Raman Microscopy: Progress in Research on Cancer Cell Sensing
Abstract
1. Introduction
2. Discussions
2.1. Raman Spectroscopy for the Biochemical Identification of Cells
2.2. Application of Raman Spectroscopy for Cancer Cell Identification
2.2.1. Leukemia Cells
2.2.2. Breast Cancer Cells
2.3. Raman Microscopy for Cell Imaging and Study of Drug Delivery
2.4. High-Throughput Raman Cell Sorting
2.5. Correlative Raman with Other Microscopies for Cancer Cell Sensing
3. Summary and Future Perspective
Author Contributions
Funding
Conflicts of Interest
References
- Raman, C.V.; Krishnan, K.S. A new type of secondary radiation. Nature 1928, 121, 501–502. [Google Scholar] [CrossRef]
- Krishnan, K.S. The Raman Effect in Crystals. Nature 1928, 122, 477–478. [Google Scholar] [CrossRef]
- Long, D.A. Intensities in Raman spectra I. A bond polarizability theory. Proc. R. Soc. Lond. A 1953, 217, 203–221. [Google Scholar] [CrossRef]
- Managò, S.; Zito, G.; De Luca, A.C. Raman microscopy-based sensing of leukemia cells: A review. Opt. Laser Technol. 2018, 108, 7–16. [Google Scholar] [CrossRef]
- Abramczyk, H.; Brozek-Pluska, B. Raman imaging in biochemical and biomedical applications: Diagnosis and treatment of breast cancer. Chem. Rev. 2013, 113, 5766–5781. [Google Scholar] [CrossRef]
- Kuhar, N.; Sil, S.; Verma, T.; Umapathy, S. Challenges in application of Raman spectroscopy to biology and materials. RSC Adv. 2018, 8, 25888. [Google Scholar] [CrossRef]
- Ferrara, M.A.; Caprio, G.D.; Managò, S.; De Angelis, A.; Sirleto, L.; Coppola, G.; De Luca, A.C. Label-free imaging and biochemical characterization of bovine sperm cells. Biosensors 2015, 5, 141–157. [Google Scholar] [CrossRef]
- Managò, S.; Valente, C.; Mirabelli, P.; Circolo, D.; Basile, F.; Corda, D.; De Luca, A.C. A reliable Raman-spectroscopy based approach for diagnosis, classification and follow-up of B-cell acute lymphoblastic leukemia. Sci. Rep. 2016, 6, 24821. [Google Scholar] [CrossRef]
- Chaturvedi, D.; Balaji, S.A.; Bn, V.K.; Ariese, F.; Umapathy, S.; Rangarajan, A. Different phases of breast cancer cells: Raman study of immortalized, transformed, and invasive cells. Biosensors 2016, 6, 57. [Google Scholar] [CrossRef]
- Rangan, S.; Schulze, H.G.; Vardaki, M.Z.; Blades, M.W.; Piret, J.M.; Turner, R.F.B. Applications of Raman spectroscopy in the development of cell therapies: State of the art and future perspectives. Analyst 2020, 145, 2070–2105. [Google Scholar] [CrossRef]
- Abramczyk, H.; Brozek-Pluska, B.; Jarota, A.; Surmacki, J.; Imiela, A.; Kopec, M. A look into the use of Raman spectroscopy for brain and breast cancer diagnostics: Linear and non-linear optics in cancer research as a gateway to tumor cell identity. Expert Rev. Mol. Diagn. 2020, 20, 99–115. [Google Scholar] [CrossRef]
- Pal, U.M.; Saxena, M.; Anil Vishnu, G.K.; Parsana, D.; Sarvani, B.S.R.; Varma, M.; Jayachandra, M.; Kurpad, V.; Baruah, D.; Gogoi, G.; et al. Optical spectroscopy-based imaging techniques for the diagnosis of breast cancer: A novel approach. Appl. Spectrosc. Rev. 2020, 1–27. [Google Scholar] [CrossRef]
- Matthews, R.; Choi, M. Clinical utility of positron emission tomography magnetic resonance imaging (PET-MRI) in gastrointestinal cancers. Diagnostics 2016, 6, 35. [Google Scholar] [CrossRef]
- Allam, M.; Cai, S.; Coskun, A.F. Multiplex bioimaging of single-cell spatial profiles for precision cancer diagnostics and therapeutics. NPJ Precis. Onc. 2020, 4, 11. [Google Scholar] [CrossRef]
