ECG Monitoring Systems: Review, Architecture, Processes, and Key Challenges
Abstract
:1. Introduction
2. Overview of ECG Monitoring Systems: Architecture, Processes, and Technologies
2.1. ECG Monitoring Architecture
2.2. ECG Monitoring Value Chain: Comparative Study
2.3. The ECG Monitoring Key Processes
2.3.1. ECG Data Extraction and Collection
2.3.2. Preprocessing
2.3.3. Feature Extraction
2.3.4. Processing and Analysis
2.3.5. Visualization
2.3.6. Supporting Processes
3. Experts’ Taxonomy of ECG Monitoring Systems
3.1. Context-Aware ECG Monitoring Systems
3.1.1. Home ECG Monitoring Systems
3.1.2. Hospital ECG Monitoring Systems
3.1.3. Ambulatory ECG Monitoring Systems
3.1.4. Remote ECG Monitoring Systems
3.2. Technology-Aware ECG Monitoring Systems
3.2.1. Enabling Technologies
3.2.2. Monitoring Devices
3.3. ECG Monitoring Systems Based on Schemes and Frequency
3.3.1. Traditional ECG Monitoring
3.3.2. Real-Time ECG Monitoring
3.4. ECG Monitoring System Targets and Purposes
3.4.1. Service-Based Monitoring Systems
3.4.2. Performance-Based Monitoring Systems
3.5. ECG Futuristic Monitoring Systems
4. Key Challenges of ECG Monitoring Systems
4.1. Challenges Related to Usage of Monitoring Devices
4.2. Challenges Related to Signal Quality
4.3. Challenges Related to Monitoring Durability
4.4. Challenges Related to Size of ECG Signal Data
4.5. Challenges Related to Electrode/Sensor Type and Design
4.6. Challenges Related to Visualization
4.7. Challenges Related to System Integration
4.8. Other Challenges
5. Discussion, Conclusion, and Future Direction
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Cardiovascular Diseases. Available online: www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1. (accessed on 16 March 2020).
- Scutti, S. Nearly Half of US Adults Have Cardiovascular Disease, Study Says. CNN, Cable News Network. 31 January 2019. Available online: www.cnn.com/2019/01/31/health/heart-disease-statistics-report/index.html (accessed on 15 March 2020).
- European Cardiovascular Disease Statistics 2017; The European Heart Network (EHN): Brussels, Belgium, 2017; Available online: http://www.ehnheart.org/cvd-statistics.html (accessed on 15 March 2020).
- Hassan, M.F.U.; Lai, D.; Bu, Y. Characterization of Single Lead Continuous ECG Recording with Various Dry Electrodes. In Proceedings of the 2019 3rd International Conference on Computational Biology and Bioinformatics, Nagoya, Japan, 17–19 October 2019; pp. 76–79. [Google Scholar]
- Preejith, S.P.; Dhinesh, R.; Joseph, J.; Sivaprakasam, M. Wearable ECG platform for continuous cardiac monitoring. In Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Lake Buena Vista, FL, USA, 16–20 August 2016; pp. 623–626. [Google Scholar]
- Bsoul, M.; Minn, H.; Tamil, L. Apnea MedAssist: Real-time sleep apnea monitor using single-lead ECG. IEEE Trans. Inf. Technol. Biomed. 2011, 15, 416–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azariadi, D.; Tsoutsouras, V.; Xydis, S.; Soudris, D. ECG signal analysis and arrhythmia detection on IoT wearable medical devices. In Proceedings of the 2016 5th International Conference on Modern Circuits and Systems Technologies, MOCAST, Thessaloniki, Greece, 12–14 May 2016. [Google Scholar] [CrossRef]
