Application of a Small Unmanned Aerial System to Measure Ammonia Emissions from a Pilot Amine-CO2 Capture System
Abstract
:1. Introduction
2. Materials and Methods
2.1. CO2 Capture System
2.2. Quantification of NH3(g) with the UKySonde
2.3. Conventional Ammonia Emission Sampling
2.4. Emission Estimates of NH3(g)
3. Results and Discussion
3.1. Ammonia Measurements
3.2. Gaussian Modeling of the Point Source
3.3. Comparison of NH3(g) Emissions Measurement Techniques
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schuyler, T.J.; Guzman, M.I. Unmanned aerial systems for monitoring trace tropospheric gases. Atmosphere 2017, 8, 206. [Google Scholar] [CrossRef] [Green Version]
- Schuyler, T.J.; Bailey, S.C.; Guzman, M.I. Monitoring Tropospheric Gases with Small Unmanned Aerial Systems (sUAS) during the Second CLOUDMAP Flight Campaign. Atmosphere 2019, 10, 434. [Google Scholar] [CrossRef] [Green Version]
- Schuyler, T.J.; Gohari, S.M.I.; Pundsack, G.; Berchoff, D.; Guzman, M.I. Using a Balloon-Launched Unmanned Glider to Validate Real-Time WRF Modeling. Sensors 2019, 19, 1914. [Google Scholar] [CrossRef] [PubMed]
- Environmental Protection Agency. Inventory of U.S. Greenhouse Gas Sinks; Environmental Protection Agency: Washington, DC, USA, 2019; pp. 71–86.
- Environmental Protection Agency. Climate Change Indicators in The United States, 4th ed.; Environmental Protection Agency: Washington, DC, USA, 2016; pp. 12–20.
- Environmental Protection Agency. Energy Efficienty as a Low-Cost Resource for Achieving Carbon Emissions Reductions; Environmental Protection Agency: Washington, DC, USA, 2009.
- Davies, K.; Malik, A.; Li, J.; Aung, T.N. A meta-study on the feasibility of the implementation of new clean coal technologies to existing coal-fired power plants in an effort to decrease carbon emissions. Energy Sci. Technol. 2017, 4, 30–45. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Minett, A.I.; Harris, A.T. A review of techno-economic models for the retrofitting of conventional pulverised-coal power plants for post-combustion capture (PCC) of CO2. Energy Environ. Sci. 2013, 6, 25–40. [Google Scholar] [CrossRef]
- Chung, T.S.; Patiño-Echeverri, D.; Johnson, T.L. Expert assessments of retrofitting coal-fired power plants with carbon dioxide capture technologies. Energy Policy 2011, 39, 5609–5620. [Google Scholar] [CrossRef]
- Mondal, M.K.; Balsora, H.K.; Varshney, P. Progress and trends in CO2 capture/separation technologies: A review. Energy 2012, 46, 431–441. [Google Scholar] [CrossRef]
- Wang, M.; Lawal, A.; Stephenson, P.; Sidders, J.; Ramshaw, C. Post-combustion CO2 capture with chemical absorption: A state-of-the-art review. Chem. Eng. Res. Des. 2011, 89, 1609–1624. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Strømman, A.H.; Hertwich, E. Life cycle assessment of natural gas combined cycle power plant with post-combustion carbon capture, transport and storage. Int. J. Greenh. Gas Control 2011, 5, 457–466. [Google Scholar] [CrossRef]
- Conway, W.; Wang, X.; Fernandes, D.; Burns, R.; Lawrance, G.; Puxty, G.; Maeder, M. Comprehensive kinetic and thermodynamic study of the reactions of CO2 (aq) and HCO3− with monoethanolamine (MEA) in aqueous solution. J. Phys. Chem. A 2011, 115, 14340–14349. [Google Scholar] [CrossRef]
- Lv, B.; Guo, B.; Zhou, Z.; Jing, G. Mechanisms of CO2 capture into monoethanolamine solution with different CO2 loading during the absorption/desorption processes. Environ. Sci. Technol. 2015, 49, 10728–10735. [Google Scholar] [CrossRef] [PubMed]
- Puxty, G.; Rowland, R.; Attalla, M. Comparison of the rate of CO2 absorption into aqueous ammonia and monoethanolamine. Chem. Eng. Sci. 2010, 65, 915–922. [Google Scholar] [CrossRef]
- Qin, F.; Wang, S.; Hartono, A.; Svendsen, H.F.; Chen, C. Kinetics of CO2 absorption in aqueous ammonia solution. Int. J. Greenh. Gas Control 2010, 4, 729–738. [Google Scholar] [CrossRef]
- Rao, A.B.; Rubin, E.S. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environ. Sci. Technol. 2002, 36, 4467–4475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Energy Information Administration. Electric Power Annual 2017; U.S. Energy Information Administration: Washington, DC, USA, 2019.
