Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,221)

Search Parameters:
Keywords = hydraulic system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5307 KB  
Article
Mechanical Characterization and Dual-Layer Discrete Element Modeling of Mactra veneriformis
by Bin Xu, Yazhou Yang, Hangqi Li, Guangcong Chen, Yizhi Chang, Feihong Guo, Hao Wu, Jixuan Zhao, Zijing Liu, Guochen Zhang, Xiuchen Li, Hanbing Zhang, Qian Zhang and Gang Mu
Fishes 2025, 10(9), 429; https://doi.org/10.3390/fishes10090429 (registering DOI) - 1 Sep 2025
Abstract
The discrete element model of Mactra veneriformis currently employs an oversimplified multi-sphere approach using EDEM’s Hertz–Mindlin model, assuming uniform shell–flesh mechanical properties. This study developed an advanced dual-layer flexible bonding model through comprehensive biomechanical testing. Mechanical properties and shell morphology were experimentally characterized [...] Read more.
The discrete element model of Mactra veneriformis currently employs an oversimplified multi-sphere approach using EDEM’s Hertz–Mindlin model, assuming uniform shell–flesh mechanical properties. This study developed an advanced dual-layer flexible bonding model through comprehensive biomechanical testing. Mechanical properties and shell morphology were experimentally characterized to inform model development. Parameter optimization combined free-fall experiments with Plackett–Burman screening, steepest ascent method, and Box–Behnken RSM, yielding optimal contact parameters: flesh–flesh stiffness (X1) = 3.64 × 1011 N/m3, shell–flesh interface (X3) = 1.48×1013 N/m3, shell–shell tangential stiffness (X6) = 3.23 × 1012 N/m3, and normal strength (X7) = 8.35 × 106 Pa. Validation showed only 4.89% deviation between simulated and actual drop tests, with hydraulic impact tests confirming excellent model accuracy. The developed model accurately predicts mechanical behavior and shell fracture patterns during harvesting operations. This research provides a validated numerical tool for optimizing clam cultivation and harvesting equipment design, offering significant potential to reduce shell damage while improving harvesting efficiency in bivalve aquaculture systems. Full article
(This article belongs to the Section Aquatic Invertebrates)
Show Figures

Figure 1

24 pages, 3537 KB  
Article
Deep Reinforcement Learning Trajectory Tracking Control for a Six-Degree-of-Freedom Electro-Hydraulic Stewart Parallel Mechanism
by Yigang Kong, Yulong Wang, Yueran Wang, Shenghao Zhu, Ruikang Zhang and Liting Wang
Eng 2025, 6(9), 212; https://doi.org/10.3390/eng6090212 - 1 Sep 2025
Abstract
The strong coupling of the six-degree-of-freedom (6-DoF) electro-hydraulic Stewart parallel mechanism manifests as adjusting the elongation of one actuator potentially inducing motion in multiple degrees of freedom of the platform, i.e., a change in pose; this pose change leads to time-varying and unbalanced [...] Read more.
The strong coupling of the six-degree-of-freedom (6-DoF) electro-hydraulic Stewart parallel mechanism manifests as adjusting the elongation of one actuator potentially inducing motion in multiple degrees of freedom of the platform, i.e., a change in pose; this pose change leads to time-varying and unbalanced load forces (disturbance inputs) on the six hydraulic actuators; unbalanced load forces exacerbate the time-varying nature of the acceleration and velocity of the six hydraulic actuators, causing instantaneous changes in the pressure and flow rate of the electro-hydraulic system, thereby enhancing the pressure–flow nonlinearity of the hydraulic actuators. Considering the advantage of artificial intelligence in learning hidden patterns within complex environments (strong coupling and strong nonlinearity), this paper proposes a reinforcement learning motion control algorithm based on deep deterministic policy gradient (DDPG). Firstly, the static/dynamic coordinate system transformation matrix of the electro-hydraulic Stewart parallel mechanism is established, and the inverse kinematic model and inverse dynamic model are derived. Secondly, a DDPG algorithm framework incorporating an Actor–Critic network structure is constructed, designing the agent’s state observation space, action space, and a position-error-based reward function, while employing experience replay and target network mechanisms to optimize the training process. Finally, a simulation model is built on the MATLAB 2024b platform, applying variable-amplitude variable-frequency sinusoidal input signals to all 6 degrees of freedom for dynamic characteristic analysis and performance evaluation under the strong coupling and strong nonlinear operating conditions of the electro-hydraulic Stewart parallel mechanism; the DDPG agent dynamically adjusts the proportional, integral, and derivative gains of six PID controllers through interactive trial-and-error learning. Simulation results indicate that compared to the traditional PID control algorithm, the DDPG-PID control algorithm significantly improves the tracking accuracy of all six hydraulic cylinders, with the maximum position error reduced by over 40.00%, achieving high-precision tracking control of variable-amplitude variable-frequency trajectories in all 6 degrees of freedom for the electro-hydraulic Stewart parallel mechanism. Full article
Show Figures