- Satija, U.; Ramkumar, B.; Manikandan, S.M. Real-time signal quality-aware ECG telemetry system for IoT-based health care monitoring. IEEE Intern. Things J. 2017, 4, 815–823. [Google Scholar] [CrossRef]
- Scrugli, M.A.; Loi, D.; Raffo, L.; Meloni, P. A runtime-adaptive cognitive IoT node for healthcare monitoring. In Proceedings of the ACM International Conference on Computing Frontiers 2019, CF 2019–Proceedings, Alghero, Italy, 30 April–2 May 2019. [Google Scholar] [CrossRef]
- Sanghavi, D.R.; Athawale, S.V.; Professor, A. An IoT Based Low-Cost ECG Monitoring System for Remote Patient. Int. J. Res. Trends Innov. 2018, 3, 70. [Google Scholar]
- Kim, K. Europace Comparing the performance of artificial intelligence and conventional diagnosis criteria for detecting left ventricular hypertrophy using electrocardiography. Europace 2018, 1–8. [Google Scholar] [CrossRef]
- Bansal, M.; Gandhi, B. IoT big data in smart healthcare (ECG monitoring). In Proceedings of the International Conference on Machine Learning, Big Data, Cloud and Parallel Computing: Trends, Prespectives and Prospects, COMITCon, Faridabad, India, 14–16 February 2019. [Google Scholar] [CrossRef]
- Taher, N.C.; Mallat, I.; Agoulmine, N.; El-Mawass, N. An IoT-Cloud based solution for real-time and batch processing of big data: Application in healthcare. In Proceedings of the 2019 3rd International Conference on Bio-engineering for Smart Technologies BioSMART, Paris, France, 22–26 April 2019; pp. 1–8. [Google Scholar] [CrossRef]
- Chamadiya, B.; Mankodiya, K.; Wagner, M.; Hofmann, U.G. Textile-based, contactless ECG monitoring for non-ICU clinical settings. J. Ambient Intell. Humaniz. Comput. 2013, 4. [Google Scholar] [CrossRef]
- Zagan, I.; Gaitan, V.G.; Iuga, N.; Brezulianu, A. M-GreenCARDIO embedded system designed for out-of-hospital cardiac patients. In Proceedings of the 2018 14th International Conference on Development and Application Systems, DAS, Suceava, Romania, 24–26 May 2018. [Google Scholar] [CrossRef]
- Navaz, A.N.; Mohammed, E.; Serhani, M.A.; Zaki, N. The use of data mining techniques to predict mortality and length of stay in an ICU. In Proceedings of the 2016 12th International Conference on Innovations in Information Technology IIT, Al-Ain, United Arab Emirates, 28–30 November 2016. [Google Scholar] [CrossRef]
- Ahouandjinou, A.S.R.M.; Assogba, K.; Motamed, C. Smart and pervasive ICU based-IoT for improving intensive health care. In Proceedings of the 2016 International Conference on Bio-Engineering for Smart Technologies BioSMART, Dubai, United Arab Emirates, 4–7 December 2016. [Google Scholar] [CrossRef]
- Steinhubl, S.R.; Waalen, J.; Edwards, A.M.; Ariniello, L.M.; Mehta, R.R.; Ebner, G.S.; Carter, C.; Baca-Motes, K.; Felicione, E.; Sarich, T.; et al. Effect of a home-Based wearable continuous ECG monitoring patch on detection of undiagnosed atrial fibrillation the mSToPS randomized clinical trial. JAMA J. Am. Med. Assoc. 2018, 320, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Benhamida, A.; Zouaoui, A.; Szócska, G.; Karóczkai, K.; Slimani, G.; Kozlovszky, M. Problems in archiving long-term continuous ECG data - A review. In Proceedings of the SAMI 2019 - IEEE 17th World Symposium on Applied Machine Intelligence and Informatics, Herlany, Slovakia, 24–26 January 2019. [Google Scholar] [CrossRef]
