Curvefusion—A Method for Combining Estimated Trajectories with Applications to SLAM and Time-Calibration
Abstract
:1. Introduction
2. Related Work
3. Methodology
3.1. System Overview
3.2. Curvefusion
3.2.1. Shape Representation
3.2.2. Trajectory Fusion
4. Continuous-Time SLAM
5. Time Calibration
6. Experimental Results
6.1. Trajectory Fusion Evaluation
6.2. Time-Calibration Evaluation
7. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, J.; Tan, H.S. A Low-Order DGPS-Based Vehicle Positioning System Under Urban Environment. IEEE ASME Trans. Mechatron. 2006, 11, 567–575. [Google Scholar] [CrossRef]
- Lin, Y.; Gao, F.; Qin, T.; Gao, W.; Liu, T.; Wu, W.; Yang, Z.; Shen, S. Autonomous aerial navigation using monocular visual inertial fusion. J. Field Robot. 2018, 35, 23–51. [Google Scholar] [CrossRef]
- Pinies, P.; Lupton, T.; Sukkarieh, S.; Tardos, J.D. Inertial aiding of inverse depth SLAM using a monocular camera. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007; pp. 2797–2802. [Google Scholar]
- Tong, C.; Barfoot, T. Gaussian process gaussnewton for 3d laser-based visual odometry. In Proceedings of the IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 5204–5211. [Google Scholar]
- Segal, A.; Haehnel, D.; Thrun, S. Generalized-ICP. In Proceedings of the Robotics: Science and Systems, Seattle, WA, USA, 28 June–1 July 2009. [Google Scholar]
- Magnusson, M.; Vaskevicius, N.; Stoyanov, T.; Pathak, K.; Birk, A. Beyond Points: Evaluating Recent 3D Scan-Matching Algorithms. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation, Seattle, WA, USA, 26–30 May 2015; pp. 3631–3637. [Google Scholar]
- Zaganidis, A.; Sun, L.; Duckett, T.; Cielniak, G. Integrating Deep Semantic Segmentation into 3D Point Cloud Registration. IEEE Robot. Autom. Lett. 2018, 3, 2942–2949. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Ye, Q.; Wang, H.; Chen, L.; Yang, J. A Precise and Robust Segmentation-Based Lidar Localization System for Automated Urban Driving. Remote. Sens. 2019, 11, 1348. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Fan, X.; Lv, C.; Wu, J. An innovative information fusion method with adaptive Kalman filter for integrated INS/GPS navigation of autonomous vehicles. Mech. Syst. Signal Process. 2018, 100, 605–616. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Liu, S.; Tsai, G.; Hu, H.; Chu, C.C.; Zheng, F. PIRVS: An Advanced Visual-Inertial SLAM System with Flexible Sensor Fusion and Hardware Co-Design. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation, Brisbane, Australia, 21–25 May 2018; pp. 3826–3832. [Google Scholar]
- Bloesch, M.; Omari, S.; Hutter, M.; Siegwart, R. Robust visual inertial odometry using a direct EKF-based approach. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, Hamburg, Germany, 28 September–3 October 2015; pp. 298–304. [Google Scholar]
- Liu, S.; Maher Mohamed, A.; Karamat, T.B.; Noureldin, A. A LiDAR-Aided Indoor Navigation System for UGVs. J. Navig. 2015, 68, 253–273. [Google Scholar] [CrossRef] [Green Version]
- Aghili, F.; Su, C.Y. Robust Relative Navigation by Integration of ICP and Adaptive Kalman Filter Using Laser Scanner and IMU. IEEE ASME Trans. Mechatron. 2016, 21, 2015–2026. [Google Scholar] [CrossRef]
- Bry, A.; Bachrach, A.; Roy, N. State estimation for aggressive flight in gpsdenied environments using onboard sensing. In Proceedings of the IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 1–8. [Google Scholar]
