Processing of Near Real Time Land Surface Temperature and Its Application in Forecasting Forest Fire Danger Conditions
Abstract
:1. Introduction
2. Study Area
3. Materials
4. Methods
4.1. Download Mechanism and Processing of NRT MOD11_L2 Swath Data to Derive Daily Ts
- MOD11_L2—product short name
- A2019266—Julian date of acquisition (A-YYYYDDD)
- 1720—hours and minutes of acquisition (HHMM)
- 006—collection version
- NRT—type of data (i.e., near real time)
- hdf—data format (i.e., HDF-EOS)
- met—type of file (i.e., metadata for MOD11_L2.A2019266.1720.006.NRT.hdf)
4.2. Preparation of 4-Day Composite of the Swath Data-Derived Daily Ts
4.3. Using the NRT Daily Ts Data and Other NRT Variables to Forecast Forest Fire Danger (A Case Study)
5. Results and Discussion
5.1. Daily Ts Image from MOD11_L2 Swath Data
5.2. Four-Day Composite of Ts
5.3. Daily NRT Swath Data-derived Ts and Other NRT Variables to Forecast Forest Fire Danger Conditions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- EOSDIS Atmosphere Data. Atmosphere. Available online: https://earthdata.nasa.gov/learn/discipline/atmosphere (accessed on 19 December 2019).
- EOSDIS Land Data. Land. Available online: https://earthdata.nasa.gov/learn/discipline/land (accessed on 19 December 2019).
- EARTHDATA. Hazards and Disasters. Available online: https://earthdata.nasa.gov/earth-observation-data/near-real-time/hazards-and-disasters (accessed on 19 December 2019).
- Knowland, K.E.; Keller, G.C.; Ott, L.; Pawson, S.; Saunders, E.; Wales, P.; Duncan, B.; Follette-Cook, M.; Liu, J.; Nicely, J. Near Real-Time Air Quality Forecasts Using the NASA GEOS Model; NASA Technical Reports Server: Greenbelt, MD, USA, 2019.
- Korsunska, Y.; Shumilo, L.; Kolotii, A.; Shelestov, A. Air quality estimation using satellite and in-situ data for Kyiv City within ERA-PLANET project. In Proceedings of the 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), Lviv, Ukraine, 2–6 July 2019; pp. 1032–1036. [Google Scholar]
- Shelestov, A.; Kolotii, A.; Lavreniuk, M.; Medyanovskyi, K.; Bulanaya, T.; Gomilko, I. Air quality monitoring in urba areas using in-situ and satellite data within ERA-PLANET project. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 1668–1671. [Google Scholar]
- Amani, M.; Salehi, B.; Mahdavi, S.; Masjedi, A.; Dehnavi, S. Temperature-Vegetation-soil Moisture Dryness Index (TVMDI). Remote Sens. Environ. 2017, 197, 1–14. [Google Scholar] [CrossRef]
- Hazaymeh, K.; Hassan, Q.K. A remote sensing-based agricultural drought indicator and its implementation over a semi-arid region, Jordan. J. Arid Land 2017, 9, 319–330. [Google Scholar] [CrossRef]
- Hu, X.; Ren, H.; Tansey, K.; Zheng, Y.; Ghent, D.; Liu, X.; Yan, L. Agricultural drought monitoring using European Space Agency Sentinel 3A land surface temperature and normalized difference vegetation index imageries. Agric. For. Meteorol. 2019, 279, 107707. [Google Scholar] [CrossRef]
- Hassan, Q.K.; Rahman, K.M. Applicability of remote sensing-based surface temperature regimes in determining deciduous phenology over boreal forest. J. Plant Ecol. 2013, 6, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Hassan, Q.K.; Rahman, K.M. Remote sensing-based determination of understory grass greening stage over boreal forest. J. Appl. Remote Sens. 2013, 7, 073578. [Google Scholar] [CrossRef]
- Akther, M.S.; Hassan, Q.K. Remote sensing based estimates of surface wetness conditions and growing degree days over northern Alberta, Canada. Boreal Environ. Res. 2011, 16, 407–416. [Google Scholar]
- Chowdhury, E.H.; Hassan, Q.K. Development of a new daily-scale forest fire danger forecasting system using remote sensing data. Remote Sens. 2015, 7, 2431–2448. [Google Scholar] [CrossRef] [Green Version]
- Abdollahi, M.; Islam, T.; Gupta, A.; Hassan, Q. An Advanced Forest Fire Danger Forecasting System: Integration of Remote Sensing and Historical Sources of Ignition Data. Remote Sens. 2018, 10, 923. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.R.; Hassan, Q.K.; Abdollahi, M.; Gupta, A. Introducing a New Remote Sensing-Based Model for Forecasting Forest Fire Danger Conditions at a Four-Day Scale. Remote Sens. 2019, 11, 2101. [Google Scholar] [CrossRef] [Green Version]
- NASA EARTHDATA. Near Real-Time Versus Standard Products. Available online: https://earthdata.nasa.gov/earth-observation-data/near-real-time/near-real-time-versus-standard-products (accessed on 20 December 2019).