- Shakthi Murugan, K.H.; Sriram, T.J.; Jerold, P.M.; Peeran, A.S.A.; Abisheik, P. Wearable ECG electrodes for detection of heart rate and arrhythmia classification. In Proceedings of the 2019 3rd IEEE International Conference on Electrical, Computer and Communication Technologies ICECCT, Coimbatore, India, 20–22 February 2019. [Google Scholar] [CrossRef]
- Petrenas, A.; Marozas, V.; Jaruševičius, G.; Sörnmo, L. A modified Lewis ECG lead system for ambulatory monitoring of atrial arrhythmias. J. Electrocardiol. 2015, 48, 157–163. [Google Scholar] [CrossRef]
- Fung, E.; Järvelin, M.R.; Doshi, R.N.; Shinbane, J.S.; Carlson, S.K.; Grazette, L.P.; Chang, P.M.; Sangha, R.S.; Huikuri, H.V.; Peters, N.S. Electrocardiographic patch devices and contemporary wireless cardiac monitoring. Front. Physiol. 2015, 6, 149. [Google Scholar] [CrossRef] [Green Version]
- Mamaghanian, H.; Khaled, N.; Atienza, D.; Vandergheynst, P. Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes. IEEE Trans. Biomed. Eng. 2011, 58, 2456–2466. [Google Scholar] [CrossRef] [Green Version]
- Guan, K.; Shao, M.; Wu, S. A remote health monitoring system for the elderly based on smart home gateway. J. Healthc. Eng. 2017, 2017. [Google Scholar] [CrossRef]
- Akrivopoulos, O.; Antoniou, A.; Amaxilatis, D.; Chatzigiannakis, I. Design and evaluation of a person-centric heart monitoring system over fog computing infrastructure. In Proceedings of the HumanSys 2017 - 1st International Workshop on Human-Centered Sensing, Networking, and Systems, Part of SenSys, Delft, The Netherlands, 6–8 November 2017; pp. 25–30. [Google Scholar] [CrossRef] [Green Version]
- Tuli, S.; Basumatary, N.; Gill, S.S.; Kahani, M.; Arya, R.C.; Wander, G.S.; Buyya, R. HealthFog: An ensemble deep learning based Smart Healthcare System for Automatic Diagnosis of Heart Diseases in integrated IoT and fog computing environments. Futur. Gener. Comput. Syst. 2020, 104, 187–200. [Google Scholar] [CrossRef] [Green Version]
- Neyja, M.; Mumtaz, S.; Huq, K.M.S.; Busari, S.A.; Rodriguez, J.; Zhou, Z. An IoT-based e-health monitoring system using ECG signal. In Proceedings of the GLOBECOM 2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017. [Google Scholar] [CrossRef]
- Akrivopoulos, O.; Amaxilatis, D.; Mavrommati, I.; Chatzigiannakis, I. Utilising fog computing for developing a person-centric heart monitoring system. J. Ambient Intell. Smart Environ. 2019, 11, 237–259. [Google Scholar] [CrossRef]
- Wu, W.; Pirbhulal, S.; Sangaiah, A.K.; Mukhopadhyay, S.C.; Li, G. Optimization of signal quality over comfortability of textile electrodes for ECG monitoring in fog computing based medical applications. Futur. Gener. Comput. Syst. 2018, 86, 515–526. [Google Scholar] [CrossRef]
- Smoleń, M.; Kańtoch, E.; Augustyniak, P.; Kowalski, P. Wearable patient home monitoring based on ECG and ACC sensors. IFMBE Proc. 2011, 37, 941–944. [Google Scholar] [CrossRef]
- Yusof, M.A.; Hau, Y.W. Mini home-based vital sign monitor with android mobile application (myVitalGear). In Proceedings of the 2018 IEEE EMBS Conference on Biomedical Engineering and Science IECBES, Sarawak, Malaysia, 3–6 December 2018. [Google Scholar] [CrossRef]