- Schmid, K.; Lutz, P.; Tomić, T.; Mair, E.; Hirschmüller, H. Autonomous vision-based microair vehicle for indoor and outdoor navigation. J. Field Robot. 2014, 31, 537–570. [Google Scholar] [CrossRef]
- Durrant-Whyte, H.; Bailey, T. Simultaneous localization and mapping (SLAM): Part I the essential algorithms. IEEE Robot. Autom. Mag. 2006, 13, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Grisetti, G.; Kummerle, R.; Stachniss, C.; Burgard, W. A Tutorial on GraphBased SLAM. IEEE Intell. Transp. Syst. Mag. 2010, 2, 31–43. [Google Scholar] [CrossRef]
- Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The KITTI dataset. Int. J. Robot. Res. 2013, 32, 1231–1237. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Claraco, J.L.; Moreno-Duenas, F.A.; Gonzalez-Jimenez, J. The Malaga urban dataset: High-rate stereo and LiDAR in a realistic urban scenario. Int. J. Robot. Res. 2014, 33, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Lauterbach, H.A.; Borrmann, D.; Heß, R.; Eck, D.; Schilling, K.; Nüchter, A. Evaluation of a Backpack-Mounted 3D Mobile Scanning System. Remote. Sens. 2015, 7, 13753–13781. [Google Scholar] [CrossRef] [Green Version]
- Demisse, G.G.; Aouada, D.; Ottersten, B. Deformation Based Curved Shape Representation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 1338–1351. [Google Scholar] [CrossRef] [Green Version]
- Olofsson, B.; Antonsson, J.; Kortier, H.; Bernhardsson, B.; Robertsson, A.; Johansson, R. Sensor fusion for robotic workspace state estimation. IEEE ASME Trans. Mechatron. 2016, 21, 2236–2248. [Google Scholar] [CrossRef]
- Wang, K.; Liu, Y.; Li, L. A Simple and Parallel Algorithm for Real-Time Robot Localization by Fusing Monocular Vision and Odometry/AHRS Sensors. IEEE ASME Trans. Mechatron. 2014, 19, 1447–1457. [Google Scholar] [CrossRef]
- Riegl. 2019. Available online: https://www.riegl.com (accessed on 30 July 2020).
- Olson, E. A Passive Solution to the Sensor Synchronization Problem. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 1059–1064. [Google Scholar]
- Hu, H.; Wu, J.; Xiong, Z. A Soft Time Synchronization Framework for Multi-Sensors in Autonomous Localization and Navigation. In Proceedings of the 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Auckland, New Zealand, 9–12 July 2018; pp. 694–699. [Google Scholar]
- Grisetti, G.; Stachniss, C.; Burgard, W. Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters. IEEE Trans. Robot. 2007, 23, 34–46. [Google Scholar] [CrossRef] [Green Version]
- Kohlbrecher, S.; von Stryk, O.; Meyer, J.; Klingauf, U. A flexible and scalable SLAM system with full 3D motion estimation. In Proceedings of the 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, Kyoto, Japan, 31 October–5 November 2011; pp. 155–160. [Google Scholar]
- Mur-Artal, R.; Montiel, J.; Tardos, J. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Trans. Robot. 2015, 31, 1147–1163. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Singh, S. LOAM: Lidar Odometry and Mapping in Real-time. In Proceedings of the Robotics: Science and Systems, Berkeley, CA, USA, 12–16 July 2014; pp. 1–9. [Google Scholar]
- Pinies, P.; Tardos, J.D. Large-Scale SLAM Building Conditionally Independent Local Maps: Application to Monocular Vision. IEEE Trans. Robot. 2008, 24, 1094–1106. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, H.; Li, M.; You, S. A Review of Visual-Inertial Simultaneous Localization and Mapping from Filtering-Based and Optimization-Based Perspectives. Robotics 2018, 7, 45. [Google Scholar] [CrossRef] [Green Version]
