Tension Monitoring of Wedge Connection Using Piezoceramic Transducers and Wavelet Packet Analysis Method
Abstract
:1. Introduction
2. Contact Model of Wedge Anchorage Based on Hertz Contact Theory
2.1. Hertz Contact Theory
2.2. Contact Model
3. Detection Principle of Anchoring Tightness Based on Wavelet Packet Analysis
3.1. Piezoelectric Lead Zirconate Titanate (PZT)-Based Prestress Monitoring with Wedge Anchorage
3.2. Detection Principle for Wedge Anchorage-Connected Structures Based on Wavelet Packet Analysis
4. Experimental Setup
5. Experimental Procedure, Results and Analyses
5.1. Prestress Monitoring Based on AB Contact Surface
5.2. Prestress Monitoring Based on Wedge–Barrel (BC) Contact Surface
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Darmawan, M.; Stewart, M. Spatial time-dependent reliability analysis of corroding pretensioned prestressed concrete bridge girders. Struct. Saf. 2007, 29, 16–31. [Google Scholar] [CrossRef]
- Guo, T.; Chen, Z. Deflection control of long-span PSC box-girder bridge based on field monitoring and probabilistic FEA. J. Perform. Constr. Facil. 2016, 30, 04016053. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Dong, F.; Shen, X. Measurement of dynamic deflection of large-span bridges with charge coupled device image detection system. J. Nanoelectron. Optoelectron. 2017, 12, 1350–1354. [Google Scholar] [CrossRef]
- Guiglia, M.; Taliano, M. Experimental analysis of the effective pre-stress in large-span bridge box girders after 40 years of service life. Eng. Struct. 2014, 66, 146–158. [Google Scholar] [CrossRef]
- Akl, A.; Saiid, S.; Vosooghi, A. Deflection of in-span hinges in prestressed concrete box girder bridges during construction. Eng. Struct. 2017, 131, 293–310. [Google Scholar] [CrossRef]
- Solomos, G.; Berra, M. Testing of anchorages in concrete under dynamic tensile loading. Mater. Struct. 2006, 39, 695–706. [Google Scholar] [CrossRef]
- Ma, Z.; Jiang, Y.; Yang, Y.; Zhang, K. Slip mechanism of wedge and barrel anchorages under dynamic disturbance. J. Rock Mech. Eng. 2016, 35, 3042–3050. [Google Scholar] [CrossRef]
- Qin, H.; Zhu, W.; Zhang, H.; Zhou, Z.; Ou, J. Manufacturing and performance analysis of intelligent steel strand embedded with prepressure large scale fiber Bragg grating sensor. J. Lasers 2017, 44, 0410001. [Google Scholar] [CrossRef]
- Kim, Y.; Kwon, Y. Review of magnetostrictive patch transducers and applications in ultrasonic nondestructive testing of waveguides. Ultrasonics 2015, 62, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Chaki, S.; Bourse, G. Guided ultrasonic waves for non-destructive monitoring of the stress levels in prestressed steel strands. Ultrasonics 2009, 49, 162–171. [Google Scholar] [CrossRef]
- Nucera, C.; Scalea, F. Monitoring load levels in multi-wire strands by nonlinear ultrasonic waves. Struct. Health Monit. 2011, 10, 617–629. [Google Scholar] [CrossRef]
- Schaal, C.; Bischoff, S.; Gaul, L. Energy-based models for guided ultrasonic wave propagation in multi-wire cables. J. Solids Struct. 2015, 64, 22–29. [Google Scholar] [CrossRef]
- Treyssede, F. Investigation of the interwire energy transfer of elastic guided waves inside prestressed cables. J. Acoust. Soc. Am. 2016, 140, 498–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Zhao, J.; Wu, B.; Zhang, Y.; He, C. Configuration optimization of magnetostrictive transducers for longitudinal guided wave inspection in seven-wire steel strands. NET E Int. 2010, 43, 484–492. [Google Scholar] [CrossRef]
- Liu, Y.; Han, Q.; Li, C.; Huang, H. Numerical investigation of dispersion relations for helical waveguides using the Scaled Boundary Finite Element method. J. Sound Vib. 2014, 333, 1991–2002. [Google Scholar] [CrossRef]