Figure 1

18 pages, 3234 KB  
Article
Start-up Strategies of MBBR and Effects on Nitrification and Microbial Communities in Low-Temperature Marine RAS
by Jixin Yuan, Shuaiyu Lu, Jianghui Du, Kun You, Qian Li, Ying Liu, Gaige Liu, Jianlin Guo and Dezhao Liu
Appl. Sci. 2025, 15(17), 9610; https://doi.org/10.3390/app15179610 (registering DOI) - 31 Aug 2025
Abstract
The rapid development of marine recirculating aquaculture systems (RASs) worldwide offers an efficient and sustainable approach to aquaculture. However, the slow start-up of the nitrification process under low-temperature conditions remains a significant challenge. This study evaluated multiple start-up strategies for moving bed biofilm [...] Read more.
The rapid development of marine recirculating aquaculture systems (RASs) worldwide offers an efficient and sustainable approach to aquaculture. However, the slow start-up of the nitrification process under low-temperature conditions remains a significant challenge. This study evaluated multiple start-up strategies for moving bed biofilm reactors (MBBRs) operating at 13–15 °C. Among them, the salinity-gradient (SG) strategy exhibited the best performance, reducing the start-up time by 38 days compared to the control, with microbial richness (Chao1 index) reaching 396 and diversity (Shannon index) of 4.89. Inoculation with mature biofilm (MBI) also showed excellent results, shortening the start-up period by 26 days and achieving a stable total ammonia nitrogen (TAN) effluent concentration below 0.5 mg/L within 132 days. MBI exhibited the highest microbial richness (Chao1 index = 808) and diversity (Shannon index = 5.55), significantly higher than those of the control (Chao1 index = 279, Shannon index = 3.90) and other treatments. The hydraulic retention time-gradient (HRT) strategy contributed to performance improvement as well, with a 24-day reduction in start-up time and a Chao1 index of 663 and a Shannon index is 4.69. In contrast, nitrifying bacteria addition (NBA) and carrier adhesion layer modification (CALM) had limited effects on start-up efficiency or microbial diversity, with Chao1 indices of only 255 and 228, and Shannon indices were both 3.24, respectively. Overall, the results indicate that salinity acclimation, mature biofilm inoculation, and extended HRT are effective approaches for promoting microbial community adaptation and enhancing MBBR start-up under low-temperature marine conditions. Full article
26 pages, 2313 KB  
Article
First Tests on the Performance and Reliability of an Experimental Bio-Based UTTO Lubricant Used in an Agricultural Tractor
by Roberto Fanigliulo, Renato Grilli, Laura Fornaciari, Stefano Benigni and Daniele Pochi
Energies 2025, 18(17), 4612; https://doi.org/10.3390/en18174612 (registering DOI) - 30 Aug 2025
Viewed by 50
Abstract
Inside the transmission group of an agricultural tractor, the efficiency of power transfer to moving parts, their lubrication, and protection from wear are guaranteed by UTTO (Universal Tractor Transmission Oil) fluids, which are also used to operate the hydraulic system. These fluids, with [...] Read more.
Inside the transmission group of an agricultural tractor, the efficiency of power transfer to moving parts, their lubrication, and protection from wear are guaranteed by UTTO (Universal Tractor Transmission Oil) fluids, which are also used to operate the hydraulic system. These fluids, with mineral or synthetic origin, are characterized by excellent lubricating properties, high toxicity, and low biodegradability, which makes it important to replace them with more eco-sustainable fluids, such as those based on vegetable oils that are highly biodegradable and have low toxicity. It is also important to consider EU policies on the use of such fluids in sensitive environmental applications. To this end, several experimental bio-UTTO formulations were tested at CREA to evaluate—compared to conventional fluids—their suitability for use as lubricants for transmissions and hydraulic systems through endurance tests carried out in a Fluid Test Rig (FTR) specifically developed by CREA to apply controlled and repeatable work cycles to small volumes of oil, which are characterized by high thermal and mechanical stresses. The technical performance and the main physical–chemical parameters of the fluids were continuously monitored during the work cycles. Based on these experiences, this study describes the first application of a methodological approach aimed at testing an experimental biobased UTTO on a tractor used in normal farm activity. The method was based on a former test at the FTR in which the performance of the bio-UTTO was compared to that of the conventional UTTO recommended by the tractor manufacturer. Given the good results of the FTR test, bio-UTTO was introduced in a 20-year-old medium-power tractor, replacing the mineral fluid originally supplied, for the first reliability tests during its normal use on the CREA farm. After almost 600 h of work, the technical performance and the trend of chemical–physical parameters of bio-UTTO did not undergo significant changes. No damage to the tractor materials or oil leaks was observed. The test is still ongoing, but according to the results, in line with the indications provided by the FTR test, the experimental bio-UTTO seems suitable for replacing the conventional fluid in the tractor used in this study. Full article
Show Figures