- Davies, D.K.; Murphy, K.J.; Michael, K.; Becker-Reshef, I.; Justice, C.O.; Boller, R.; Braun, S.A.; Schmaltz, J.E.; Wong, M.M.; Pasch, A.N.; et al. The Use of NASA LANCE Imagery and Data for Near Real-Time Applications. In Time-Sensitive Remote Sensing; Lippitt, C.D., Stow, D.A., Coulter, L.L., Eds.; Springer: New York, NY, USA, 2015; pp. 165–182. ISBN 9781493926022. [Google Scholar]
- Download Near Real-Time Data. EARTHDATA. Available online: https://earthdata.nasa.gov/earth-observation-data/near-real-time/download-nrt-data (accessed on 20 December 2019).
- NASA EARTHDATA. LANCE-MODIS AND VIIRS-LAND NEAR REAL-TIME DATA. Available online: https://lance-modis.eosdis.nasa.gov/user_services/ftp_sites.php (accessed on 30 August 2019).
- NASA EARTHDATA. MOD11_L2 v006. MODIS/Terra Land Surface Temperature/Emmissivity 5-min L2 Swath. Available online: https://lpdaac.usgs.gov/products/mod11_l2v006/ (accessed on 30 August 2019).
- NASA EARTHDATA. MODIS near Real-Time Data > What Time Does the Satellite Pass over My Area? Available online: https://earthdata.nasa.gov/faq#ed-rr-orbit-tracks (accessed on 20 September 2019).
- Downing, D.J.; Pettapiece, W.W. Natural Regions and Subregions of Alberta; Government of Alberta: Edmonton, AB, Canada, 2006.
- NASA GSFC MODIS Land. National Aeronautics and Space Administration: Goddard Space Flight Center. MODIS Grids. Available online: https://modis-land.gsfc.nasa.gov/MODLAND_grid.html (accessed on 24 September 2019).
- Roy, D.P.; Frost, P.G.H.; Justice, C.O.; Landmann, T.; Le Roux, J.L.; Gumbo, K.; Makungwa, S.; Dunham, K.; Du Toit, R.; Mhwandagara, K.; et al. The Southern Africa Fire Network (SAFNet) regional burned-area product-validation protocol. Int. J. Remote Sens. 2007, 26, 4265–4292. [Google Scholar] [CrossRef]
- Morisette, J.T.; Baret, F.; Liang, S. Special issue on global land product validation. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1695–1696. [Google Scholar] [CrossRef] [Green Version]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Fornacca, D.; Ren, G.; Xiao, W. Performance of Three MODIS Fire Products (MCD45A1, MCD64A1, MCD14ML), and ESA Fire_CCI in a Mountainous Area of Northwest Yunnan, China, Characterized by Frequent Small Fires. Remote Sens. 2017, 9, 1131. [Google Scholar] [CrossRef] [Green Version]
- EARTHDATA. FIRMS FAQ. Available online: https://earthdata.nasa.gov/faq/firms-faq (accessed on 7 February 2020).
Area of Interest | ULX * | ULY * | LRX * | LRY * |
---|---|---|---|---|
NW (northwestern hemisphere) | −120 | 61 | −109 | 48 |
NE (northeastern hemisphere) | 109 | 61 | 121 | 48 |
SE (southeastern hemisphere) | 110 | −20 | 120 | −30 |
SW (southwestern hemisphere) | −70 | −20 | −60 | −30 |
Data Product | Satellite/Sensor | Source | Description | Purpose of Use |
---|---|---|---|---|
MOD11_L2 (raster) | Terra MODIS | NASA’s Land, Atmosphere Near-real-time Capability for EOS (LANCE): NRT3/NRT4 | Land Surface Temperature and Emissivity 5-min L2 Swath imagery (v006) at 1 km spatial resolution. | Preparing daily Ts image to generate composite for an intended period. |
MOD09GA (raster) | Terra MODIS | Surface Reflectance Daily L2G Global imagery (v006) Bands 1 to 7 at 500 m spatial resolution. | Calculating daily NDVI and NDWI images. | |
MOD12Q1 (raster) | Terra+Aqua MODIS | NASA’s Earthdata | Land Cover Type Yearly L3 Global SIN Grid at 500 m spatial resolution. | To identify intended forest vegetation coverage. |
SFD map (raster) | - | Abdollahi et al. [14] | SFD derived from 500 m buffered road network of Alberta. | As a variable in generating the final FD map. |
Boundary (vector) | - | Government of Alberta | Provincial boundary of Alberta | For defining the study area. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, M.R.; Hassan, Q.K.; Abdollahi, M.; Gupta, A. Processing of Near Real Time Land Surface Temperature and Its Application in Forecasting Forest Fire Danger Conditions. Sensors 2020, 20, 984. https://doi.org/10.3390/s20040984
Ahmed MR, Hassan QK, Abdollahi M, Gupta A. Processing of Near Real Time Land Surface Temperature and Its Application in Forecasting Forest Fire Danger Conditions. Sensors. 2020; 20(4):984. https://doi.org/10.3390/s20040984
Chicago/Turabian StyleAhmed, M. Razu, Quazi K. Hassan, Masoud Abdollahi, and Anil Gupta. 2020. "Processing of Near Real Time Land Surface Temperature and Its Application in Forecasting Forest Fire Danger Conditions" Sensors 20, no. 4: 984. https://doi.org/10.3390/s20040984
APA StyleAhmed, M. R., Hassan, Q. K., Abdollahi, M., & Gupta, A. (2020). Processing of Near Real Time Land Surface Temperature and Its Application in Forecasting Forest Fire Danger Conditions. Sensors, 20(4), 984. https://doi.org/10.3390/s20040984