Segment-Resolved Gas Concentration Measurements by a Time Domain Multiplexed Dual Comb Method
Abstract
:1. Introduction
2. Method
3. Experimental Setup
4. Results
4.1. Measurement of Absorption Spectrum and Path Length
4.2. Gas Concentration Retrieval
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2013, 24. [Google Scholar] [CrossRef] [Green Version]
- Iseki, T.; Tai, H.; Kimura, K. A portable remote methane sensor using a tunable diode laser. Meas. Sci. Technol. 2000, 11, 594–602. [Google Scholar] [CrossRef]
- Platt, U.; Stutz, J. Differential optical absorption spectroscopy principles and applications introduction. In Differential Optical Absorption Spectroscopy: Principles and Applications. Physics of Earth and Space Environments; Springer: Heidelberg, Germany, 2008; pp. 135–174. [Google Scholar] [CrossRef]
- Mount, G.H.; Rumburg, B.; Havig, J.; Lamb, B.; Westberg, H.; Yonge, D.; Johnson, K.; Kincaid, R. Measurement of atmospheric ammonia at a dairy using differential optical absorption spectroscopy in the mid-ultraviolet. Atmos. Environ. 2002, 36, 1799–1810. [Google Scholar] [CrossRef]
- Wunch, D.; Toon, G.C.; Blavier, J.-F.L.; Washenfelder, R.A.; Notholt, J.; Connor, B.J.; Griffith, D.W.T.; Sherlock, V.; Wennberg, P.O. The total carbon column observing network. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 2087–2112. [Google Scholar] [CrossRef] [Green Version]
- Lee, R.A.M.; O’Dell, C.W.; Wunch, D.; Roehl, C.M.; Osterman, G.B.; Blavier, J.F.; Rosenberg, R.; Chapsky, L.; Frankenberg, C.; Hunyadi-Lay, S.L.; et al. Preflight spectral calibration of the orbiting carbon observatory 2. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2499–2508. [Google Scholar] [CrossRef]
- Rieker, G.B.; Giorgetta, F.R.; Swann, W.C.; Kofler, J.; Zolot, A.M.; Sinclair, L.C.; Baumann, E.; Cromer, C.; Petron, G.; Sweeney, C.; et al. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths. Optica 2014, 1, 290–298. [Google Scholar] [CrossRef]
- Cossel, K.C.; Waxman, E.M.; Giorgetta, F.R.; Cermak, M.; Coddington, I.R.; Hesselius, D.; Ruben, S.; Swann, W.C.; Truong, G.-W.; Rieker, G.B.; et al. Open-path dual-comb spectroscopy to an airborne retroreflector. Optica 2017, 4, 724–728. [Google Scholar] [CrossRef]
- Truong, G.W.; Waxman, E.M.; Cossel, K.C.; Giorgetta, F.R.; Swann, W.C.; Coddington, I.; Newbury, N.R. Dual-comb spectroscopy for city-scale open path greenhouse gas monitoring. In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 5 June 2016; p. SW4H.2. [Google Scholar]
- Waxman, E.M.; Cossel, K.C.; Giorgetta, F.R.; Hoenig, E.; Truong, G.-W.; Swann, W.C.; Coddington, I.; Newbury, N.R. Open-path dual frequency comb spectroscopy applied to source quantification. In Proceedings of the Light, Energy and the Environment 2018 (E2, FTS, HISE, SOLAR, SSL), Singapore, 5 November 2018; p. FT4B.3. [Google Scholar]
- Ycas, G.; Giorgetta, F.R.; Cossel, K.C.; Waxman, E.M.; Baumann, E.; Newbury, N.R.; Coddington, I. Mid-infrared dual-comb spectroscopy of volatile organic compounds across long open-air paths. Optica 2019, 6, 165–168. [Google Scholar] [CrossRef]
- Coddington, I.; Newbury, N.; Swann, W. Dual-comb spectroscopy. Optica 2016, 3, 414–426. [Google Scholar] [CrossRef] [Green Version]
- Coddington, I.; Swann, W.C.; Newbury, N.R. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 2008, 100. [Google Scholar] [CrossRef] [Green Version]
- Keilmann, F.; Gohle, C.; Holzwarth, R. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 2004, 29, 1542–1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schliesser, A.; Brehm, M.; Keilmann, F.; van der Weide, D.W. Frequency-comb infrared spectrometer for rapid, remote chemical sensing. Opt. Express 2005, 13, 9029–9038. [Google Scholar] [CrossRef] [PubMed]
- Ideguchi, T.; Poisson, A.; Guelachvili, G.; Picque, N.; Hansch, T.W. Adaptive real-time dual-comb spectroscopy. Nat. Commun. 2014, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Yan, M.; Hansch, T.W.; Picque, N. A phase-stable dual-comb interferometer. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chen, X.; Wu, X.; Li, Y.; Wei, H. Adaptive cavity-enhanced dual-comb spectroscopy. Photonics Res. 2019, 7, 883–889. [Google Scholar] [CrossRef]
