Predictions of Cu, Zn, and Cd Concentrations in Soil Using Portable X-Ray Fluorescence Measurements
Abstract
:1. Introduction
- Use PXRF measurements to create national models for prediction of soil Cu, Zn, and Cd concentrations in agricultural soils;
- Validate these models at the national scale using cross-validation, and at the farm scale using an independent dataset;
- Compare the performance of three model types: multiple linear regression (MLR), multivariate adaptive regression splines (MARS), and random forest regression (RF);
- Test whether the best model for Cu can accurately predict whether a sample has concentrations above or below recommended levels;
- Test whether the best model for each element can accurately predict whether a soil sample has Cu, Zn, and Cd concentrations above or below the permissible level for sewage sludge application to agricultural soil.
2. Materials and Methods
2.1. Soil Sampling
2.2. PXRF Measurements
2.3. Laboratory Analyses
2.4. Modelling
2.4.1. Model Selection
2.4.2. Model Implementation
2.4.3. Validation
3. Results
3.1. Descriptive Statistics of PXRF Measurements of the National Set of Soil Samples
3.2. Descriptive Statistics of the National and Farm Datasets
3.3. Cross-Validation
3.4. Validation at the Farm Scale
3.5. Testing Performance for Fertilization and Sewage Sludge Fertilization
4. Discussion
4.1. Cu Deficiency
4.2. Sewage Sludge Application
4.3. Data, Model Selection, PXRF Methodology, and Variable Selection
5. Conclusions
- Predictive models using PXRF measurements were created and found to be applicable at farm and national scales;
- The models were able to predict concentrations of Cu, Zn, and Cd in non-organic Swedish agricultural soils at both national and farm levels, but with varying amounts of error;
- Non-linear models proved most suitable for predicting concentrations of Cu and Cd, while the linear model for Zn yielded predictions with the same level of accuracy as the non-linear models;
- The accuracy of predictions means that the models created can be used to assess the risk of Cu deficiency. However, complementary laboratory analysis is advisable if predicted concentrations are close to the threshold value;
- The same applies for models created to assess whether an agricultural soil is eligible for sewage sludge application based on its Cu, Cd, and Zn concentrations.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bongiovanni, R.; Lowenberg-Deboer, J. Precision Agriculture and Sustainability. Precis. Agric. 2004, 5, 359–387. [Google Scholar] [CrossRef]
- Mertens, J.; Smolder, E. Zinc. In Heavy Metals in Soils: Trace Metals and Metalloids in Soil and their Bioavailability; Alloway, B., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 465–493. [Google Scholar]
- Oorts, K. Copper. In Heavy Metals in Soils: Trace Metals and Metalloids in Soil and their Bioavailability; Alloway, B., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 367–394. [Google Scholar]
- Swedish Board of Agriculture. Rekommendationer för Gödsling och Kalkning 2019 (In English: Recommendations for Fertilizing and Liming 2019); Swedish Board of Agriculture: Jönköping, Sweden, 2019.
- Alloway, B.J. Soil factors associated with zinc deficiency in crops and humans. Environ. Geochem. Health 2009, 31, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Söderström, M.; Eriksson, J. Gamma-ray spectrometry and geological maps as tools for cadmium risk assessment in arable soils. Geoderma 2013, 192, 323–334. [Google Scholar] [CrossRef]
- Eriksson, J.; Mattson, L.; Söderström, M. Tillståndet i svensk åkermark och gröda, data från 2001–2007 (Current status of Swedish arable soils and cereal crops, data from the period 2001–2007); Swedish Environmental Protection Agency: Stockholm, Sweden, 2010.
- Swedish Environmental Protection Agency. Statens Naturvårdsverks Föreskrifter om Ändring i Kungörelsen (SNFS 1994:2) med Föreskrifter om Skydd för Miljön, Särskilt Marken, när Avloppslam Används i Jorbruket (The Swedish Environmental Protection Agencies Changes on When Sewage Sludge Can Be Used in Agriculture); Statens Naturvårdsverks Författningsssamling: Stockholm, Sweden, 1998.