Figure 1

25 pages, 4197 KB  
Article
Polyacrylamide-Induced Trade-Offs in Soil Stability and Ecological Function: A Multifunctional Assessment in Granite-Derived Sandy Material
by Junkang Xu, Xin Chen, Guanghui Zhang, Weidong Yu, Chongfa Cai and Yujie Wei
Agronomy 2025, 15(9), 2087; https://doi.org/10.3390/agronomy15092087 - 29 Aug 2025
Viewed by 88
Abstract
Soil erosion in granite-derived weathering mantles poses serious threats to slope stability and ecological sustainability in subtropical regions. While polyacrylamide (PAM) is widely used to improve soil structure, its concentration-dependent effects on multiple soil functions remain unclear. This study developed a multifunctional Soil [...] Read more.
Soil erosion in granite-derived weathering mantles poses serious threats to slope stability and ecological sustainability in subtropical regions. While polyacrylamide (PAM) is widely used to improve soil structure, its concentration-dependent effects on multiple soil functions remain unclear. This study developed a multifunctional Soil Function Index (SFI) framework integrating erosion resistance (SFI1), water regulation (SFI2), and ecological function (SFI3) to evaluate the effects of PAM application (0‰, 1‰, 3‰, 5‰, 7‰) on gully-prone sandy material. Herein, SFI1 was quantified through shear strength (τ) and soil erodibility (Kr); SFI2 was assessed using soil hydraulic parameters (saturated hydraulic conductivity and water retention curves) and SFI3 was derived from the grass root system analysis. The results showed that SFI1 and SFI2 increased nonlinearly with PAM concentration, reaching maximum values of 0.983 and 0.980 at 7‰, with Kr reduced by 77.3% and non-capillary porosity (NAP) increased by 8.1%. In contrast, SFI3 peaked at 0.858 under 3‰ and declined sharply to 0.000 at 7‰, due to micropore over-compaction, reduced aeration, and limited plant-available water. The total SFI exhibited a unimodal trend, with a maximum of 0.755 at 3‰, beyond which ecological suppression offset physical improvements. These findings demonstrate that PAM modifies soil multifunctionality through pore-scale restructuring, inducing function-specific thresholds and trade-offs. A PAM concentration of 3‰ is identified as optimal, achieving a balance between erosion control, hydrological performance, and ecological viability in the management of subtropical granite-derived sandy slopes. Full article
Show Figures