- Brozek-Pluska, B.; Kopec, M.; Surmacki, J.; Abramczyk, H. Histochemical analysis of human breast tissue samples by IR and Raman spectroscopies. Protocols discussion. Infrared Phys. Technol. 2018, 93, 247–254. [Google Scholar] [CrossRef]
- Matthäus, C.; Bird, B.; Miljković, M.; Chernenko, T.; Romeo, M.; Diem, M. Infrared and Raman microscopy in cell biology. Methods Cell Biol. 2008, 89, 275–308. [Google Scholar] [CrossRef]
- Auner, G.W.; Koya, S.K.; Huang, C.; Broadbent, B.; Trexler, M.; Auner, Z.; Elias, A.; Mehne, K.C.; Brusatori, M.A. Applications of Raman spectroscopy in cancer diagnosis. Cancer Metastasis Rev. 2018, 37, 691–717. [Google Scholar] [CrossRef]
- Dobbs, J.; Krishnamurthy, S.; Matthew Kyrish, M.; Benveniste, A.P.; Yang, W.; Richards-Kortum, R. Confocal fluorescence microscopy for rapid evaluation of invasive tumor cellularity of inflammatory breast carcinoma core needle biopsies. Breast Cancer Res. Treat. 2015, 149, 303–310. [Google Scholar] [CrossRef]
- El-Mashtoly, S.F.; Petersen, D.; Yosef, H.K.; Mosig, A.; Reinacher-Schick, A.; Kötting, C.; Gerwert, K. Label-free imaging of drug distribution and metabolism in colon cancer cells by Raman microscopy. Analyst 2014, 139, 1155–1161. [Google Scholar] [CrossRef]
- Bohndiek, S.E.; Wagadarikar, A.; Zavaleta, C.L.; Van de Sompel, D.; Garai, E.; Jokerst, J.V.; Yazdanfar, S.; Gambhir, S.S. A small animal Raman instrument for rapid, wide-area, spectroscopic imaging. Proc. Natl. Acad. Sci. USA 2013, 110, 12408–12413. [Google Scholar] [CrossRef]
- Keren, S.; Zavaleta, C.; Cheng, Z.; De la Zerda, A.; Gheysens, O.; Gambhir, S.S. Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc. Natl. Acad. Sci. USA 2008, 105, 5844–5849. [Google Scholar] [CrossRef]
- De Luca, A.C.; Mazilu, M.; Riches, A.; Herrington, C.S.; Dholakia, K. Online fluorescence suppression in modulated Raman spectroscopy. Anal. Chem. 2010, 82, 738–745. [Google Scholar] [CrossRef]
- Mazilu, M.; Baumgartl, J.; Kosmeier, S.; Dholakia, K. Optical eigenmodes; exploting the quadratic nature of the energy flux and of scattering interactions. Opt. Exp. 2011, 19, 933–945. [Google Scholar] [CrossRef]
- Canetta, E.; Mazilu, M.; De Luca, A.C.; Carruthers, A.E.; Dholakia, K.; Neilson, S.; Sargeant, H.; Briscoe, T.; Herrington, C.S.; Riches, A.C. Modulated Raman spectroscopy for enhanced identification of blabber tumor cells in urine samples. J. Biomed. Opt. 2011, 16, 037002. [Google Scholar] [CrossRef]
- Rehman, I.U.; Movasaghi, Z.; Rehman, S. Vibrational Spectroscopy for Tissue Analysis; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2012; pp. 213–288. [Google Scholar] [CrossRef]
- Kuzmin, A.N.; Levchenko, S.M.; Pliss, A.; Qu, J.; Prasad, P.N. Molecular profiling of single organelles for quantitative analysis of cellular heterogeneity. Sci. Rep. 2017, 7, 6512. [Google Scholar] [CrossRef]
- Levchenko, S.M.; Kuzmin, A.N.; Pliss, A.; Qu, J.; Prasad, P.N. Macromolecular profiling of organelles in normal diploid and cancer cells. Anal. Chem. 2017, 89, 10985–10990. [Google Scholar] [CrossRef]
- Kuzmin, A.N.; Pliss, A.; Rzhevskii, A.; Lita, A.; Larion, M. BCAbox algorithm expands capabilities of Raman microscope for single organelles assessment. Biosensors 2018, 8, 106. [Google Scholar] [CrossRef]
- Schie, I.W.; Kiselev, R.; Krafft, C.; Popp, J. Rapid acquisition of mean Raman spectra of eukaryotic cells for a robust single cell classification. Analyst 2016, 141, 6387–6395. [Google Scholar] [CrossRef]
- Neugebauer, U.; Rösch, P.; Popp, J. Raman Spectroscopy towards clinical application: Drug monitoring and pathogen identification. Int. J. Antimicrob. Agents 2015, 46 (Suppl. S1), S35–S39. [Google Scholar] [CrossRef]
