1. Introduction
High-precision positioning with low-cost global navigation satellite systems (GNSS) in urban environments remains a significant challenge. The industry demand, however, is high for many emerging applications, such as autonomous vehicles and intelligent transportation systems. Although accurate and reliable solutions have been demonstrated in open sky environments with low-cost GNSS receivers, the positioning accuracy will be greatly degraded in urban environments due to significant multipath effects, non-line-of-sight (NLOS) errors, as well as poor satellite visibility and geometry caused by severe signal blockages [
1]. In urban environments, the NLOS signal errors for instance, could be unbounded to become as large as hundreds of meters in some severe circumstances. The effective detection of NLOS signals and subsequent elimination and compensation of NLOS signal effects can significantly improve positioning accuracy in urban environments.
Many methods have been proposed for that purpose [
2]. The existing methods could be divided into environmental feature aided approach and GNSS self-maintained approach which differ in the type of information used for NLOS signal detection. For environmental features aided approach, the 3D map aided (3DMA) method is popular, including the ranging based 3DMA method and the shadow matching method [
3]. The ranging based 3DMA method utilizes the 3D map to perform ray tracing to simulate the signal transmitting path among buildings and trees, and is thus able to determine the visibility of the signals and even correct the multipath effects and NLOS errors [
4,
5,
6,
7,
8]. The shadow matching method has been designed for dense urban GNSS positioning which utilizes the visibility matching to determine the possible candidate location of the receiver, and so far it is the only method that utilizes signals that are not even being tracked [
9,
10]. The omnidirectional camera aided method is also widely used which captures the surrounding infrastructures with a wide-angle of view lens (180 degrees) so that the segmented sky area in the image could be used to predict visible satellites after projecting the satellite positions onto the image [
2,
11].
For GNSS self-maintained methods, they reply on only data from GNSS receivers and therefore reduce the complexity and the cost of the navigation system when compared to the environment feature aided approach. A dual-polarized antenna, for instance, can be applied to detect reflected signals since the right-hand circular polarized (RHCP) signal will be transferred to the left-hand circular polarized (LHCP) signal when reflected [
12]. Consistency checking using receiver autonomous integrity monitoring (RAIM) algorithms is another widely used method for NLOS signals detection [
13,
14], but it is effective only when the majority of the received signals are line-of-sight (LOS) signals, which could not be guaranteed in urban environments where there are many reflectors and obstructions around. Machine learning methods were recently applied to explore the diverse features of GNSS data. Yozevitch et al. (2016), for instance, analyzed the relationship among signal visibility, C/N0, elevation, the 2nd order derivative of pseudorange, and used a decision tree to classify the LOS/NLOS signals. They demonstrated a 77.6% accuracy for the LOS signals and 87.2% for the NLOS signals [
15]. Hsu et al. (2017) used a support vector machine (SVM) to classify the LOS/NLOS signals based on features of C/N0, delta C/N0, pseudorange, delta pseudorange, and positioning residual. The obtainable accuracy is 75.4% [
16]. An SVM classifier was also applied using the correlation and tracking information inside a software-defined GNSS receiver as the input features, demonstrating an overall classification accuracy of 82.8% in the urban environments [
3]. The visibility labels used in those works are generated by the 3D model of near buildings, which however is not very precise because the 3D models are unable to represent the full shape of the infrastructures around. Deep-learning were also proposed to improve the classification accuracy [
17], but they come with a much higher computational load. To date, all works consider the signal classification and positioning test only in a static mode and the performance of the classification accuracy and positioning accuracy in the kinematic scene are not validated.