Figure 1

24 pages, 5549 KB  
Article
Design and Structural Safety Assessment of a Hinge-Based Hoistable Car Deck for Ro-Ro Vessels
by Hyun Soo Kim, Min Goo Cho, Byungmoon Kwak, Kiseok Choi, Jang-Ik Park, Ji Hoon Kim and Sungwook Kang
J. Mar. Sci. Eng. 2025, 13(9), 1662; https://doi.org/10.3390/jmse13091662 - 29 Aug 2025
Viewed by 92
Abstract
Ro-Ro (Roll-on/Roll-off) vessels require adaptable deck systems to efficiently accommodate vehicles of varying sizes. Conventional fixed or hydraulically lifted car decks often face challenges related to structural efficiency, maintainability, and limited flexibility. To address these issues, this study proposes a novel hoistable car [...] Read more.
Ro-Ro (Roll-on/Roll-off) vessels require adaptable deck systems to efficiently accommodate vehicles of varying sizes. Conventional fixed or hydraulically lifted car decks often face challenges related to structural efficiency, maintainability, and limited flexibility. To address these issues, this study proposes a novel hoistable car deck system that incorporates a hinge-based folding mechanism and modular connections. The design enhances maintainability, allows independent adjustment of deck panels without external lifting equipment, and improves adaptability to diverse ship layouts. In addition, the proposed concept was systematically evaluated to verify its structural integrity and serviceability under representative loading conditions, highlighting its compliance with classification society requirements. These results suggest that the hinge-based modular deck provides a promising solution for next-generation Ro-Ro vessels, offering both operational flexibility and improved efficiency while paving the way for practical applications in shipbuilding and retrofitting projects. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

26 pages, 9137 KB  
Article
Synergistic Effects of Sediment Size and Concentration on Performance Degradation in Centrifugal Irrigation Pumps: A Southern Xinjiang Case Study
by Rui Xu, Shunjun Hong, Zihai Yang, Xiaozhou Hu, Yang Jiang, Yuqi Han, Chungong Gao and Xingpeng Wang
Agriculture 2025, 15(17), 1843; https://doi.org/10.3390/agriculture15171843 - 29 Aug 2025
Viewed by 166
Abstract
Centrifugal irrigation pumps in Southern Xinjiang face severe performance degradation due to high fine-sediment loads in canal water. This study combines Eulerian multiphase simulations with experimental validation to investigate the coupled effects of sediment size (0.05~0.8 mm) and concentration (5~20%) on hydraulic performance. [...] Read more.
Centrifugal irrigation pumps in Southern Xinjiang face severe performance degradation due to high fine-sediment loads in canal water. This study combines Eulerian multiphase simulations with experimental validation to investigate the coupled effects of sediment size (0.05~0.8 mm) and concentration (5~20%) on hydraulic performance. Numerical models incorporating Realizable kε turbulence closure and discrete phase tracking reveal two critical thresholds: (1) particle sizes ≥ 0.4 mm trigger a phase transition from localized disturbance to global flow disorder, expanding low-pressure zones by 37% at equivalent concentrations; (2) concentrations exceeding 13% accelerate nonlinear pressure decay through collective particle interactions. Velocity field analysis demonstrates size-dependent attenuation mechanisms: fine sediments (≤0.2 mm) cause gradual dissipation via micro-scale drag, while coarse sediments (≥0.6 mm) induce “cliff-like” velocity drops through inertial impact-blockade chains. Experimental wear tests confirm simulation accuracy in predicting erosion hotspots at impeller inlets/outlets. The identified synergistic thresholds provide critical guidelines for anti-wear design in sediment-laden irrigation systems. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