- Managò, S.; Mirabelli, P.; Napolitano, M.; Zito, G.; De Luca, A.C. Raman detection and identification of normal and leukemic hematopoietic cells. J. Biophotonics 2018, 11, e201700265. [Google Scholar] [CrossRef]
- Drexler, H.G.; Macleod, R.A. History of leukemia-lymphoma cell lines. Hum. Cell 2010, 23, 75–82. [Google Scholar] [CrossRef]
- Roos, G.; Adams, A.; Giovanella, B.; Lundgren, E.; Nilsson, K.; Nordenson, I.; Sundström, C. Establishment and characterization of a human ebv-negative b cell line (MN 60). Leuk. Res. 1982, 6, 685–693. [Google Scholar] [CrossRef]
- Bene, M.C.; Castoldi, G.; Knapp, W.; Ludwig, W.D.; Matutes, E.; Orfao, A.; van’t Veer, M.B. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia 1995, 9, 1783–1786. [Google Scholar]
- Luo, X.; Zhao, X.; Cheng, C.; Li, N.; Liu, Y.; Cao, Y. The Implications of signaling lipids in cancer metastasis. Exp. Mol. Med. 2018, 50, 127. [Google Scholar] [CrossRef]
- Callahan, R.; Hurvitz, S. HER2-positive breast cancer: Current management of early, advanced, and recurrent disease. Curr. Opin. Obstet. Gynecol. 2011, 23, 37–43. [Google Scholar] [CrossRef]
- Haka, A.S.; Shafer-Peltier, K.E.; Fitzmaurice, M.; Crowe, J.; Dasari, R.R.; Feld, M.S. Diagnosing breast cancer by using Raman spectroscopy. Proc. Natl. Acad. Sci. USA 2005, 102, 12371–12376. [Google Scholar] [CrossRef]
- Hartsuiker, L.; Zeijen, N.J.L.; Terstappena, L.W.M.M.; Otto, C. A comparison of breast cancer tumor cells with varying expression of the Her2/neu receptor by Raman microspectroscopic imaging. Analyst 2010, 135, 3220–3226. [Google Scholar] [CrossRef]
- Bi, X.; Rexer, B.; Arteaga, C.L.; Guo, M.; Mahadevan-Jansen, A. Evaluating HER2 amplification status and acquired drug resistance in breast cancer cells using Raman spectroscopy. J. Biomed. Opt. 2014, 19, 025001. [Google Scholar] [CrossRef]
- Abramczyk, H.; Surmacki, J.; Kopeć, M.; Olejnik, A.K.; Kaufman-Szymczyk, A.; Fabianowska-Majewska, K. Epigenetic changes in cancer by Raman imaging, fluorescence imaging, AFM and scanning near-field optical microscopy (SNOM). Acetylation in normal and human cancer breast cells MCF10A, MCF7 and MDA-MB-231. Analyst 2016, 141, 5646–5658. [Google Scholar] [CrossRef]
- Manciu, F.S.; Ciubuc, J.D.; Parra, K.; Manciu, M.; Bennet, K.E.; Valenzuela, P.; Sundin, E.M.; Durrer, W.G.; Reza, L.; Francia, G. Label-free Raman imaging to monitor breast tumor signatures. Technol. Cancer Res. Treat. 2016, 16, 461–469. [Google Scholar] [CrossRef]
- Managò, S.; Migliaccio, N.; Terracciano, M.; Napolitano, M.; Martucci, N.M.; Stefano, L.D.; Rendina, I.; De Luca, A.C.; Lamberti, A.; Rea, I. Internalization kinetics and cytoplasmic localization of functionalized diatomite nanoparticles in cancer cells by Raman imaging. J. Biophotonics 2018, 11, e201700207. [Google Scholar] [CrossRef]
- Sinjab, F.; Liao, Z.; Notingher, I. Applications of spatial light modulators in Raman spectroscopy. Appl. Spectrosc. 2019, 73, 727–746. [Google Scholar] [CrossRef]
- Sinjab, F.; Kong, K.; Gibson, G.; Varma, S.; Williams, H.; Padgett, M.; Notingher, I. Tissue diagnosis using power-sharing multifocal Raman micro-spectroscopy and auto-fluorescence imaging. Biomed. Opt. Exp. 2016, 7, 2993–3006. [Google Scholar] [CrossRef]
- Kosmeier, S.; Zolotovskaya, S.; De Luca, A.C.; Riches, A.; Herrington, C.S.; Dholakia, K.; Mazilu, M. Nonredundant Raman imaging using optical eigenmodes. Optica 2014, 1, 257–263. [Google Scholar] [CrossRef]
- Guerrini, L.; Alvarez-Puebla, R.A. Surface-enhanced Raman spectroscopy in cancer diagnosis, prognosis and monitoring. Cancers 2019, 11, 748. [Google Scholar] [CrossRef]