- Hsieh, S.-T.; Lin, C.-L. Intelligent healthcare system using an arduino microcontroller and an android-based smartphone. BioMed Res. 2017, 28, 9940–9946. [Google Scholar]
- Lee, Y.D.; Chung, W.Y. Wireless sensor network based wearable smart shirt for ubiquitous health and activity monitoring. Sens. Actuators B Chem. 2009, 140, 390–395. [Google Scholar] [CrossRef]
- Pirozzi, M.; Pietroni, F.; Casaccia, S.; Scalise, L.; Revel, G.M. Cardiac activity classification using an E-health app for a wearable device. In Proceedings of the 2018 IEEE International Symposium on Medical Measurements and Applications MeMeA, Rome, Italy, 11–13 June 2018. [Google Scholar] [CrossRef]
- Schneider, J.; Schroth, M.; Ottenbacher, J.; Stork, W. A novel wearable sensor device for continuous monitoring of cardiac activity during sleep. In Proceedings of the 2018 IEEE Sensors Applications Symposium SAS, Seoul, Korea, 12–14 March 2018. [Google Scholar] [CrossRef]
- Bosco, G.; De Marzi, E.; Michieli, P.; Omar, H.R.; Camporesi, E.M.; Padulo, J.; Paoli, A.; Mangar, D.; Schiavon, M. 12-lead Holter monitoring in diving and water sports: A preliminary investigation. Diving Hyperb. Med. 2014, 44, 202–207. [Google Scholar]
- Raković, P.; Lutovac, B. A cloud computing architecture with wireless body area network for professional athletes health monitoring in sports organizations—Case study of Montenegro. In Proceedings of the 2015 4th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 14–18 June 2015; pp. 387–390. [Google Scholar]
- Octaviani, V.; Kurniawan, A.; Suprapto, Y.K.; Zaini, A. Alerting system for sport activity based on ECG signals using proportional integral derivative. In Proceedings of the 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Yogyakarta, Indonesia, 19–21 September 2017; pp. 1–6. [Google Scholar]
- Carney, R.M.; Freedland, K.E.; Steinmeyer, B.C.; Rubin, E.H.; Stein, P.K.; Rich, M.W. Nighttime heart rate predicts response to depression treatment in patients with coronary heart disease. J. Affect. Disord. 2016, 200, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Valenza, G.; Nardelli, M.; Lanata, A.; Gentili, C.; Bertschy, G.; Kosel, M.; Scilingo, E.P. Predicting mood changes in bipolar disorder through heartbeat nonlinear dynamics. IEEE J. Biomed. Health Inform. 2016, 20, 1034–1043. [Google Scholar] [CrossRef]
- Migliorini, M.; Mariani, S.; Bertschy, G.; Kosel, M.; Bianchi, A.M. Can home-monitoring of sleep predict depressive episodes in bipolar patients? In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Milano, Italy, 25–29 August 2015; pp. 2215–2218. [Google Scholar]
- Gierałtowski, J.; Ciuchciński, K.; Grzegorczyk, I.; Kośna, K.; Soliński, M.; Podziemski, P. RS slope detection algorithm for extraction of heart rate from noisy, multimodal recordings. Physiol. Meas. 2015, 36, 1743. [Google Scholar] [CrossRef]
- Ghosh, S.; Feng, M.; Nguyen, H.; Li, J. Predicting heart beats using co-occurring constrained sequential patterns. In Proceedings of the Computing in Cardiology 2014, Cambridge, MA, USA, 7–10 September 2014; pp. 265–268. [Google Scholar]
- Yang, B.; Teo, S.K.; Hoeben, B.; Monterola, C.; Su, Y. Robust identification of heartbeats with blood pressure signals and noise detection. In Proceedings of the Computing in Cardiology 2014, Cambridge, MA, USA, 7–10 September 2014; pp. 565–568. [Google Scholar]