- Weindorf, D.C.; Bakr, N.; Zhu, Y. Chapter One—Advances in Portable X-ray Fluorescence (PXRF) for Environmental, Pedological, and Agronomic Applications. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: San Diego, CA, USA, 2014. [Google Scholar]
- Rouillon, M.; Taylor, M.P. Can field portable X-ray fluorescence (pXRF) produce high quality data for application in environmental contamination research? Environ. Pollut. 2016, 214, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Lemiére, B. A review of pxrf (field portable X-ray fluorescence) applications for applied geochemistry. J. Geochem. Explor. 2018, 188, 350–363. [Google Scholar] [CrossRef] [Green Version]
- Weindorf, D.C.; Zhu, Y.; Chakraborty, S.; Bakr, N.; Huang, B. Use of portable x-ray fluorescence spectrometry for environmental quality assessment of peri-urban agriculture. Environ. Monit. Assess. 2012, 184, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Weindorf, D.C.; Chakraborty, S. Portable X-ray Fluorescence Spectrometry Analysis of Soils. In Methods of Soil Analysis; Soil Science Society of America: Madison, WI, USA, 2016. [Google Scholar]
- Hu, W.; Huang, B.; Weindorf, D.C.; Chen, Y. Metals Analysis of Agricultural Soil via Portable X-ray Fluorescence spectrometry. Environ. Contam. Toxicol. 2014, 92, 420–426. [Google Scholar] [CrossRef] [PubMed]
- US EPA: Method 6200—Field Portable X-Ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment. Available online: Epa.gov/sites/production/files/2015-12/documents/6200.pdf (accessed on 29 December 2019).
- Fredén, C. Geology, National Atlas of Sweden; SNA Publishing: Stockholm, Sweden, 1994. [Google Scholar]
- Jones, A.; Montanarella, L.; Jones, R. Soil Atlas of Europe; European Commission: Luxemburg, Luxemburg, 2005. [Google Scholar]
- Piikki, K.; Söderström, M. Digital soil mapping of arable land in Sweden—Validation of performance at multiple scales. Geoderma 2019, 352, 342–350. [Google Scholar] [CrossRef]
- Eriksson, J.; Dahlin, S.A.; Sohlenius, G.; Söderström, M.; Öborn, I. Spatial patterns of essential trace element concentrations in Swedish soils and crops. Geoderma Reg. 2017, 10, 163–174. [Google Scholar] [CrossRef]
- SS 28311—Determination of Trace Elements in Soils—Extraction with Nitric Acids; Swedish Standards Institute (SIS): Stockholm, Sweden, 2017.
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning, 2nd ed.; Springer-Verlag: New York, NY, USA, 2009. [Google Scholar]
- Pedregosa, F.; Varaquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. 2011, 12, 2825–2830. [Google Scholar]
- Rudy, J. Py-Earth Documenetation. Available online: https://contrib.scikit-learn.org/py-earth/index.html (accessed on 4 July 2019).
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- López-Núñezm, R.; Ajmal-Poley, F.; González-Pérez, J.A.; Bello-López, M.A.; Burgos-Doménech, P. Quick Analysis of Organic Amendments via Portable X-ray Fluorescence Spectrometry. Int. J. Environ. Res. Public Health 2019, 16, 4317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahio, J.V.P.; Perämäki, P. Evaluation of portable X-ray fluorescence (PXRF) sample preparation methods. Geol. Surv. Finl. 2005, 38, 73–82. [Google Scholar]
- Wan, M.; Hu, W.; Qu, M.; Tian, K.; Zhang, H.; Wang, Y.; Huang, B. Application of arc emission spectrometry and portable X-ray fluorescence spectrometry to rapid risk assessment of heavy metals in agricultural soils. Ecol. Indic. 2019, 101, 583–594. [Google Scholar] [CrossRef]
Minimum | Maximum | Mean | Median | SD | |
---|---|---|---|---|---|
CEC | 3 | 70 | 17 | 15 | 8 |
Base saturation | 8 | 100 | 69 | 72 | 21 |
SOM | 0.8 | 16.6 | 4.5 | 4.2 | 1.8 |