- Wang, Y.W.; Doerksen, J.D.; Kang, S.; Walsh, D.; Yang, Q.; Hong, D.; Liu, J.T.C. Multiplexed molecular imaging of fresh tissue surfaces enabled by convection-enhanced topical staining with SERS-coded nanoparticles. Small 2016, 12, 5612–5621. [Google Scholar] [CrossRef]
- Beleites, C.; Neugebauer, U.; Bocklitz, T.; Krafft, C.; Popp, J. Sample size planning for classification models. Anal. Chim. Acta 2013, 760, 25–33. [Google Scholar] [CrossRef]
- De Luca, A.C.; Reader-Harris, P.; Mazilu, M.; Mariggiò, S.; Corda, D.; Di Falco, A. Reproducible surface-enhanced Raman quantification of biomarkers in multicomponent mixtures. ACS Nano 2014, 8, 2575–2583. [Google Scholar] [CrossRef]
- Managò, S.; Zito, G.; Rogato, A.; Casalino, M.; Esposito, E.; De Luca, A.C.; De Tommasi, E. Bioderived three-dimensional hierarchical nanostructures as efficient surface-enhanced Raman scattering substrates for cell membrane probing. ACS Appl. Mater Interfaces 2018, 10, 12406–12416. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, P.; Gou, H.; Mou, C.; Huang, W.E.; Yang, M.; Xu, J.; Ma, B. Towards high-throughput microfluidic Raman-activated cell sorting. Analyst 2015, 140, 6163–6174. [Google Scholar] [CrossRef]
- Schie, I.W.; Rüger, J.; Mondol, A.S.; Ramoji, A.; Neugebauer, U.; Krafft, C.; Popp, J. High-throughput screening Raman spectroscopy platform for label-free cellomics. Anal. Chem. 2018, 90, 2023–2030. [Google Scholar] [CrossRef]
- Mondol, A.S.; Töpfer, N.; Rüger, J.; Neugebauer, U.; Popp, J.; Schie, I.W. New perspectives for viability studies with high-content analysis Raman spectroscopy (HCA-RS). Sci. Rep. 2019, 9, 12653. [Google Scholar] [CrossRef]
- Bennet, M.; Akiva, A.; Faivre, D.; Malkinson, G.; Yaniv, K.; Abdelilah-Seyfried, S.; Fratzl, P.; Masic, A. Simultaneous Raman microspectroscopy and fluorescence imaging of bone mineralization in living zebrafish larvae. Biophy. J. 2014, 106, L17–L19. [Google Scholar] [CrossRef]
- Patil, C.A.; Bosschaart, N.; Keller, M.D.; Van Leeuwen, T.G.; Mahadevan-Jansen, A. Combined Raman spectroscopy and optical coherence tomography device for tissue characterization. Opt. Lett. 2008, 33, 1135–1137. [Google Scholar] [CrossRef]
- Liu, C.H.; Qi, J.; Lu, J.; Wang, S.; Wu, C.; Shih, W.C.; Larin, K.V. Improvement of tissue analysis and classification using optical coherence tomography combined with Raman spectroscopy. Proc. SPIE Dyn. Fluct. Biomed. Photonics XI 2014, 8942, 894208. [Google Scholar] [CrossRef]
- Ferrara, M.A.; Angelis, A.D.; De Luca, A.C.; Coppola, G.; Dale, B.; Coppola, G. Simultaneous holographic microscopy and Raman spectroscopy monitoring of human spermatozoa photodegradation. IEEE J. Sel. Top. Quant. 2016, 22, 5200108. [Google Scholar] [CrossRef]
- De Angelis, A.; Managò, S.; Ferrara, M.A.; Napolitano, M.; Coppola, G.; De Luca, A.C. Combined Raman spectroscopy and digital holographic microscopy for sperm cell quality analysis. J. Spectrosc. 2017, 2017, 9876063. [Google Scholar] [CrossRef]
- McReynolds, N.; Cooke, F.; Chen, M.; Powis, S.J.; Dholakia, K. Multimodal discrimination of immune cells using a combination of Raman spectroscopy and digital holographic microscopy. Sci. Rep. 2017, 7, 43631. [Google Scholar] [CrossRef]
- De Angelis, A.; Ferrara, M.A.; Coppola, G.; Matteo, L.D.; Siani, L.; Dake, B.; Coppola, G.; De Luca, A.C. Combined Raman and polarization sensitive holographic imaging for a multimodal label-free assessment of human sperm function. Sci. Rep. 2019, 9, 4823. [Google Scholar] [CrossRef]