In this paper, we propose a new multi-feature SVM signal classifier-based weight scheme for GNSS measurements to improve the kinematic GNSS positioning accuracy in urban environments. A GNSS system is typically implemented with a least-square (LS) or a Kalman-filter (KF) estimator, and a proper weight scheme is vital for achieving reliable navigation solutions. Many weight schemes have been proposed. The signal-in-space ranging errors (SISRE) considering the signal noises and the satellite orbit errors is one of them [
18,
19]. This method, however, works only in open-sky environments since no factor of the transmission path in GNSS denied environments has been considered. The two most popular factors to consider when determining the observation weight are the elevation angle [
20,
21], and C/N0 [
22,
23,
24]. The elevation angle based weight model assumes that the multipath error, atmosphere and other unmodeled site-specific error will increase at lower elevation angles [
25], which, however, also works well only in open-sky environments. C/N0 represents the ratio of the carrier power and the noise power of the received signal, which is a good indicator for the quality of the observations in different environments, and a combination of C/N0 and elevation information is often used to improve the weight model [
26,
27]. However, as C/N0 is very likely to be affected by the multipath effect [
28,
29], a multipath affected observation is not necessarily indicated with a large gross error. This demonstrates that the observation quality cannot be fully manifested by C/N0 and elevation values. The new weight scheme is based on the identification of important features in GNSS data in urban environments and intelligent classification of LOS/NLOS signals using the support vector machine (SVM) algorithm. With advantage of better interpreting the quality of the GNSS observations with identified features by the SVM classifier, the proposed weight scheme is superior to the traditional weight scheme as it can better model the GNSS measurement NLOS error in urban environments. To validate the performance of the newly proposed weight scheme, we have tested its computational load and successfully implemented it in a real-time single-frequency precise point positioning (SFPPP) system. The dynamic vehicle-based tests with a low-cost single-frequency u-blox M8T GNSS receiver demonstrate that the positioning accuracy using the new weight scheme outperforms the traditional C/N0 based weight model by 65.4% and 85.0% in the horizontal and up direction, and most position error spikes at overcrossings and short tunnels can be eliminated by the new weight scheme compared to the traditional method. It also surpasses the built-in SBAS solutions of the u-blox M8T and is even better than the built-in real-time-kinematic (RTK) solutions of multi-frequency receivers like the u-blox F9P and Trimble BD982.
The remaining of the paper is organized as follows. Firstly, the related existing works are briefly reviewed. Secondly, the methodology for the new weight scheme-based positioning system development, including an improved SVM classifier and a real-time single-frequency precise point positioning (SFPPP) system aided by the new weight scheme, is presented. Thirdly, the experiment setup, LOS/NLOS signal classification, and positioning results along with analysis are provided. Finally, the conclusions and recommendations for future works are given.
3. Methodology Evaluation
To validate the performance of the newly proposed weight scheme, we have implemented it into a real-time Doppler aided single-frequency precise point positioning (SFPPP) system developed at The University of Calgary [
36]. A feature of the SFPPP system is that it employs two separate Kalman filters: one for position determination using pseudorange and phase observations and the other for velocity determination using Doppler observations. The position solutions with this approach are more robust than processing all observations in a single filter when with undetected NLOS errors in urban environments. A consistency check based on a chi-square test is also implemented in the SFPPP system to ensure the integrity of the position solutions. If the test fails, the observation with the largest residual would be eliminated for another iteration of estimation.
Figure 2 shows the architecture of the SVM based weight scheme aided SFPPP system. The raw GNSS observations are first input into the SVM based signal classifier. Then the calculated probability of the signal being NLOS would be passed into the proposed weight scheme to calculate the covariance for Doppler, phase and pseudorange observations. After that, the weighted observations are used by the SFPPP system for position determination.
3.1. Field Test Description
Two kinematic vehicle-based field tests were performed with a low-cost GNSS receiver (u-blox M8T) in the downtown of Calgary, on 4 August (field test 1) and 12 October (field test 2) 2020, respectively.
Figure 3 and
Figure 4 show the routes of the two field tests in Google Earth view, in which the yellow triangles and green triangles represent the short tunnel and the pedestrian overcrossing connecting buildings.
Figure 5 gives a demonstration of an overcrossing and a short tunnel. As it is shown, the two testing routes include the most challenging scenes in urban environments with overcrossing, short tunnel and urban canyon populated by high-density buildings. In both of the field tests, the vehicle was moving at a maximum speed of 50 km/h (speed limitation in urban Calgary). The filed test on 4 August lasted about 10 min within a small loop square route and will be used to train and assess the SVM signal classifier. The filed test on 12 October lasted 30 min and will be used for positioning accuracy evaluation. The route of field test 2 covered a wider Calgary downtown area including wide streets of six lanes and narrow streets of only two lanes, and the short tunnels and overcrossing over the testing route made the environment further challenging for GNSS positioning.
For GNSS data acquisition, an elevation cutoff angle of 5 degrees was adopted with a data sampling rate of 10 Hz and GNSS data from three constellations (GPS, GLONASS and Galileo) were logged. For the real-time SFPPP system, the orbit, satellite clock bias and real-time ionosphere products from CNES are used for direct corrections [
37]. The tropospheric error is corrected using the Saastamonion model with the Global Mapping Function (GMF) [
38] for both the zenith wet part and the hydrostatic part. The receiver and satellite phase biases
and
are absorbed by the ambiguity term. The code bias
is corrected using the 30 days differential code bias (DCB) product from the Center for Orbit Determination in Europe (CODE). The empirical parameters for the weight scheme are tuned using the dataset from field test 1, and the used values are given in
Table 1. Those parameters are set the same for all satellites.
