Real-Time Monitoring for Hydraulic States Based on Convolutional Bidirectional LSTM with Attention Mechanism
Abstract
:1. Introduction
2. Background
2.1. Artificial Neural Networks (ANN)
2.2. Convolutional Neural Networks (CNN)
2.3. Long Short-Term Memory (LSTM)
2.4. Network Model Training
2.5. Data Augmentation
3. Data and Deep-Learning Model
3.1. Data Description
3.2. Deep-Learning Neural Network
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mahmood, M.F.; Hussin, N. Information in conversion era: Impact and influence from 4th industrial revolution. Int. J. Acad. Res. Bus. Soc. Sci. 2018, 8, 320–328. [Google Scholar] [CrossRef] [Green Version]
- Helwig, N.; Pignanelli, E.; Schütze, A. Condition monitoring of a complex hydraulic system using multivariate statistics. In Proceedings of the 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, Pisa, Italy, 11–14 May 2015; pp. 210–215. [Google Scholar]
- Helwig, N.; Pignanelli, E.; Schütze, A. D8. 1-Detecting and Compensating Sensor Faults in a Hydraulic Condition Monitoring System. Proc. Sens. 2015, 2015, 641–646. [Google Scholar]
- Um, T.T.; Pfister, F.M.; Pichler, D.; Endo, S.; Lang, M.; Hirche, S.; Fietzek, U.; Kulic, D. Data augmentation of wearable sensor data for parkinson’s disease monitoring using convolutional neural networks. In Proceedings of the 19th ACM International Conference on Multimodal Interaction, Glasgow, UK, 13–17 November 2017; pp. 216–220. [Google Scholar]
- Lawrence, S.; Giles, C.L.; Tsoi, A.C.; Back, A.D. Face recognition: A convolutional neural-network approach. IEEE Trans. Neural Network. 1997, 8, 98–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehranbod, N.; Soroush, M.; Panjapornpon, C. A method of sensor fault detection and identification. J. Process Control 2005, 15, 321–339. [Google Scholar] [CrossRef]
- Chen, Q.; Xie, Q.; Yuan, Q.; Huang, H.; Li, Y. Research on a Real-Time Monitoring Method for the Wear State of a Tool Based on a Convolutional Bidirectional LSTM Model. Symmetry 2019, 11, 1233. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Huang, Z.; Xu, W.; Yu, K. Bidirectional LSTM-CRF models for sequence tagging. arXiv 2015, arXiv:1508.01991. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Graves, A.; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Network. 2005, 18, 602–610. [Google Scholar] [CrossRef]
- Fu, R.; Zhang, Z.; Li, L. Using LSTM and GRU neural network methods for traffic flow prediction. In Proceedings of the 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), Wuhan, China, 11–13 November 2016; pp. 324–328. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008. [Google Scholar]
- Perez, L.; Wang, J. The effectiveness of data augmentation in image classification using deep learning. arXiv 2017, arXiv:1712.04621. [Google Scholar]
- Mikołajczyk, A.; Grochowski, M. Data augmentation for improving deep learning in image classification problem. In Proceedings of the 2018 International Interdisciplinary PhD Workshop (IIPhDW), Swinoujscie, Poland, 9–12 May 2018; pp. 117–122. [Google Scholar]
- Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958, 65, 386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar]
- Saunders, M. Stochastic exploration of molecular mechanics energy surfaces. Hunting for the global minimum. J. Am. Chem. Soc. 1987, 109, 3150–3152. [Google Scholar] [CrossRef]
- Pal, S.K.; Mitra, S. Multilayer perceptron, fuzzy sets, and classifiaction. IEEE Trans. Neural Netw. 1992, 3, 683–697. [Google Scholar] [CrossRef]
- Gardner, M.W.; Dorling, S. Artificial neural networks (the multilayer perceptron)—A review of applications in the atmospheric sciences. Atmos. Environ. 1998, 32, 2627–2636. [Google Scholar] [CrossRef]
- Ruck, D.W.; Rogers, S.K.; Kabrisky, M. Feature selection using a multilayer perceptron. J. Neural Netw. Comput. 1990, 2, 40–48. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef] [Green Version]
- Sainath, T.N.; Vinyals, O.; Senior, A.; Sak, H. Convolutional, long short-term memory, fully connected deep neural networks. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia, 19–24 April 2015; pp. 4580–4584. [Google Scholar]
- Graves, A.; Mohamed, A.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 6645–6649. [Google Scholar]
- Sak, H.; Senior, A.W.; Beaufays, F. Long short-term memory recurrent neural network architectures for large scale acoustic modeling. INTERSPEECH 2014, 338–342. Available online: https://isca-speech.org/archive/archive_papers/interspeech_2014/i14_0338.pdf (accessed on 30 October 2020).