- Leutenegger, S.; Lynen, S.; Bosse, M. Keyframe-based visual–inertial odometry using nonlinear optimization. Int. J. Robot. Res. 2015, 34, 314–334. [Google Scholar] [CrossRef] [Green Version]
- Arena, P.; Bucolo, M.; Fazzino, S.; Frasca, M. The CNN paradigm: Shapes and complexity. Int. J. Bifurc. Chaos 2005, 15, 2063–2090. [Google Scholar] [CrossRef]
- Whelan, T.; Salas-Moreno, R.F.; Glocker, B. ElasticFusion: Real-time dense SLAM and light source estimation. Int. J. Robot. Res. 2016, 35, 1697–1716. [Google Scholar] [CrossRef] [Green Version]
- Puri, P.; Jia, D.; Kaess, M. GravityFusion: Real-time Dense Mapping without Pose Graph using Deformation and Orientation. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, BC, Canada, 24–28 September 2017; pp. 6506–6513. [Google Scholar]
- Park, C.; Moghadam, P.; Kim, S.; Elfes, A. Elastic LiDAR Fusion: Dense Map-Centric Continuous-Time SLAM. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation, Brisbane, Australia, 21–25 May 2018; pp. 1206–1213. [Google Scholar]
- Demisse, G.G.; Aouada, D.; Ottersten, B. Similarity Metric For Curved Shapes in Euclidean Space. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 5042–5050. [Google Scholar]
- Elseberg, J.; Borrmann, D.; Nüchter, A. Algorithmic solutions for computing precise maximum likelihood 3D point clouds from mobile laser scanning platforms. Remote. Sens. 2013, 5, 5871–5906. [Google Scholar] [CrossRef] [Green Version]
- Google. 2019. Available online: https://www.google.com/maps (accessed on 30 July 2020).
- Nüchter, A.; Lingemann, K. 6D SLAM Software. 2019. Available online: http://slam6d.sourceforge.net/ (accessed on 30 July 2020).
- Girardeau-Montaut, D. CloudCompare 3D Point Cloud and Mesh Processing Software. 2003. Available online: http://www.cloudcompare.org/ (accessed on 30 July 2020).
- Lauterbach, H.A.; Nüchter, A. Preliminary Results on Instantaneous UAV-Based 3D Mapping for Rescue Applications. In Proceedings of the 16th IEEE International Symposium on Safety, Security, and Rescue Robotics, Philadelphia, PA, USA, 6–8 August 2018; pp. 1–2. [Google Scholar]
Data Sets | ||||||
---|---|---|---|---|---|---|
E (m) | (m) | E (m) | (m) | E (m) | (m) | |
ZAE | 0.6611 | 0.7487 | 0.7142 | 0.6625 | 0.4698 | 0.5282 |
Parking | 0.7116 | 0.8166 | 0.6874 | 0.8039 | 0.5813 | 0.6876 |
Data Sets | Mean [s] | std [s] | RMSE [s] |
---|---|---|---|
Computer Science | −0.0374 | 0.0278 | 0.0466 |
ZAEG | −0.0126 | 0.2518 | 0.2516 |
ParkingG | −0.0236 | 0.1977 | 0.1984 |
Campus | −0.0216 | 0.1967 | 0.1975 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, S.; Lauterbach, H.A.; Li, X.; Demisse, G.G.; Borrmann, D.; Nüchter, A. Curvefusion—A Method for Combining Estimated Trajectories with Applications to SLAM and Time-Calibration. Sensors 2020, 20, 6918. https://doi.org/10.3390/s20236918
Du S, Lauterbach HA, Li X, Demisse GG, Borrmann D, Nüchter A. Curvefusion—A Method for Combining Estimated Trajectories with Applications to SLAM and Time-Calibration. Sensors. 2020; 20(23):6918. https://doi.org/10.3390/s20236918
Chicago/Turabian StyleDu, Shitong, Helge A. Lauterbach, Xuyou Li, Girum G. Demisse, Dorit Borrmann, and Andreas Nüchter. 2020. "Curvefusion—A Method for Combining Estimated Trajectories with Applications to SLAM and Time-Calibration" Sensors 20, no. 23: 6918. https://doi.org/10.3390/s20236918
APA StyleDu, S., Lauterbach, H. A., Li, X., Demisse, G. G., Borrmann, D., & Nüchter, A. (2020). Curvefusion—A Method for Combining Estimated Trajectories with Applications to SLAM and Time-Calibration. Sensors, 20(23), 6918. https://doi.org/10.3390/s20236918