Three GNSS receivers were used which include a single-frequency receiver (u-blox M8T) and two multi-frequency receivers (u-blox F9P, Trimble BD982), all connected to the same antenna installed on the vehicle roof using a signal splitter. Only raw observations from single-frequency GNSS receiver u-blox M8T will be used in this work. The built-in RTK solutions from the two multi-frequency receivers will be used only for positioning accuracy comparisons.
An upward fisheye camera was set up on the vehicle roof to capture the image of the surrounding environments and thereafter to provide satellite visibility ground truth for the training and testing the SVM model. More details will be provided in the latter of this section. The SPAN system from Novatel, which includes a high-end Novatel Propack6 GNSS receiver and a tactical IMU with a built-in fiber optical gyroscope, was used to provide the reference values (accurate at decimeter-level in this urban environment) for positioning accuracy analysis. Further, the position output from two multi-frequency GNSS receivers (Trimble BD982 and u-blox F9P) were logged for external evaluation of the positioning accuracy of the SFPPP system using the new weight scheme. All GNSS receivers used in the tests were connected to the same GNSS antenna using a signal splitter. A Trimble Net R9 GNSS receiver was set on the roof of ENF building in the University of Calgary to serve as the base station for the Novatel SPAN system, u-blox F9P, and Trimble BD982 receivers, and the maximum baseline length during the whole filed test is about 6.2 km.
3.2. SVM Classifier Training and Performance Evaluation
This section focuses on the SVM-based classifier training and performance evaluation. The performance evaluation will be conducted in the testing accuracy aspect and the testing phase computational load aspect to validate the practicality of the SVM based classifier in a real-time GNSS application.
To get the satellite visibility ground-truth for training and testing the SVM based classifier, the upward fisheye camera based satellite visibility labeling method is applied [
30]. Firstly, the captured image is segmented into sky areas and obstruction areas manually. Secondly, the satellite location is projected to the image plane via the Mei’s fisheye model [
39]. After that, the satellite visibility ground truth could be obtained via comparing the projected satellite location to the segmented image.
Figure 6 is an example of this labeling process. An upward fisheye camera image is shown in the left part, and the right part is the segmented image with the projected satellites’ location, in which the segmented sky areas are rendered as blue and the obstruction areas are rendered as black. Those satellites located in the blue areas will be marked as LOS satellites and vice versa.
In the experiment of field test 1, 6078 images were captured using an upward fisheye camera installed on the roof of the vehicle, and they were segmented manually using a labeling tool developed at the University of Calgary to determine the satellite visibility for all GNSS observations. The 70% part of the data in field test 1 is used for training and the rest 30% part is assigned to testing. No data from field test 2 are used for training or testing as the heavy workload of manually labeling.
Table 2 shows the LOS, NLOS and overall accuracy of the trained classifier on the testing dataset. The overall testing accuracy reaches 86.05%, which, however, is much worse than the accuracy from the static test that we presented in [
30]. This indicates that the complex information of signal traveling routes in urban environments is harder to interpret according to the six features in the kinematic scene than in the static scene, as the signal traveling route changes much faster.
Table 3 gives out the configuration and result to test the SVM based classifier prediction time. A total number of 1800 epochs of GNSS observations are input sequentially into the trained SVM based classifier to get the satellites visibility prediction. The result reveals that the prediction process for the GNSS observations from a single epoch takes only 11.7 ms. The SVM based classifier consumes a low computational load and can be applied to high-rate real-time GNSS applications, especially given that only one of the four cores of the low-power Intel CPU i5 8250U was used in this test.
3.3. Positioning Accuracy Analysis
The evaluation of the proposed new weight scheme will be conducted in two ways. First, the positioning accuracy will be compared between the positioning solutions using the new weight scheme (SVM method) and the widely used C/N0 based weight model (C/N0 method) [
22,
24]. Then the positioning accuracy will be compared between the positioning solutions using the new weight model and independent position output from commercial receivers including high-end multi-frequency RTK solutions. The trained SVM classifier using the dataset in field test 1 will be directly applied to the dataset in field test 2 to validate the positioning performance. Since no data in field test 2 is involved in the training phase, the positioning performance shown below is expected to be reproducible.
Figure 7 compares the positioning error in time series and the positioning error cumulative distribution function (CDF) of the SFPPP solutions using the SVM method and the C/N0 method. There is a significant gain in terms of position solution robustness for the SVM based weight scheme over the C/N0 based weight scheme. When the SVM method is applied, the number of epochs with positioning error over 10 m in either horizontal or upward directions is greatly decreased compared to the C/N0 method, and the number of position error spikes is also significantly reduced. Further, the overall accuracy of the position solutions is greatly improved by the proposed SVM based weight scheme. The 95% CDF of the positioning errors using the C/N0 method reaches 15 m, 30 m and more than 40 m in the east, north and up directions, while the SVM based weight scheme brings down the 95% CDF of the positioning errors to 5 m, 10 m, and 12 m in the three directions.