Clay content | 2 | 80 | 23 | 19 | 15 |
pH | 4.5 | 8.4 | 6.2 | 6.2 | 0.6 |
Element | Minimum | Maximum | Mean | Median | SD | Rec | Rec-SD |
---|---|---|---|---|---|---|---|
Pb | 8 | 146 | 19 | 18 | 7 | 63 | 10.8 |
Cs | 10 | 56 | 33 | 34 | 9 | 970 | 33.1 |
Zn | 16 | 518 | 72 | 67 | 32 | 92 | 2.1 |
V | 33 | 411 | 93 | 90 | 30 | 123 | 18.6 |
Rb | 32 | 181 | 104 | 100 | 26 | 83 | 0.8 |
Sr | 71 | 378 | 142 | 132 | 49 | 92 | 0.8 |
Zr | 71 | 955 | 251 | 240 | 77 | 65 | 0.9 |
Ba | 197 | 1140 | 491 | 487 | 98 | 87 | 2.4 |
Mn | 124 | 6000 | 542 | 481 | 345 | 97 | 2.7 |
Ti | 1630 | 6890 | 3860 | 3880 | 765 | 114 | 1.8 |
Ca | 2980 | 196,000 | 11,100 | 9710 | 9390 | 105 | 1.5 |
Fe | 4370 | 93,000 | 21,500 | 19,300 | 9760 | 84 | 0.6 |
K | 11,400 | 36,200 | 24,100 | 24,300 | 4180 | 96 | 1.3 |
Lab-Analyzed Element | Minimum | Maximum | Mean | Median | SD |
---|---|---|---|---|---|
National dataset | |||||
Cu | 2 | 130 | 14 | 11 | 10 |
Zn | 6 | 557 | 61 | 56 | 33 |
Cd | 0.04 | 4.07 | 0.20 | 0.17 | 0.17 |
Farm dataset | |||||
Cu | 3 | 77 | 22 | 17 | 19 |
Zn | 22 | 135 | 72 | 67 | 30 |
Cd | 0.06 | 1.60 | 0.37 | 0.21 | 0.38 |
Model | R2 | MAE | R2-ROI | MAE-ROI |
---|---|---|---|---|
Cu-MLR | 0.58 | 3.87 | 0.06 | 3.00 |
Cu-RF | 0.63 | 3.48 | 0.20 | 2.69 |
Cu-MARS | 0.59 | 3.72 | 0.04 | 2.94 |
Zn-MLR | 0.92 | 5.60 | - | - |
Zn-RF | 0.86 | 5.93 | - | - |
Zn-MARS | 0.92 | 5.63 | - | - |
Cd-MLR | 0.49 | 0.065 | −0.17 | 0.057 |
Cd-RF | 0.48 | 0.053 | 0.40 | 0.043 |
Cd-MARS | 0.70 | 0.054 | 0.20 | 0.047 |
Model | R2 | MAE | R2-ROI | MAE-ROI |
---|---|---|---|---|
Cu-MLR | 0.90 | 4.40 | 0.12 | 3.56 |
Cu-RF | 0.84 | 4.51 | 0.54 | 2.43 |
Cu-MARS | 0.94 | 3.21 | 0.47 | 2.72 |
Zn-MLR | 0.96 | 4.40 | - | - |
Zn-RF | 0.94 | 5.40 | - | - |
Zn-MARS | 0.97 | 4.00 | - | - |
Cd-MLR | 0.74 | 0.121 | 0.34 | 0.052 |
Cd-RF | 0.74 | 0.109 | 0.44 | 0.050 |
Cd-MARS | 0.80 | 0.087 | 0.50 | 0.043 |
Cu Fertilization | Lab-Analyzed | Total | ||
---|---|---|---|---|
Below Threshold | Above Threshold | |||
Predicted | Below Threshold | 224 | 70 | 294 |
Above Threshold | 200 | 1026 | 1226 | |
Total | 424 | 1096 | ||
Cu Sewage Sludge | Lab-Analyzed | Total | ||
Below Threshold | Above Threshold | |||
Predicted | Below Threshold | 1490 | 27 | 1517 |
Above Threshold | 2 | 1 | 3 | |
Total | 1492 | 28 | ||
Zn Sewage Sludge | Lab-Analyzed | Total | ||
Below threshold | Above Threshold | |||
Predicted | Below Threshold | 1337 | 21 | 1358 |
Above Threshold | 44 | 118 | 162 | |
Total | 1381 | 139 | ||
Cd Sewage Sludge | Lab-Analyzed | Total | ||
Below Threshold | Above Threshold | |||
Predicted | Below Threshold | 1437 | 49 | 1486 |
Above Threshold | 18 | 16 | 34 | |
Total | 1455 | 65 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adler, K.; Piikki, K.; Söderström, M.; Eriksson, J.; Alshihabi, O. Predictions of Cu, Zn, and Cd Concentrations in Soil Using Portable X-Ray Fluorescence Measurements. Sensors 2020, 20, 474. https://doi.org/10.3390/s20020474
Adler K, Piikki K, Söderström M, Eriksson J, Alshihabi O. Predictions of Cu, Zn, and Cd Concentrations in Soil Using Portable X-Ray Fluorescence Measurements. Sensors. 2020; 20(2):474. https://doi.org/10.3390/s20020474
Chicago/Turabian StyleAdler, Karl, Kristin Piikki, Mats Söderström, Jan Eriksson, and Omran Alshihabi. 2020. "Predictions of Cu, Zn, and Cd Concentrations in Soil Using Portable X-Ray Fluorescence Measurements" Sensors 20, no. 2: 474. https://doi.org/10.3390/s20020474
APA StyleAdler, K., Piikki, K., Söderström, M., Eriksson, J., & Alshihabi, O. (2020). Predictions of Cu, Zn, and Cd Concentrations in Soil Using Portable X-Ray Fluorescence Measurements. Sensors, 20(2), 474. https://doi.org/10.3390/s20020474