23 pages, 7105 KB  
Article
Design of Control System for Underwater Inspection Robot in Hydropower Dam Structures
by Bing Zhao, Shuo Li, Xiangbin Wang, Mingyu Yang, Xin Yu, Zhaoxu Meng and Gang Wan
J. Mar. Sci. Eng. 2025, 13(9), 1656; https://doi.org/10.3390/jmse13091656 - 29 Aug 2025
Viewed by 78
Abstract
As critical infrastructure, hydropower dams require efficient and accurate detection of underwater structural surface defects to ensure their safety. This paper presents the design and implementation of a robotic control system specifically developed for underwater dam inspection in hydropower stations, aiming to enhance [...] Read more.
As critical infrastructure, hydropower dams require efficient and accurate detection of underwater structural surface defects to ensure their safety. This paper presents the design and implementation of a robotic control system specifically developed for underwater dam inspection in hydropower stations, aiming to enhance the robot’s operational capability under harsh hydraulic conditions. The study includes the hardware design of the control system and the development of a surface human–machine interface unit. At the software level, a modular architecture is adopted to ensure real-time performance and reliability. The solution employs a hierarchical architecture comprising hardware sensing, real-time interaction protocols, and an adaptive controller, and the integrated algorithm combining a fixed-time disturbance observer with adaptive super-twisting controller compensates for complex hydrodynamic forces. To validate the system’s effectiveness, field tests were conducted at the Baihetan Hydropower Station. Experimental results demonstrate that the proposed control system enables stable and precise dam inspection, with standard deviations of multi-degree-of-freedom automatic control below 0.5 and hovering control below 0.1. These findings confirm the system’s feasibility and superiority in performing high-precision, high-stability inspection tasks in complex underwater environments of real hydropower dams. The developed system provides reliable technical support for intelligent underwater dam inspection and holds significant practical value for improving the safety and maintenance of major hydraulic infrastructure. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 6240 KB  
Article
Real-Time Gain Scheduling Controller for Axial Piston Pump Based on LPV Model
by Alexander Mitov, Tsonyo Slavov and Jordan Kralev
Actuators 2025, 14(9), 421; https://doi.org/10.3390/act14090421 - 29 Aug 2025
Viewed by 157
Abstract
This article is devoted to the design of a real-time gain scheduling (adaptive) proportional–integral (PI) controller for the displacement volume regulation of a swash plate-type axial piston pump. The pump is intended for open circuit hydraulic drive applications without “secondary control”. In this [...] Read more.
This article is devoted to the design of a real-time gain scheduling (adaptive) proportional–integral (PI) controller for the displacement volume regulation of a swash plate-type axial piston pump. The pump is intended for open circuit hydraulic drive applications without “secondary control”. In this type of pump, the displacement volume depends on the swash plate swivel angle. The swash plate is actuated by a hydraulic-driven mechanism. The classical control device is a hydro-mechanical type, which can realize different control laws (by pressure, flow rate, or power). In the present development, it is replaced by an electro-hydraulic proportional spool valve, which controls the swash plate-actuating mechanism. The designed digital gain scheduling controller evaluates control signal values applied to the proportional valve. The digital controller is based on the new linear parameter-varying mathematical model. This model is estimated and validated from experimental data for various loading modes by an identification procedure. The controller is implemented by a rapid prototyping system, and various real-time loading experiments are performed. The obtained results with the gain scheduling PI controller are compared with those obtained by other classical PI controllers. The developed control system achieves appropriate control performance for a wide working mode of the axial piston pump. The comparison analyses of the experimental results showed the advantages of the adaptive PI controller and confirmed the possibility for its implementation in a real-time control system of different types of variable displacement pumps. Full article
(This article belongs to the Special Issue Advances in Fluid Power Systems and Actuators)
Show Figures