- Scott, V.; Gilfillan, S.; Markusson, N.; Chalmers, H.; Haszeldine, R.S. Last chance for carbon capture and storage. Nat. Clim. Chang. 2013, 3, 105. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.G.; Bhatnagar, S.; Combs, M.; Abad, K.; Onneweer, F.; Pelgen, J.; Link, D.; Figueroa, J.; Nikolic, H.; Liu, K. Pilot testing of a heat integrated 0.7 MWe CO2 capture system with two-stage air-stripping: Amine degradation and metal accumulation. Int. J. Greenh. Gas Control 2017, 64, 23–33. [Google Scholar] [CrossRef]
- Chi, S.; Rochelle, G.T. Oxidative degradation of monoethanolamine. Ind. Eng. Chem. Res. 2002, 41, 4178–4186. [Google Scholar] [CrossRef]
- da Silva, E.F.; Lepaumier, H.; Grimstvedt, A.; Vevelstad, S.J.; Einbu, A.; Vernstad, K.; Svendsen, H.F.; Zahlsen, K. Understanding 2-ethanolamine degradation in postcombustion CO2 capture. Ind. Eng. Chem. Res. 2012, 51, 13329–13338. [Google Scholar] [CrossRef]
- Goff, G.S.; Rochelle, G.T. Monoethanolamine degradation: O2 mass transfer effects under CO2 capture conditions. Ind. Eng. Chem. Res. 2004, 43, 6400–6408. [Google Scholar] [CrossRef]
- Ma, S.; Song, H.; Wang, M.; Yang, J.; Zang, B. Research on mechanism of ammonia escaping and control in the process of CO2 capture using ammonia solution. Chem. Eng. Res. Des. 2013, 91, 1327–1334. [Google Scholar] [CrossRef]
- Kirkby, J.; Curtius, J.; Almeida, J.; Dunne, E.; Duplissy, J.; Ehrhart, S.; Franchin, A.; Gagné, S.; Ickes, L.; Kürten, A. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 2011, 476, 429. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Zender, C.S.; Bian, H.; Metzger, S. Role of ammonia chemistry and coarse mode aerosols in global climatological inorganic aerosol distributions. Atmos. Environ. 2007, 41, 2510–2533. [Google Scholar] [CrossRef] [Green Version]
- Jacob, D.J. Introduction to Atmospheric Chemistry; Princeton University Press: Princeton, NJ, USA, 1999. [Google Scholar]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016; p. 1152. [Google Scholar]
- Paulot, F.; Ginoux, P.; Cooke, W.; Donner, L.; Fan, S.; Lin, M.-Y.; Mao, J.; Naik, V.; Horowitz, L. Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: Implications for present and future nitrate optical depth. Atmos. Chem. Phys. 2016, 16, 1459–1477. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.G.; Combs, M.; Abad, K.; Bhatnagar, S.; Pelgen, J.; Beaudry, M.; Rochelle, G.; Hume, S.; Link, D.; Figueroa, J. Pilot testing of a heat integrated 0.7 MWe CO2 capture system with two-stage air-stripping: Emission. Int. J. Greenh. Gas Control 2017, 64, 267–275. [Google Scholar] [CrossRef]
- Weather Underground Inc. Horse Country Weather Station (KKyLEXIN183). Available online: https://www.wunderground.com/dashboard/pws/KKYGEORG28/graph/2018-09-16/2018-09-16/weekly (accessed on 20 September 2018).