- Treyssede, F.; Laguerre, L. Investigation of elastic modes propagating in multi-wire helical waveguides. J. Sound Vib. 2010, 329, 1702–1716. [Google Scholar] [CrossRef] [Green Version]
- Raisutis, R.; Kazys, R.; Mazeika, L.; Zukauskas, E.; Samaitis, V.; Jankauskas, A. Ultrasonic guided wave-based testing technique for inspection of multi-wire rope structures. Net E Int. 2014, 62, 40–49. [Google Scholar] [CrossRef]
- Moustafa, A.; Niri, E.; Farhidzadeh, A.; Salamone, S. Corrosion monitoring of post-tensioned concrete structures using fractal analysis of guidedultrasonic waves. Struct. Control Health Monit. 2014, 21, 438–448. [Google Scholar] [CrossRef]
- Xu, J.; Wu, X.; Sun, P. Detecting broken-wire flaws at multiple locations in the same wire of prestressing strands usingguided waves. Ultrasonics 2013, 53, 150–156. [Google Scholar] [CrossRef]
- Li, F.; Huang, L.; Zhang, H.; Yang, T. Attenuation of acoustic emission propagation along a steel strand embedded in concrete. KSCE J. Civ. Eng. 2018, 22, 222–230. [Google Scholar] [CrossRef]
- Li, D.; Tan, M.; Zhang, S.; Ou, J. Stress corrosion damage evolution analysis and mechanism identification for prestressed steel strands using acoustic emission technique. Struct. Control Health Monit. 2018, 25, e2189. [Google Scholar] [CrossRef]
- Rizzo, P.; Lanza, F. Wave propagation in multi-wire strands by wavelet-based laser ultrasound. Exp. Mech. 2004, 44, 407–415. [Google Scholar] [CrossRef]
- Chen, H.; Wissawapaisal, K. Measurement of tensile forces in a seven-wire prestressing strand using stress waves. J. Eng. Mech. 2001, 127, 599–606. [Google Scholar] [CrossRef]
- Farhidzadeh, A.; Salamone, S. Reference-free corrosion damage diagnosis in steel strands using guided ultrasonic waves. Ultrasonics 2015, 57, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Mo, Y.; Otero, K.; Gu, H. Health monitoring and rehabilitation of a concrete structure using intelligent materials. Smart Mater. Struct. 2006, 15, 309–314. [Google Scholar] [CrossRef] [Green Version]
- Song, G.; Gu, H.; Mo, Y.; Hsu, T.; Dhonde, H. Concrete structural health monitoring using embedded piezoceramic transducers. Smart Mater. Struct. 2007, 16, 959–968. [Google Scholar] [CrossRef] [Green Version]
- Song, G.; Gu, H.; Mo, Y. Smart aggregates: Multi-functional sensors for concrete structures—A tutorial and a review. Smart Mater. Struct. 2008, 17, 033001. [Google Scholar] [CrossRef]
- Song, G.; Qiao, P.; Binienda, W.; Zou, G.P. Active vibration damping of composite beam using smart sensors and actuators. J. Aerosp. Eng. 2002, 15, 97–103. [Google Scholar] [CrossRef]
- Sethi, V.; Franchek, M.; Song, G. Active multimodal vibration suppression of a flexible structure with piezoceramic sensor and actuator by using loop shaping. J. Vib. Control 2011, 17, 1994–2006. [Google Scholar] [CrossRef]
- Song, G.; Zhou, X.; Binienda, W. Thermal deformation compensation of a composite beam using piezoelectric actuators. Smart Mater. Struct. 2004, 13, 30–37. [Google Scholar] [CrossRef]
- Jiang, T.; Zheng, J.; Huo, L.; Song, G. Finite element analysis of grouting compactness monitoring in a post-tensioning tendon duct using piezoceramic transducers. Sensors 2017, 17, 2239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, Q.; Ho, M.; Zheng, R.; Ding, Z.; Song, G. An exploratory study of stress wave communication in concrete structures. Smart Struct. Syst. 2015, 15, 135–150. [Google Scholar] [CrossRef]
- Jiang, T.; Kong, Q.; Patil, D.; Luo, Z.; Huo, L.; Song, G. Detection of debonding between fiber reinforced polymer bar and concrete structure using piezoceramic transducers and wavelet packet analysis. IEEE Sens. J. 2017, 17, 1992–1998. [Google Scholar] [CrossRef]