Figure 1

16 pages, 2074 KB  
Article
Benchmarking Control Strategies for Multi-Component Degradation (MCD) Detection in Digital Twin (DT) Applications
by Atuahene Kwasi Barimah, Akhtar Jahanzeb, Octavian Niculita, Andrew Cowell and Don McGlinchey
Computers 2025, 14(9), 356; https://doi.org/10.3390/computers14090356 - 29 Aug 2025
Viewed by 116
Abstract
Digital Twins (DTs) have become central to intelligent asset management within Industry 4.0, enabling real-time monitoring, diagnostics, and predictive maintenance. However, implementing Prognostics and Health Management (PHM) strategies within DT frameworks remains a significant challenge, particularly in systems experiencing multi-component degradation (MCD). MCD [...] Read more.
Digital Twins (DTs) have become central to intelligent asset management within Industry 4.0, enabling real-time monitoring, diagnostics, and predictive maintenance. However, implementing Prognostics and Health Management (PHM) strategies within DT frameworks remains a significant challenge, particularly in systems experiencing multi-component degradation (MCD). MCD occurs when several components degrade simultaneously or in interaction, complicating detection and isolation processes. Traditional data-driven fault detection models often require extensive historical degradation data, which is costly, time-consuming, or difficult to obtain in many real-world scenarios. This paper proposes a model-based, control-driven approach to MCD detection, which reduces the need for large training datasets by leveraging reference tracking performance in closed-loop control systems. We benchmark the accuracy of four control strategies—Proportional-Integral (PI), Linear Quadratic Regulator (LQR), Model Predictive Control (MPC), and a hybrid model—within a Digital Twin-enabled hydraulic system testbed comprising multiple components, including pumps, valves, nozzles, and filters. The control strategies are evaluated under various MCD scenarios for their ability to accurately detect and isolate degradation events. Simulation results indicate that the hybrid model consistently outperforms the individual control strategies, achieving an average accuracy of 95.76% under simultaneous pump and nozzle degradation scenarios. The LQR model also demonstrated strong predictive performance, especially in identifying degradation in components such as nozzles and pumps. Also, the sequence and interaction of faults were found to influence detection accuracy, highlighting how the complexities of fault sequences affect the performance of diagnostic strategies. This work contributes to PHM and DT research by introducing a scalable, data-efficient methodology for MCD detection that integrates seamlessly into existing DT architectures using containerized RESTful APIs. By shifting from data-dependent to model-informed diagnostics, the proposed approach enhances early fault detection capabilities and reduces deployment timelines for real-world DT-enabled PHM applications. Full article
(This article belongs to the Section Internet of Things (IoT) and Industrial IoT)
Show Figures

Figure 1

19 pages, 1338 KB  
Article
From Raw Water to Pipeline Water: Correlation Analysis of Dynamic Changes in Water Quality Parameters and Microbial Community Succession
by Xiaolong Jiang, Weiying Li, Xin Song and Yu Zhou
Water 2025, 17(17), 2555; https://doi.org/10.3390/w17172555 - 28 Aug 2025
Viewed by 162
Abstract
Understanding the spatiotemporal dynamics of water quality parameters and microbial communities in drinking water distribution systems (DWDS) and their interrelationships is critical for ensuring the safety of tap water supply. This study investigated the diurnal, monthly, and annual variation patterns of water quality [...] Read more.
Understanding the spatiotemporal dynamics of water quality parameters and microbial communities in drinking water distribution systems (DWDS) and their interrelationships is critical for ensuring the safety of tap water supply. This study investigated the diurnal, monthly, and annual variation patterns of water quality and the stage-specific succession behaviors of microbial communities in a DWDS located in southeastern China. Results indicated that hydraulic shear stress during peak usage periods drove biofilm detachment and particle resuspension. This process led to significant diurnal fluctuations in total cell counts (TCC) and metal ions, with coefficients of variation ranging from 0.44 to 1.89. Monthly analyses revealed the synergistic risks of disinfection by-products (e.g., 24.5 μg/L of trichloromethane) under conditions of low chlorine residual (<0.2 mg/L) and high organic loading. Annual trends suggested seasonal coupling: winter pH reductions correlated with organic acid accumulation, while summer microbial blooms associated with chlorine decay and temperature increase. Nonlinear interactions indicated weakened metal–organic complexation but enhanced turbidity–sulfate adsorption, suggesting altered contaminant mobility in pipe scales. Microbial analysis demonstrated persistent dominance of oligotrophic Phreatobacter and prevalence of Pseudomonas in biofilms, highlighting hydrodynamic conditions, nutrient availability, and disinfection pressure as key drivers of community succession. These findings reveal DWDS complexity and inform targeted operational and microbial risk control strategies. Full article
Show Figures