- Brusca, S.; Famoso, F.; Lanzafame, R.; Mauro, S.; Garrano, A.M.C.; Monforte, P. Theoretical and Experimental Study of Gaussian Plume Model in Small Scale System. Energy Procedia 2016, 101, 58–65. [Google Scholar] [CrossRef]
- De Nevers, N. Air Pollution Control Engineering, 2nd ed.; Waveland Press Inc.: Long Grove, IL, USA, 2010. [Google Scholar]
- Stockie, J.M. The Mathematics of Atmospheric Dispersion Modeling. Siam Rev. 2011, 53, 349–372. [Google Scholar] [CrossRef]
- Turner, B.D. Workbook of Atmospheric Dispersion Estimates: An Introduction to Dispersion Modeling; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Marjovi, A.; Marques, L. Multi-Robot Odor Distribution Mapping in Realistic Time-Variant Conditions. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation, Hong Kong, China, 31 May–7 June 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 3720–3727. [Google Scholar]
- Murlis, J.; Elkinton, J.S.; Carde, R.T. Odor Plumes and How Insects Use Them. Rev. Entomol. 1992, 37, 505–532. [Google Scholar] [CrossRef]
- Sánchez-Sosa, J.E.; Castillo-Mixcóatl, J.; Beltrán-Pérez, G.; Muñoz-Aguirre, S. An Application of the Gaussian Plume Model to Localization of an Indoor Gas Source with a Mobile Robot. Sensors 2018, 18, 4375. [Google Scholar] [CrossRef] [Green Version]
- Pinder, R.W.; Gilliland, A.B.; Dennis, R.L. Environmental impact of atmospheric NH3 emissions under present and future conditions in the eastern United States. Geophys. Res. Lett. 2008, 35, L12808. [Google Scholar] [CrossRef]
- Paulot, F.; Jacob, D.J.; Pinder, R.W.; Bash, J.O.; Travis, K.; Henze, D.K. Ammonia emissions in the United States, European Union, and China derived by high-resolution inversion of ammonium wet deposition data: Interpretation with a new agricultural emissions inventory (MASAGE_NH3). J. Geophys. Res. Atmos. 2014, 119, 4343–4364. [Google Scholar] [CrossRef]
- El Bahlouli, A.; Leukauf, D.; Platis, A.; zum Berge, K.; Bange, J.; Knaus, H. Validating CFD Predictions of Flow over an Escarpment Using Ground-Based and Airborne Measurement Devices. Energies 2020, 13, 4688. [Google Scholar] [CrossRef]
- El Bahlouli, A.; Rautenberg, A.; Schön, M.; zum Berge, K.; Bange, J.; Knaus, H. Comparison of CFD Simulation to UAS Measurements for Wind Flows in Complex Terrain: Application to the WINSENT Test Site. Energies 2019, 12, 1992. [Google Scholar] [CrossRef] [Green Version]
Date | Flight # | Mixing Ratio of NH3(g) (ppmv) | Stack Radius (m) | Exit Gas Velocity (m/s) | Exit Gas Temp (°C) | Air Temp (°C) | Wind Speed (m/s) | Emitted NH3 (µg/s) | Model Output NH3(g) (ppmv) | NH3(g) Emission (lbs day−1) |
