Deep Learning Applied to Vegetation Identification and Removal Using Multidimensional Aerial Data
Abstract
:1. Introduction
- A robust method for vegetation identification and minimal removal from 3D point cloud data.
- A real application of natural scene removal for slopes and dams inspection.
2. Methodology for 3D Data Classification of Complex Natural Scenes
2.1. Framework Overview
2.2. SFM Point Clouds Preprocessing
2.3. Vegetation Identification
2.3.1. Feature Extraction and Classification
Algorithm 1 Vegetation Extraction Algorithm |
Input: 3D point cloud to be processed;
|
Output: Point cloud with vegetation removed; |
Output: Vegetation files; |
2.3.2. Neural Network Model Training
3. Results and Discussion
3.1. Photogrammetry Survey
3.2. Test and Training Data
3.3. Neural Network
- Condition Positive (P): the number of real positive cases in the data;
- Condition Negative (N): the number of real negative cases in the data;
- True Positive (TP): condition positive detected as positive;
- True Negative (TN): condition negative detected as negative;
- False Positive (FP): equivalent with false alarm; and,
- False negative (FN): equivalent with miss.
3.4. Deformation Analysis
4. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Stumpf, A.; Malet, J.P.; Allemand, P.; Pierrot-Deseilligny, M.; Skupinski, G. Ground-based multi-view photogrammetry for the monitoring of landslide deformation and erosion. Geomorphology 2015, 231, 130–145. [Google Scholar] [CrossRef]
- Barazzetti, L.; Scaioni, M.; Remondino, F. Orientation and 3D modelling from markerless terrestrial images: Combining accuracy with automation. Photogramm. Rec. 2010, 25, 356–381. [Google Scholar] [CrossRef]
- Yang, H.; Xu, X.; Neumann, I. Optimal finite element model with response surface methodology for concrete structures based on Terrestrial Laser Scanning technology. Compos. Struct. 2018, 183, 2–6. [Google Scholar] [CrossRef]
- Guisado-Pintado, E.; Jackson, D.W.; Rogers, D. 3D mapping efficacy of a drone and terrestrial laser scanner over a temperate beach-dune zone. Geomorphology 2019, 328, 157–172. [Google Scholar] [CrossRef]
- Khaloo, A.; Lattanzi, D.; Jachimowicz, A.; Devaney, C. Utilizing UAV and 3D Computer Vision for Visual Inspection of a Large Gravity Dam. Front. Built Environ. 2018, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Pinto, M.F.; Marcato, A.L.; Melo, A.G.; Honório, L.M.; Urdiales, C. A Framework for Analyzing Fog-Cloud Computing Cooperation Applied to Information Processing of UAVs. Wirel. Commun. Mob. Comput. 2019, 2019, 7497924. [Google Scholar] [CrossRef] [Green Version]
- Buffi, G.; Manciola, P.; Grassi, S.; Barberini, M.; Gambi, A. Survey of the Ridracoli Dam: UAV–based photogrammetry and traditional topographic techniques in the inspection of vertical structures. Geomat. Nat. Hazards Risk 2017, 8, 1562–1579. [Google Scholar] [CrossRef] [Green Version]
- Nesbit, P.R.; Hugenholtz, C.H. Enhancing UAV–SFM 3D model accuracy in high-relief landscapes by incorporating oblique images. Remote Sens. 2019, 11, 239. [Google Scholar] [CrossRef] [Green Version]
- Walbridge, S.; Slocum, N.; Pobuda, M.; Wright, D. Unified geomorphological analysis workflows with Benthic Terrain Modeler. Geosciences 2018, 8, 94. [Google Scholar] [CrossRef] [Green Version]
- Abellán, A.; Vilaplana, J.; Calvet, J.; García-Sellés, D.; Asensio, E. Rockfall monitoring by Terrestrial Laser Scanning–case study of the basaltic rock face at Castellfollit de la Roca (Catalonia, Spain). Nat. Hazards Earth Syst. Sci. 2011, 11, 829–841. [Google Scholar] [CrossRef] [Green Version]
- Vandapel, N.; Huber, D.F.; Kapuria, A.; Hebert, M. Natural terrain classification using 3-d ladar data. In Proceedings of the IEEE International Conference on Robotics and Automation (CRA’04), New Orleans, LA, USA, 26 April–1 May 2004; Volume 5, pp. 5117–5122. [Google Scholar]
- Plaza, V.; Ababsa, F.E.; Garcia-Cerezo, A.J.; Gomez-Ruiz, J.A. 3d segmentation method for natural environments based on a geometric-featured voxel map. In Proceedings of the 2015 IEEE International Conference on Industrial Technology (ICIT), Seville, Spain, 17–19 March 2015; pp. 1602–1607. [Google Scholar]