- Coppola, G.; Zito, G.; De Luca, A.C.; Ferrara, M.A. Polarized digital holography as valuable analytical toll in biological and medical research. Digit. Hologr. Three Dimens. Imaging. [CrossRef]
- Ali, A.; Abouleila, Y.; Shimizu, Y.; Hiyama, E.; Watanabe, T.M.; Yanagida, T.; Germond, A. Single-cell screening of tamoxifen abundance and effect using mass spectrometry and Raman spectroscopy. Anal. Chem. 2019, 91, 2710–2718. [Google Scholar] [CrossRef]
- Talari, A.C.S.; Shazza Rehman, S.; Rehman, I.U. Advancing cancer diagnostics with artificial intelligence and spectroscopy: Identifying chemical changes associated with breast cancer. Expert Rev. Mol. Diagn. 2019, 19, 929–940. [Google Scholar] [CrossRef]
FTIR | MRI | MSI | H&E | FM | RS | |
---|---|---|---|---|---|---|
Sample preparation | No | Yes | Yes | Yes | Yes | No |
Spatial resolution | >1 μm | >1 mm | Cellular | Sub-cellular | >200 nm | >0.5 μm |
Destructive | No | No | Yes | No | No | No |
Contrast agents | No | No | No | Yes | Yes | No |
Water interference | Yes | No | No | No | No | No |
Real-time | Yes | No | No | No | Yes | Yes |
Miniature, portable-handy | Yes | No | No | Yes | No | Yes |
Multiplexing | Yes | No | Yes | No | No | Yes |
Raman Shift (cm−1) | Assignment [25] |
---|---|
783 | Cytosine U, C, T ring breathing, DNA (nucleic acids assignment) |
816 | Proline, tyrosine, PO2− stretching (nucleic acids assignment) |
898 | Glycans, polysaccharides (β-glucose), (C-O-C) skeletal mode |
936 | C-C backbone (collagen assignment) |
1004 | C-C Symmetric stretching ring breathing, phenylalanine (protein assignment) |
1092 | P=O symmetric vibration from nucleic acids/cell membrane phospholipids (protein assignment) |
1258 | Amide III, adenine, cytosine (protein assignment) |
1317 | C-H deformation (lipid/protein assignment) |
1343 | C-H deformation of proteins (protein assignment) |
1371 | The most pronounced saccharide band, Ring and C-N stretch |
1458 | Fatty acids, triglycerides, CH2 bending or CH2/CH3 deformation of (lipids and collagen assignment) |
1587 | Amide II, aromatic amino acids within proteins of C=C olefinic stretch (protein assignment) |
1618 | C=C Symmetric stretching, tryptophan and phenylalanine (protein assignment) |
1665 | Amide I, Unsaturated fatty acids, C=O stretching (C-H) deformation/(C=C) stretch (lipid assignment) |
1726 | C=O Symmetric stretching; glycans and glycogen (lipid assignment) |
2870 | CH3 stretching vibrations, lipids, fatty acids, Amide I (lipid assignment) |
2904 | CH2 antisymmetric stretching, CH3 symmetric stretching (lipid assignment) |
2956 | CH3 asymmetric stretch (protein assignment) |
2992 | combination of ring stretching vibrations of CH2 and CH (lipids/protein assignment) |
3083 | C–H aromatic stretching (nucleic acids/proteins assignment) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elumalai, S.; Managó, S.; De Luca, A.C. Raman Microscopy: Progress in Research on Cancer Cell Sensing. Sensors 2020, 20, 5525. https://doi.org/10.3390/s20195525
Elumalai S, Managó S, De Luca AC. Raman Microscopy: Progress in Research on Cancer Cell Sensing. Sensors. 2020; 20(19):5525. https://doi.org/10.3390/s20195525
Chicago/Turabian StyleElumalai, Satheeshkumar, Stefano Managó, and Anna Chiara De Luca. 2020. "Raman Microscopy: Progress in Research on Cancer Cell Sensing" Sensors 20, no. 19: 5525. https://doi.org/10.3390/s20195525
APA StyleElumalai, S., Managó, S., & De Luca, A. C. (2020). Raman Microscopy: Progress in Research on Cancer Cell Sensing. Sensors, 20(19), 5525. https://doi.org/10.3390/s20195525