---|---|---|---|---|---|---|---|---|---|---|
9/11/2018 | 1 | 26.28 (±2.40) | 0.097 | 0.232 | 40 | 20.0 | 3.1 | 667 | 68 | 6.27 (±0.59) × 10−3 |
2 | 34.54 (±1.43) | 0.097 | 0.232 | 40 | 20.0 | 3.1 | 877 | 90 | 8.29 (±0.35) × 10−3 | |
3 | 29.38 (±2.81) | 0.097 | 0.232 | 40 | 20.6 | 3.1 | 746 | 77 | 7.10 (±0.69) × 10−3 | |
4 | 21.73 (±2.58) | 0.097 | 0.232 | 40 | 21.1 | 2.7 | 552 | 65 | 5.99 (±0.63) × 10−3 | |
5 | 34.82 (±4.07) | 0.097 | 0.232 | 40 | 21.7 | 3.1 | 884 | 91 | 8.39 (±1.00) × 10−3 | |
6 | 33.96 (±1.81) | 0.097 | 0.232 | 40 | 21.7 | 3.1 | 863 | 89 | 8.20 (±0.44) × 10−3 | |
7 | 31.34 (±3.97) | 0.097 | 0.232 | 40 | 20.6 | 3.1 | 796 | 82 | 7.56 (±0.97) × 10−3 | |
9/13/2018 | 1 | 34.09 (±5.50) | 0.097 | 0.232 | 40 | 28.9 | 1.0 | 247 | 105 | 9.66 (±0.31) × 10−3 |
2 | 77.50 (±6.94) | 0.097 | 0.232 | 40 | 30.0 | 1.0 | 878 | 238 | 2.19 (±0.39) × 10−3 | |
3 | 31.67 (±5.00) | 0.097 | 0.232 | 40 | 31.1 | 1.3 | 230 | 75 | 6.90 (±0.28) × 10−3 | |
4 | 8.53 (±4.91) | 0.097 | 0.232 | 40 | 31.1 | 3.6 | 552 | 10 | 0.92 (±0.27) × 10−3 | |
5 | 45.00 (±9.57) | 0.097 | 0.232 | 40 | 31.1 | 1.0 | 326 | 138 | 12.69 (±0.55) × 10−3 | |
6 | 18.18 (±7.89) | 0.097 | 0.232 | 40 | 31.1 | 2.7 | 132 | 21 | 1.93 (±0.44) × 10−3 | |
7 | 40.00 (±12.08) | 0.097 | 0.232 | 40 | 29.4 | 2.7 | 290 | 46 | 4.23 (±0.67) × 10−3 | |
8 | 16.28 (±7.71) | 0.097 | 0.232 | 40 | 26.7 | 2.2 | 118 | 23 | 2.12 (±0.43) × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schuyler, T.J.; Irvin, B.; Abad, K.; Thompson, J.G.; Liu, K.; Guzman, M.I. Application of a Small Unmanned Aerial System to Measure Ammonia Emissions from a Pilot Amine-CO2 Capture System. Sensors 2020, 20, 6974. https://doi.org/10.3390/s20236974
Schuyler TJ, Irvin B, Abad K, Thompson JG, Liu K, Guzman MI. Application of a Small Unmanned Aerial System to Measure Ammonia Emissions from a Pilot Amine-CO2 Capture System. Sensors. 2020; 20(23):6974. https://doi.org/10.3390/s20236974
Chicago/Turabian StyleSchuyler, Travis J., Bradley Irvin, Keemia Abad, Jesse G. Thompson, Kunlei Liu, and Marcelo I. Guzman. 2020. "Application of a Small Unmanned Aerial System to Measure Ammonia Emissions from a Pilot Amine-CO2 Capture System" Sensors 20, no. 23: 6974. https://doi.org/10.3390/s20236974
APA StyleSchuyler, T. J., Irvin, B., Abad, K., Thompson, J. G., Liu, K., & Guzman, M. I. (2020). Application of a Small Unmanned Aerial System to Measure Ammonia Emissions from a Pilot Amine-CO2 Capture System. Sensors, 20(23), 6974. https://doi.org/10.3390/s20236974