- Kragh, M.; Jørgensen, R.N.; Pedersen, H. Object detection and terrain classification in agricultural fields using 3D lidar data. In International Conference on Computer Vision Systems; Springer: Copenhagen, Denmark, 6–9 July 2015; pp. 188–197. [Google Scholar]
- Wen, C.; Sun, X.; Li, J.; Wang, C.; Guo, Y.; Habib, A. A deep learning framework for road marking extraction, classification and completion from mobile laser scanning point clouds. ISPRS J. Photogramm. Remote Sens. 2019, 147, 178–192. [Google Scholar] [CrossRef]
- Kumar, A.; Anders, K.; Winiwarter, L.; Höfle, B. Feature Relevance Analysis for 3D Point Cloud Classification Using Deep Learning. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Enschede, The Netherlands, 10–14 June 2019; Volume 4. [Google Scholar]
- Filippi, A.M.; Jensen, J.R. Effect of continuum removal on hyperspectral coastal vegetation classification using a fuzzy learning vector quantizer. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1857–1869. [Google Scholar] [CrossRef]
- Gianinetto, M.; Lechi, G. The development of superspectral approaches for the improvement of land cover classification. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2670–2679. [Google Scholar] [CrossRef]
- Natrajan, P.; Rajmohan, S.; Sundaram, S.; Natarajan, S.; Hebbar, R. A Transfer Learning based CNN approach for Classification of Horticulture plantations using Hyperspectral Images. In Proceedings of the 2018 IEEE 8th International Advance Computing Conference (IACC), Greater Noida, India, 14–15 December 2018; pp. 279–283. [Google Scholar]
- Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Zhang, L.; Zhao, X. Mineral absorption feature extraction in vegetation covered region based on reference spectral background removal. In Proceedings of the 2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Los Angeles, CA, USA, 21–24 August 2016; pp. 1–3. [Google Scholar]
- Sithole, G.; Vosselman, G. Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds. ISPRS J. Photogramm. Remote Sens. 2004, 59, 85–101. [Google Scholar] [CrossRef]
- Brodu, N.; Lague, D. 3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: Applications in geomorphology. ISPRS J. Photogramm. Remote Sens. 2012, 68, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660. [Google Scholar]
- Panella, F.; Roecklinger, N.; Vojnovic, L.; Loo, Y.; Boehm, J. Cost-Benefit Analysis of Rail Tunnel Inspection for Photogrammetry and Laser Scanning. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 1137–1144. [Google Scholar] [CrossRef]
- Noordermeer, L.; Bollandsås, O.M.; Ørka, H.O.; Næsset, E.; Gobakken, T. Comparing the accuracies of forest attributes predicted from airborne laser scanning and digital aerial photogrammetry in operational forest inventories. Remote Sens. Environ. 2019, 226, 26–37. [Google Scholar] [CrossRef]
- Moon, D.; Chung, S.; Kwon, S.; Seo, J.; Shin, J. Comparison and utilization of point cloud generated from photogrammetry and laser scanning: 3D world model for smart heavy equipment planning. Autom. Constr. 2019, 98, 322–331. [Google Scholar] [CrossRef]
- Sharma, N.; Jain, V.; Mishra, A. An analysis of convolutional neural networks for image classification. Procedia Comput. Sci. 2018, 132, 377–384. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, Y.G.; Hauptmann, A.G.; Ngo, C.W. Evaluating bag-of-visual-words representations in scene classification. In Proceedings of the International Workshop on Workshop on Multimedia Information Retrieval, Bavaria, Germany, 24–29 September 2007; pp. 197–206. [Google Scholar]
- Lampert, C.H.; Blaschko, M.B.; Hofmann, T. Beyond sliding windows: Object localization by efficient subwindow search. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8. [Google Scholar]
- Seifert, E.; Seifert, S.; Vogt, H.; Drew, D.; Van Aardt, J.; Kunneke, A.; Seifert, T. Influence of drone altitude, image overlap, and optical sensor resolution on multi-view reconstruction of forest images. Remote Sens. 2019, 11, 1252. [Google Scholar] [CrossRef] [Green Version]
- Union, I.T. Report ITU-R BT.2380-2. 2018. Available online: https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-BT.2380-2-2018-PDF-E.pdf (accessed on 26 October 2019).