Graphical abstract

17 pages, 1064 KB  
Article
Pulse Width Modulation on the Droplet Spectrum and Velocity of Spray Nozzles
by Silviane Gomes Rodrigues, Guilherme Sousa Alves and João Paulo Arantes Rodrigues da Cunha
Agriculture 2025, 15(17), 1830; https://doi.org/10.3390/agriculture15171830 - 28 Aug 2025
Viewed by 171
Abstract
Pulse width modulation (PWM) allows for the real-time flow rate adjustment of spray nozzles without changing system pressure, indicating that PWM is a promising technology for improving the quality of pesticide applications. However, its effect on the droplet formation process is not yet [...] Read more.
Pulse width modulation (PWM) allows for the real-time flow rate adjustment of spray nozzles without changing system pressure, indicating that PWM is a promising technology for improving the quality of pesticide applications. However, its effect on the droplet formation process is not yet fully understood. In this study, the effects of a PWM system on the droplet spectrum and velocity generated by different flat fan hydraulic nozzles were evaluated. The experiment was conducted via a spray simulator to test the impact of PWM technology under various operational conditions and flat fan nozzle types (standard, pre-orifice, and air inclusion). With the aid of a real-time particle analyzer and high-resolution imaging, the following variables were analyzed: volume median diameter (VMD), relative span, droplet velocity, and the percentage of volume composed of droplets with a diameter smaller than 100 µm. Four simulated working speeds (1.1, 1.7, 2.8, and 3.9 m s−1), which were equivalent to four PWM valve duty cycles (35%, 42%, 71%, and 100%), respectively, were evaluated. The PWM system altered the droplet size, generally reducing the VMD in comparison to the conventional system. The relative span was not influenced by the PWM system’s duty cycle, although system activation increased droplet size heterogeneity in some nozzle types. The droplet velocity was generally slower using the PWM system in comparison with the conventional system, but higher duty cycles increased this parameter. Overall, the results of this study suggest that spray patterns are altered by PWM activation, and the traits of this behaviour depend on the spray nozzle type. Full article
(This article belongs to the Special Issue Sustainable Use of Pesticides—2nd Edition)
Show Figures

Figure 1

20 pages, 2741 KB  
Article
Changes in Microbial Communities in Industrial Anaerobic Digestion of Dairy Manure Caused by Caldicellulosiruptor Pretreatment
by Jakob Young, Maliea Nipko, Spencer Butterfield and Zachary Aanderud
BioTech 2025, 14(3), 67; https://doi.org/10.3390/biotech14030067 - 28 Aug 2025
Viewed by 175
Abstract
Extremophilic biological process (EBP) pretreatment increases substrate availability in anaerobic digestion, but the effect on downstream microbial community composition in industrial systems is not characterized. Changes in microbial communities were determined at an industrial facility processing dairy manure in a modified split-stream system [...] Read more.
Extremophilic biological process (EBP) pretreatment increases substrate availability in anaerobic digestion, but the effect on downstream microbial community composition in industrial systems is not characterized. Changes in microbial communities were determined at an industrial facility processing dairy manure in a modified split-stream system with three reactor types: (1) EBP tanks at 70–72 °C; (2) mesophilic Continuously Stirred Tank Reactors (CSTRs); (3) mesophilic Induced Bed Reactors (IBRs) receiving combined CSTR and EBP effluent. All reactors had a two-day hydraulic retention time. Samples were collected weekly for 60 days. pH, volatile fatty acid and bicarbonate concentrations, COD, and methane yield were measured to assess tank environmental conditions. Microbial community compositions were obtained via 16S rRNA gene sequencing. EBP pretreatment increased acetate availability but led to a decline in the relative abundance of acetoclastic Methanosarcina species in downstream IBRs. Rather, syntrophic methanogens, e.g., members of Methanobacteriaceae, increased in relative abundance and became central to microbial co-occurrence networks, particularly in association with hydrogen-producing bacteria. Network analysis also demonstrated that these syntrophic relationships were tightly coordinated in pretreated digestate but absent in the untreated CSTRs. By promoting syntrophic methanogenesis while increasing acetate concentrations, EBP pretreatment requires system configurations that enable acetoclast retention to prevent acetate underutilization and maximize methane yields. Full article
(This article belongs to the Section Industry, Agriculture and Food Biotechnology)
Show Figures