It is worth mentioning that the position errors for the SVM method have a mean value close to zero in all three directions, while a noticeable positive bias can be observed in the up direction for the C/N0 method. Such bias is caused by the undetected NLOS errors, as the NLOS effect will always bring positive signal delays to the observations, and the NLOS error would typically grow higher at lower elevations. This further demonstrates the benefit of the newly proposed weight scheme in the detection and proper handling of the NLOS error over the C/N0 method in urban environments.
Table 4 shows the comparison of the statistics for the standard deviation (STD) and the root mean square (RMS) of positioning accuracy for the two methods. The RMS position errors of the SVM method are 7.8 m horizontally and 5.8 m vertically, which are 65.4% and 85.0% improvement in the horizontal and up directions respectively when compared to the traditional C/N0 method.
Figure 8 shows the comparison of the Google earth view of the track of the SFPPP using the C/N0 weight scheme and the SVM weight scheme. It can be seen that, there was position error spikes with the C/N0 method at almost every overcrossing and short tunnel, and the errors can be up to several blocks in some severe situations. As a comparison, the position solutions with the SVM method could stay tightly with the ground truth most of the time, even with an overcrossing or a short tunnel.
In
Figure 7, we notice that there is a significant position error spike at the epoch 550s in the east direction and two minor position error spikes at the epoch 180s and 1120s in the east and north direction for the SVM method. They can also be observed in
Figure 8 at three locations, and it takes some epochs before the SFPPP position solution converges close to the ground truth after the position error spike occurs. This happens due to the misclassification of the SVM based signal classifier. This issue could be addressed through integration with a low-cost inertial measurement unit (IMU) to provide more information for NLOS detection and position aiding. This will be considered in future work.
To further validate the benefit of the SVM based weight scheme, the SFPPP positioning accuracy with u-blox M8T using the SVM based weight scheme is also compared to the built-in solutions from some commercial receivers, namely the built-in SBAS solutions of the single-frequency u-blox M8T, the built-in RTK solutions of a dual-frequency u-blox F9P, and the built-in RTK solutions of multi-frequency Trimble BD982. The result is given in
Table 5. First, it can be seen that, in urban environments, the receiver output RTK solutions from multi-frequency GNSS receivers like the u-blox F9P and the high-end Trimble BD982 have fix rates of only 16.8% and 27.7%, respectively. Second, the positioning accuracy of the proposed method using real-time SFPPP with the u-blox M8T is better than the built-in SBAS solutions of the u-blox M8T, with an RMS improvement of 49.5% and 83.7% in the horizontal and up directions, and further it outperforms the built-in RTK solution from multi-frequency GNSS receivers like the u-blox F9P and the Trimble BD982. The comparison to independent receiver position output further confirms the effectiveness of the proposed new weight scheme for precise positioning in urban environments. It is expected that the new weight scheme can further improve the positioning accuracy in urban environments using multi-frequency receivers and multi-frequency precise point positioning (PPP) and RTK methods.
4. Conclusions and Recommendations
In this paper, a new SVM signal classifier-based weight scheme for GNSS measurements has been proposed to improve the kinematic GNSS positioning accuracy in urban environments. Traditionally C/N0 and elevation angle are widely considered for the weight of GNSS measurements, however, they cannot fully manifest the observation quality in urban environments. The new weight scheme is based on the identification of important features in GNSS data in urban environments and intelligent classification of LOS/NLOS signals. With advantage of better interpreting the quality of the GNSS observations with identified features by the SVM classifier, the proposed weight scheme is superior to the traditional weight scheme as it can better model the GNSS measurement NLOS error in urban environments.
The new weight scheme has been tested for its computational load and successfully implemented into a real-time single-frequency precise point positioning system to validate its performance. The dynamic vehicle-based tests with a low-cost single-frequency u-blox M8T GNSS receiver demonstrate that the positioning accuracy using the new weight scheme outperforms the traditional C/N0 based weight model by 65.4% and 85.0% in the horizontal and up direction, and most position error spikes at overcrossing and short tunnels can be eliminated by the new weight scheme compared to the traditional method. It also surpasses the built-in SBAS solutions of the u-blox M8T and is even better than the built-in RTK solutions of multi-frequency receivers like the u-blox F9P and Trimble BD982.
For future work, a low-cost IMU will be integrated with the GNSS solutions to refine the few major positioning error spikes shown in the test. Also, more feature data with other combinations from multi-frequency receivers will be used to increase the classification accuracy and thereafter further improve the accuracy and robustness of the positioning system in urban environments.