- Zolot, A.M.; Giorgetta, F.R.; Baumann, E.; Swann, W.C.; Coddington, I.; Newbury, N.R. Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene. J. Quant. Spectrosc. Radiat. Transf. 2013, 118, 26–39. [Google Scholar] [CrossRef]
- Okubo, S.; Iwakuni, K.; Inaba, H.; Hosaka, K.; Onae, A.; Sasada, H.; Hong, F.-L. Ultra-broadband dual-comb spectroscopy across 1.0-1.9 mu m. Appl. Phys. Express 2015, 8. [Google Scholar] [CrossRef]
- Nishiyama, A.; Yoshida, S.; Nakajima, Y.; Sasada, H.; Nakagawa, K.i.; Onae, A.; Minoshima, K. Doppler-free dual-comb spectroscopy of Rb using optical-optical double resonance technique. Opt. Express 2016, 24, 25894–25904. [Google Scholar] [CrossRef]
- Nishiyama, A.; Nakajima, Y.; Nakagawa, K.I.; Minoshima, K. Precise and highly-sensitive Doppler-free two-photon absorption dual-comb spectroscopy using pulse shaping and coherent averaging for fluorescence signal detection. Opt. Express 2018, 26, 8957–8967. [Google Scholar] [CrossRef]
- Coburn, S.; Alden, C.B.; Wright, R.; Cossel, K.; Baumann, E.; Gar-Wing, T.; Giorgetta, F.; Sweeney, C.; Newbury, N.R.; Prasad, K.; et al. Regional trace-gas source attribution using a field-deployed dual frequency comb spectrometer. Optica 2018, 5, 320–327. [Google Scholar] [CrossRef]
- Waxman, E.M.; Cossel, K.C.; Truong, G.-W.; Giorgetta, F.R.; Swann, W.C.; Coddington, I.; Newbury, N.R. Dual frequency comb spectroscopy for trace gas monitoring over open-air paths. In Proceedings of the Light, Energy and the Environment, Boulder, CO, USA, 6 November 2017; p. ETu1B.2. [Google Scholar]
- Coddington, I.; Swann, W.C.; Nenadovic, L.; Newbury, N.R. Rapid and precise absolute distance measurements at long range. Nat. Photonics 2009, 3, 351–356. [Google Scholar] [CrossRef]
- Yasui, T.; Kabetani, Y.; Ohgi, Y.; Yokoyama, S.; Araki, T. Absolute distance measurement of optically rough objects using asynchronous-optical-sampling terahertz impulse ranging. Appl. Opt. 2010, 49, 5262–5270. [Google Scholar] [CrossRef]
- Liu, T.-A.; Newbury, N.R.; Coddington, I. Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers. Opt. Express 2011, 19, 18501–18509. [Google Scholar] [CrossRef]
- Lee, J.; Han, S.; Lee, K.; Bae, E.; Kim, S.; Lee, S.; Kim, S.-W.; Kim, Y.-J. Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength. Meas. Sci. Technol. 2013, 24. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, H.; Wu, X.; Yang, H.; Li, Y. Reliable non-ambiguity range extension with dual-comb simultaneous operation in absolute distance measurements. Meas. Sci. Technol. 2014, 25. [Google Scholar] [CrossRef]
- Deschenes, J.-D.; Giaccari, P.; Genest, J. Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry. Opt. Express 2010, 18, 23358–23370. [Google Scholar] [CrossRef]
- Roy, J.; Deschenes, J.-D.; Potvin, S.; Genest, J. Continuous real-time correction and averaging for frequency comb interferometry. Opt. Express 2012, 20, 21932–21939. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, W.; Wei, H.; Li, Y. Digitally calibrated broadband dual-comb gases absorption spectral measurements. Chin. Phys. B 2019, 28. [Google Scholar] [CrossRef]
- Cox, M.G.; Siebert, B.R.L. The use of a Monte Carlo method for evaluating uncertainty and expanded uncertainty. Metrologia 2006, 43, S178–S188. [Google Scholar] [CrossRef]
- JCGM 101:2008. Evaluation of Measurement Data—Supplement 1 to the ‘Guide to the Expression of Uncertainty in Measurement’—Propagation of Distributions Using a Monte Carlo method. Available online: http://www.bipm.org/utils/common/documents/jcgm/JCGM_101_2008_E.pdf (accessed on 10 March 2020).
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Zhang, W.; Zhang, Y.; Lu, M.; Li, Y.; Wei, H. Segment-Resolved Gas Concentration Measurements by a Time Domain Multiplexed Dual Comb Method. Sensors 2020, 20, 1566. https://doi.org/10.3390/s20061566
Chen X, Zhang W, Zhang Y, Lu M, Li Y, Wei H. Segment-Resolved Gas Concentration Measurements by a Time Domain Multiplexed Dual Comb Method. Sensors. 2020; 20(6):1566. https://doi.org/10.3390/s20061566
Chicago/Turabian StyleChen, Xinyi, Weipeng Zhang, Yujia Zhang, Minjian Lu, Yan Li, and Haoyun Wei. 2020. "Segment-Resolved Gas Concentration Measurements by a Time Domain Multiplexed Dual Comb Method" Sensors 20, no. 6: 1566. https://doi.org/10.3390/s20061566