- Wu, L.S.; Wang, G.L.; Hu, Y. Iterative closest point registration for fast point feature histogram features of a volume density optimization algorithm. Meas. Control 2020, 53, 29–39. [Google Scholar] [CrossRef]
- Li, D.; Liu, N.; Guo, Y.; Wang, X.; Xu, J. 3D object recognition and pose estimation for random bin-picking using Partition Viewpoint Feature Histograms. Pattern Recognit. Lett. 2019, 128, 148–154. [Google Scholar] [CrossRef]
- Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.; Xiao, J. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1912–1920. [Google Scholar]
- Yi, L.; Kim, V.G.; Ceylan, D.; Shen, I.; Yan, M.; Su, H.; Lu, C.; Huang, Q.; Sheffer, A.; Guibas, L.; et al. A scalable active framework for region annotation in 3d shape collections. ACM Trans. Graph. (TOG) 2016, 35, 210. [Google Scholar] [CrossRef]
- Pinto, M.F.; Honorio, L.M.; Melo, A.; Marcato, A.L. A Robotic Cognitive Architecture for Slope and Dam Inspections. Sensors 2020, 20, 4579. [Google Scholar] [CrossRef] [PubMed]
- Pinto, M.F.; Honório, L.M.; Marcato, A.L.; Dantas, M.A.; Melo, A.G.; Capretz, M.; Urdiales, C. ARCog: An Aerial Robotics Cognitive Architecture. Robotica 2020, 1–20. [Google Scholar] [CrossRef]
- Melo, A.G.; Pinto, M.F.; Honório, L.M. BushDataset, a Library of 3d Bushes to Machine Learning Applications. 2019. Available online: https://github.com/ARCog/BushDataset (accessed on 13 November 2019).
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An easy-to-use airborne LiDAR data filtering method based on cloth simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Cai, S.; Zhang, W.; Liang, X.; Wan, P.; Qi, J.; Yu, S.; Yan, G.; Shao, J. Filtering airborne LiDAR data through complementary cloth simulation and progressive TIN densification filters. Remote Sens. 2019, 11, 1037. [Google Scholar] [CrossRef] [Green Version]
- Melo, A.G.; Pinto, M.F.; Honório, L.M.; Dias, F.M.; Masson, J.E.N. 3D Correspondence and Point Projection Method for Structures Deformation Analysis. IEEE Access 2020, 8, 177823–177836. [Google Scholar] [CrossRef]
Classification Method | Accuracy | |||
---|---|---|---|---|
2 Classes | 4 Classes | Water Dam | Slopes | |
3DColored | 0.98 | 0.97 | 0.93 | 0.90 |
3DUncolored | 0.95 | 0.92 | 0.92 | 0.90 |
CANUPO SVM | - | - | 0.89 | 0.78 |
PointNet | - | - | 0.90 | 0.88 |
ACC | |
---|---|
TPR | |
TNR |
TPR | TNR | ACC | |
---|---|---|---|
Bush | 93.4% | 99.0% | 100.0% |
Car | 96.1% | 98.8% | 96.1% |
Road | 80.0% | 99.2% | 100.0% |
People | 95.5% | 98.8% | 97.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
F. Pinto, M.; G. Melo, A.; M. Honório, L.; L. M. Marcato, A.; G. S. Conceição, A.; O. Timotheo, A. Deep Learning Applied to Vegetation Identification and Removal Using Multidimensional Aerial Data. Sensors 2020, 20, 6187. https://doi.org/10.3390/s20216187
F. Pinto M, G. Melo A, M. Honório L, L. M. Marcato A, G. S. Conceição A, O. Timotheo A. Deep Learning Applied to Vegetation Identification and Removal Using Multidimensional Aerial Data. Sensors. 2020; 20(21):6187. https://doi.org/10.3390/s20216187
Chicago/Turabian StyleF. Pinto, Milena, Aurelio G. Melo, Leonardo M. Honório, André L. M. Marcato, André G. S. Conceição, and Amanda O. Timotheo. 2020. "Deep Learning Applied to Vegetation Identification and Removal Using Multidimensional Aerial Data" Sensors 20, no. 21: 6187. https://doi.org/10.3390/s20216187
APA StyleF. Pinto, M., G. Melo, A., M. Honório, L., L. M. Marcato, A., G. S. Conceição, A., & O. Timotheo, A. (2020). Deep Learning Applied to Vegetation Identification and Removal Using Multidimensional Aerial Data. Sensors, 20(21), 6187. https://doi.org/10.3390/s20216187