Figure 1

25 pages, 8226 KB  
Article
Investigation of the Influence of Gyroid Lattice Dimensions on Cooling
by Anton Pulin, Ivan Talabira, Denis Konin, Kirill Alisov, Mikhail Kanakin, Mikhail Laptev, Evgenii Komlev, Viktor Barskov, Anatoliy Popovich and Kirill Starikov
Energies 2025, 18(17), 4552; https://doi.org/10.3390/en18174552 - 27 Aug 2025
Viewed by 241
Abstract
This study investigates the influence of geometric parameters of a gyroid lattice structure on the thermal performance of internal cooling channels relevant to gas turbine blade design. Various gyroid configurations were analyzed using CFD simulations in ANSYS CFX to evaluate heat transfer effectiveness [...] Read more.
This study investigates the influence of geometric parameters of a gyroid lattice structure on the thermal performance of internal cooling channels relevant to gas turbine blade design. Various gyroid configurations were analyzed using CFD simulations in ANSYS CFX to evaluate heat transfer effectiveness (Nusselt number), cooling flow penetration depth (cooling depth coefficient), and aerodynamic losses (pressure drop and drag coefficient). A series of simulations were conducted, varying lattice wall thickness, structure period, and Reynolds number, followed by the development of regression models to identify key trends. Experimental verification was carried out using 3D printed samples tested on a specially assembled aerodynamic test rig. Results confirmed the existence of an optimal lattice density, providing a favorable balance between heat transfer and pressure losses. The study highlights the high potential of gyroid TPMS structures for turbine blade cooling systems, where additive manufacturing enables complex internal geometries unattainable by traditional methods. The research demonstrates the practical feasibility and thermo-hydraulic advantages of lattice-based cooling channels and provides accurate predictive models for further optimization of turbine blade designs under high-temperature turbomachinery conditions. Full article
Show Figures

Figure 1

35 pages, 26488 KB  
Article
Synergetic Improvement of Blade Entry and Water Admission Angles for High Efficiency Cross-Flow Turbines in Micro-Hydropower Applications
by Ephrem Yohannes Assefa and Asfafaw Haileselassie Tesfay
Energies 2025, 18(17), 4540; https://doi.org/10.3390/en18174540 - 27 Aug 2025
Viewed by 321
Abstract
Cross-Flow Turbines (CFTs) are widely recognized for their adaptability and cost-effectiveness in micro-hydropower (MHP) systems. However, their hydraulic efficiency remains highly sensitive to geometric configurations, particularly the Blade Entry Angle (BEA) and Water Admission Angle (WAA). This study presents a high-fidelity computational fluid [...] Read more.
Cross-Flow Turbines (CFTs) are widely recognized for their adaptability and cost-effectiveness in micro-hydropower (MHP) systems. However, their hydraulic efficiency remains highly sensitive to geometric configurations, particularly the Blade Entry Angle (BEA) and Water Admission Angle (WAA). This study presents a high-fidelity computational fluid dynamics (CFDs) investigation of CFT performance across a wide range of BEA (5–40°) and WAA (45–105°) combinations at runner speeds from 150 to 1200 rpm, under constant head and flow conditions. The simulations were performed using a steady-state Reynolds-Averaged Navier–Stokes (RANS) model coupled with the volume of fluid (VOF) method and the SST k–ω turbulence closure. Benchmarking against the widely used industrial standard configuration (BEA = 30°, WAA = 90°), which achieved 79.1% efficiency at 900 rpm, this study identifies an optimized setup at BEA = 15° and WAA = 60° delivering a peak efficiency of 84.91% and shaft power output of 225.5 W—representing an efficiency gain of approximately 5.8%. The standard configuration was found to suffer from flow misalignment, jet dispersion, and increased internal energy loss, particularly at off-design speeds. In contrast, optimized geometries ensured stable pressure gradients, coherent jet–blade interaction, and enhanced momentum transfer. The results provide a validated performance map and establish a robust design reference for enhancing CFT efficiency and reliability in decentralized renewable energy systems. Full article
(This article belongs to the Special Issue Recent Advances in Hydro-Mechanical Turbines: Powering the Future)
Show Figures

Figure 1

Back to TopTop