- Zaremba, W.; Sutskever, I.; Vinyals, O. Recurrent neural network regularization. arXiv 2014, arXiv:1409.2329. [Google Scholar]
- Karim, F.; Majumdar, S.; Darabi, H.; Chen, S. LSTM fully convolutional networks for time series classification. IEEE Access 2017, 6, 1662–1669. [Google Scholar] [CrossRef]
- Cowan, N. What are the differences between long-term, short-term, and working memory? Prog. Brain Res. 2008, 169, 323–338. [Google Scholar] [PubMed] [Green Version]
- Cowan, N. Activation, attention, and short-term memory. Mem. Cogn. 1993, 21, 162–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [Google Scholar] [CrossRef] [Green Version]
- Graves, A.; Fernández, S.; Schmidhuber, J. Bidirectional LSTM networks for improved phoneme classification and recognition. In Proceedings of the International Conference on Artificial Neural Networks, Warsaw, Poland, 11–15 September 2005; pp. 799–804. [Google Scholar]
- Hinton, G.; Srivastava, N.; Swersky, K. Neural networks for machine learning lecture 6a overview of mini-batch gradient descent. Cited 2012, 14. Available online: https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf (accessed on 30 October 2020).
- Joo, Y.; Kim, K.; Jeong, J. Performance Comparison of Machine Learning Algorithms for Imbalanced Class Classification in Hydraulic System. In Proceedings of the 2020 14th International Conference on Ubiquitous Information Management and Communication (IMCOM), Taichung, Taiwan, 3–5 January 2020; pp. 1–8. [Google Scholar]
Sensor | Physical Quantity | Unit | Sampling Rate |
---|---|---|---|
PS1 | Pressure | bar | 100 Hz |
PS2 | Pressure | bar | 100 Hz |
PS3 | Pressure | bar | 100 Hz |
PS4 | Pressure | bar | 100 Hz |
PS5 | Pressure | bar | 100 Hz |
PS6 | Pressure | bar | 100 Hz |
EPS1 | Motor power | W | 100 Hz |
FS1 | Volume flow | I/min | 10 Hz |
FS2 | Volume flow | I/min | 10 Hz |
TS1 | Temperature | 1 Hz | |
TS2 | Temperature | 1 Hz | |
TS3 | Temperature | 1 Hz | |
TS4 | Temperature | 1 Hz | |
VS1 | Vibration | mm/s | 1 Hz |
CE | Cooling efficiency (virtual) | % | 1 Hz |
CP | Cooling power (virtual) | kW | 1 Hz |
SE | Cooling efficiency(virtual) | 10 Hz | |
PS1 | Pressure | 100 Hz |
Layer Name | Output Feature Size | Network |
---|---|---|
Input Layer | (54, 1) | - |
Convolutional layer 1 | (52, 64) | Conv1D, kernel size = 3, param = 256 |
Convolutional layer 2 | (50, 64) | Conv1D, kernel size = 3, param = 12,352 |
Pooling layer | (16, 64) | Maxpooling1D |
Bidirectional LSTM layer | (16, 40) | 13,600 |
Dropout | (16, 40) | - |
Attention Mechanism | 40 | - |
Fully connected layer 1 | 200 | Dense, param = 8200 |
Fully connected layer 2 | 2 | Dense, param = 402 |
Output layer | 2 | Binary Crossentropy |
CNN | LSTM | CNNLSTM | CNNBiLSTM + Attention | |
---|---|---|---|---|
Loss | 0.274 | 0.376 | 0.298 | 0.301 |
Accuracy | 0.898 | 0.837 | 0.872 | 0.864 |
CNN | LSTM | CNNLSTM | CNNBiLSTM + Attention | |
---|---|---|---|---|
Loss | 0.275 | 0.431 | 0.307 | 0.220 |
Accuracy | 0.881 | 0.774 | 0.869 | 0.916 |
CNN | LSTM | CNNLSTM | CNNBiLSTM + Attention | |
---|---|---|---|---|
Loss | 0.280 | 0.543 | 0.258 | 0.157 |
Accuracy | 0.915 | 0.713 | 0.902 | 0.934 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.; Jeong, J. Real-Time Monitoring for Hydraulic States Based on Convolutional Bidirectional LSTM with Attention Mechanism. Sensors 2020, 20, 7099. https://doi.org/10.3390/s20247099
Kim K, Jeong J. Real-Time Monitoring for Hydraulic States Based on Convolutional Bidirectional LSTM with Attention Mechanism. Sensors. 2020; 20(24):7099. https://doi.org/10.3390/s20247099
Chicago/Turabian StyleKim, Kyutae, and Jongpil Jeong. 2020. "Real-Time Monitoring for Hydraulic States Based on Convolutional Bidirectional LSTM with Attention Mechanism" Sensors 20, no. 24: 7099. https://doi.org/10.3390/s20247099
APA StyleKim, K., & Jeong, J. (2020). Real-Time Monitoring for Hydraulic States Based on Convolutional Bidirectional LSTM with Attention Mechanism. Sensors, 20(24), 7099. https://doi.org/10.3390/s20247099