–29 August 2014; pp. 372–378. [Google Scholar]
- Thanki, R.; Borra, S. Application of Machine Learning Algorithms for Classification and Security of Diagnostic Images; Academic Press: Cambridge, MA, USA, 2019; pp. 273–292. [Google Scholar]
- Nawi, N.M.; Atomi, W.H.; Rehman, M. The Effect of Data Pre-processing on Optimized Training of Artificial Neural Networks. Procedia Technol. 2013, 11, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Nazari-Heris, M.; Mohammadi-Ivatloo, B. Application of heuristic algorithms to optimal PMU placement in electric power systems: An updated review. Renew. Sustain. Energy Rev. 2015, 50, 214–228. [Google Scholar] [CrossRef]
- Maunders, C.; Dwyer, C.; Tiemeijer, P.; Etheridge, J. Practical methods for the measurement of spatial coherence—A comparative study. Ultramicroscopy 2011, 111, 1437–1446. [Google Scholar] [CrossRef]
- Lenz, B.; Hasselbruch, H.; Großmann, H.; Mehner, A. Application of CNN networks for an automatic determination of critical loads in scratch tests on a-C:H:W coatings. Surf. Coat. Technol. 2020, 393, 125764. [Google Scholar] [CrossRef]
- Zhu, W.; Ma, Y.; Zhou, Y.; Benton, M.; Romagnoli, J.A. Deep Learning Based Soft Sensor and Its Application on a Pyrolysis Reactor for Compositions Predictions of Gas Phase Components. Comput. Aided Chem. Eng. 2018, 44, 2245–2250. [Google Scholar]
- Rawat, W.; Wang, Z. Deep convolutional neural networks for image classification: A comprehensive review. Neural Comput. 2017, 29, 2352–2449. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, W.; Kanamori, T. Risk bound of transfer learning using parametric feature mapping and its application to sparse coding. Mach. Learn. 2019, 108, 1975–2008. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems Conference; Association for Computing Machinery (ACM): New York, NY, USA, 2012; pp. 1097–1105. [Google Scholar]
- Abu Mallouh, A.; Qawaqneh, Z.; Barkana, B. Utilizing CNNs and transfer learning of pre-trained models for age range classification from unconstrained face images. Image Vis. Comput. 2019, 88, 41–51. [Google Scholar] [CrossRef]
- Ying, X. An Overview of Overfitting and its Solutions. J. Phys. Conf. Ser. 2019, 1168, 022022. [Google Scholar] [CrossRef]
- Meng, Z.; Fan, X.; Chen, X.; Chen, M.; Tong, Y. Detecting Small Signs from Large Images. In Proceedings of the IEEE International Conference on Information Reuse and Integration (IRI), San Diego, CA, USA, 4–6 August 2017. [Google Scholar]
- Taherisadr, M.; Asnani, P.; Galster, S.; Dehzangi, O. ECG-based driver inattention identification during naturalistic driving using Mel-frequency cepstrum 2-D transform and convolutional neural networks. Smart Health 2018, 50–61. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Tušar, T.; Gantar, K.; Koblar, V.; Ženko, B.; Filipič, B. A study of overfitting in optimization of a manufacturing quality control procedure. Appl. Soft Comput. 2017, 59, 77–87. [Google Scholar] [CrossRef]
- Wang, Z. A Hyperspectral Image Classification Example. In Semi-supervised Hyperspectral Classification using Task-driven Dictionary Learning with Regularization; Academic Press: Cambridge, MA, USA, 2019; pp. 9–29. [Google Scholar]
- Hu, K.; Zhang, Z.; Niu, X.; Zhang, Y.; Cao, C.; Xiao, F.; Gao, X. Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function. Neurocomputing 2018, 309, 179–191. [Google Scholar] [CrossRef]
- Olah, C.; Mordvintsev, A.; Schubert, L. Feature visualization. Distill 2017, 2, e7. [Google Scholar] [CrossRef]
- Saito, T.; Rehmsmeier, M. The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLoS ONE 2015, 10, e0118432. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.; Goadrich, M. The relationship between Precision-Recall and ROC curves. In Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 233–240. [Google Scholar]
Model | M1.1 (Trained with the Synthetic Dataset) | M1.2 (Extra Convolutional Layer, Retrained with Prototypes) | M2.1 (Initial Architecture, Trained with Prototypes) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Dataset | SC | PRO | PRO | PRO | ||||||
Partition | Train | Validation | Test | Complete | Train | Validation | Test | Train | Validation | Test |
Metrics | ||||||||||
Accuracy | 0.978 | 0.958 | 0.954 | 0.806 | 0.975 | 0.942 | 0.909 | 0.938 | 0.859 | 0.848 |
Sensitivity | 0.995 | 0.987 | 0.992 | 0.884 | 0.993 | 0.984 | 0.964 | 0.984 | 0.962 | 0.947 |
Specificity | 0.843 | 0.725 | 0.662 | 0.345 | 0.868 | 0.708 | 0.555 | 0.671 | 0.291 | 0.222 |
Precision | 0.98 | 0.966 | 0.958 | 0.888 | 0.977 | 0.948 | 0.932 | 0.945 | 0.881 | 0.885 |
F-Measure | 0.987 | 0.976 | 0.974 | 0.886 | 0.985 | 0.966 | 0.948 | 0.964 | 0.92 | 0.9153 |
Geometric Mean | 0.916 | 0.846 | 0.810 | 0.552 | 0.928 | 0.835 | 0.732 | 0.812 | 0.5297 | 0.458 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papacharalampopoulos, A.; Tzimanis, K.; Sabatakakis, K.; Stavropoulos, P. Deep Quality Assessment of a Solar Reflector Based on Synthetic Data: Detecting Surficial Defects from Manufacturing and Use Phase. Sensors 2020, 20, 5481. https://doi.org/10.3390/s20195481
Papacharalampopoulos A, Tzimanis K, Sabatakakis K, Stavropoulos P. Deep Quality Assessment of a Solar Reflector Based on Synthetic Data: Detecting Surficial Defects from Manufacturing and Use Phase. Sensors. 2020; 20(19):5481. https://doi.org/10.3390/s20195481
Chicago/Turabian StylePapacharalampopoulos, Alexios, Konstantinos Tzimanis, Kyriakos Sabatakakis, and Panagiotis Stavropoulos. 2020. "Deep Quality Assessment of a Solar Reflector Based on Synthetic Data: Detecting Surficial Defects from Manufacturing and Use Phase" Sensors 20, no. 19: 5481. https://doi.org/10.3390/s20195481
APA StylePapacharalampopoulos, A., Tzimanis, K., Sabatakakis, K., & Stavropoulos, P. (2020). Deep Quality Assessment of a Solar Reflector Based on Synthetic Data: Detecting Surficial Defects from Manufacturing and Use Phase. Sensors, 20(19), 5481. https://doi.org/10.3390/s20195481