- Feng, Q.; Kong, Q.; Jiang, J.; Liang, Y.; Song, G. Detection of interfacial debonding in a Rubber–Steel-Layered structure using active sensing enabled by embedded piezoceramic transducers. Sensors 2017, 17, 2001. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wang, C.; Huo, L.; Song, G. Health monitoring of cuplok scaffold joint connection using piezoceramic transducers and time reversal method. Smart Mater. Struct. 2016, 25, 035010. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Liu, L.; Huo, L. Prestress Monitoring of a Steel Strand in an Anchorage Connection Using Piezoceramic Transducers and Time Reversal Method. Sensors 2018, 18, 4018. [Google Scholar] [CrossRef] [Green Version]
- Chang, P.; Flatau, A.; Liu, S. Health monitoring of civil infrastructure. Struct. Health Monit. 2003, 2, 257–267. [Google Scholar] [CrossRef]
- Song, G.; Wang, C.; Wang, B. Structural Health Monitoring (SHM) of Civil Structures. Appl. Sci. 2017, 7, 789. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, T.; Song, G.; Gu, H. Active interface debonding detection of a concrete-filled steel tube with piezoelectric technologies using wavelet packet analysis. Mech. Syst. Signal Process. 2013, 1, 7–17. [Google Scholar] [CrossRef]
- Feng, Q.; Kong, Q.; Huo, L.; Song, G. Crack detection and leakage monitoring on reinforced concrete pipe. Smart Mater. Struct. 2015, 24, 115020. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, C.; Song, G. Health status monitoring of cuplock scaffold joint connection based on wavelet packet analysis. Shock Vib. 2015, 695845. [Google Scholar] [CrossRef]
- Li, D.; Liang, Y.; Feng, Q.; Song, G. Load monitoring of the pin-connected structure based on wavelet packet analysis using piezoceramic transducers. Measurement 2018, 122, 638–647. [Google Scholar] [CrossRef]
PZT | Shape | Diameter (mm) | Thickness (mm) | Paste Position |
---|---|---|---|---|
A | round | 20 | 1 | steel strand |
B | round | 10 | 1 | wedge |
C | round | 10 | 1 | barrel |
Tension/N | PZT AB Combination | PZT BA Combination | ||
---|---|---|---|---|
μ/V2 | Relative Change/ Absolute Change (%) | μ/V2 | Relative Change/ Absolute Change (%) | |
1016 | 83,334.7045 | 24.83 | 83,334.7299 | 18.46 |
2032 | 83,334.7265 | 44.41 | 83,334.757 | 35.58 |
4064 | 83,334.7345 | 51.57 | 83,334.7847 | 53.38 |
8128 | 83,334.7521 | 67.15 | 83,334.8121 | 70.85 |
16256 | 83,334.7889 | 100.00 | 83,334.8578 | 100.00 |
Tension/N | PZT BC Combination | PZT CB Combination | ||
---|---|---|---|---|
μ/V2 | Relative Change/ Absolute Change (%) | μ/V2 | Relative Change/ Absolute Change (%) | |
1016 | 83,334.7321 | 4.79 | 83,334.7129 | 6.61 |
2032 | 83,334.7651 | 12.96 | 83,334.7243 | 16.55 |
4064 | 83,334.8630 | 37.14 | 83,334.7396 | 29.97 |
8128 | 83,334.9362 | 55.21 | 83,334.7695 | 56.05 |
16256 | 83,335.1174 | 100.00 | 83,334.8198 | 100.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhang, L.; Liu, L.; Huo, L. Tension Monitoring of Wedge Connection Using Piezoceramic Transducers and Wavelet Packet Analysis Method. Sensors 2020, 20, 364. https://doi.org/10.3390/s20020364
Zhang X, Zhang L, Liu L, Huo L. Tension Monitoring of Wedge Connection Using Piezoceramic Transducers and Wavelet Packet Analysis Method. Sensors. 2020; 20(2):364. https://doi.org/10.3390/s20020364
Chicago/Turabian StyleZhang, Xiaoyu, Liuyu Zhang, Laijun Liu, and Linsheng Huo. 2020. "Tension Monitoring of Wedge Connection Using Piezoceramic Transducers and Wavelet Packet Analysis Method" Sensors 20, no. 2: 364. https://doi.org/10.3390/s20020364
APA StyleZhang, X., Zhang, L., Liu, L., & Huo, L. (2020). Tension Monitoring of Wedge Connection Using Piezoceramic Transducers and Wavelet Packet Analysis Method. Sensors, 20(2), 364. https://doi.org/10.3390/s20020364