- Gierałtowski, J.J.; Ciuchciński, K.; Grzegorczyk, I.; Kośna, K.; Soliński, M.; Podziemski, P. Heart rate variability discovery: Algorithm for detection of heart rate from noisy, multimodal recordings. In Proceedings of the Computing in Cardiology 2014, Cambridge, MA, USA, 7–10 September 2014; pp. 253–256. [Google Scholar]
- Sadr, N.; Jayawardhana, M.; Pham, T.T.; Tang, R.; Balaei, A.T.; de Chazal, P. A low-complexity algorithm for detection of atrial fibrillation using an ECG. Physiol. Meas. 2018, 39, 64003. [Google Scholar] [CrossRef] [PubMed]
- Satija, U.; Ramkumar, B.; Manikandan, M.S. Automated ECG noise detection and classification system for unsupervised healthcare monitoring. IEEE J. Biomed. Health Inform. 2018, 22, 722–732. [Google Scholar] [CrossRef] [PubMed]
- Bhattacherjee, P.; Ganguly, D.; Chatterjee, K. A review of Steganography techniques suitable for ECG signal. In Proceedings of the International Conference on Emerging Technologies for Sustainable Development (ICETSD ’19), Kolkata, India, 5–6 March 2019; pp. 1–7. [Google Scholar]
- Mora, F.A.; Passariello, G.; Carrault, G.; Le Pichon, J.-P. Intelligent patient monitoring and management systems: A review. IEEE Eng. Med. Biol. Mag. 1993, 12, 23–33. [Google Scholar] [CrossRef]
- Kundu, M.; Nasipuri, M.; Basu, D.K. Knowledge-based ECG interpretation: A critical review. Pattern Recognit. 2000, 33, 351–373. [Google Scholar] [CrossRef]
- Sohn, H.; Farrar, C.R.; Hemez, F.M.; Shunk, D.D.; Stinemates, D.W.; Nadler, B.R.; Czarnecki, J.J. A Review of Structural Health Monitoring Literature: 1996–2001; Los Alamos National Laboratory: Los Alamos, NM USA, 2003; pp. 1–7.
- Windmiller, J.R.; Wang, J. Wearable electrochemical sensors and biosensors: A review. Electroanalysis 2013, 25. [Google Scholar] [CrossRef]
- Baig, M.M.; Gholamhosseini, H.; Connolly, M.J. A comprehensive survey of wearable and wireless ECG monitoring systems for older adults. Med. Biol. Eng. Comput. 2013, 51, 485–495. [Google Scholar] [CrossRef]
- Baig, M.M.; GholamHosseini, H.; Moqeem, A.A.; Mirza, F.; Lindén, M. A systematic review of wearable patient monitoring systems–current challenges and opportunities for clinical adoption. J. Med. Syst. 2017, 41, 115. [Google Scholar] [CrossRef]
- Banaee, H.; Ahmed, M.; Loutfi, A. Data mining for wearable sensors in health monitoring systems: A review of recent trends and challenges. Sensors 2013, 13, 17472–17500. [Google Scholar] [CrossRef] [Green Version]
- Marston, H.R.; Hadley, R.; Banks, D.; Duro, M.D.C.M. Mobile self-monitoring ECG devices to diagnose arrhythmia that coincide with palpitations: A scoping review. Healthcare 2019, 7, 96. [Google Scholar] [CrossRef] [Green Version]
- Sposato, L.A.; Cipriano, L.E.; Saposnik, G.; Vargas, E.R.; Riccio, P.M.; Hachinski, V. Diagnosis of atrial fibrillation after stroke and transient ischaemic attack: A systematic review and meta-analysis. Lancet Neurol. 2015, 14, 377–387. [Google Scholar] [CrossRef]
- Tejedor, J.; García, C.A.; Márquez, D.G.; Raya, R.; Otero, A. Multiple physiological signals fusion techniques for improving heartbeat detection: A review. Sensors 2019, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egger, M.; Ley, M.; Hanke, S. Emotion recognition from physiological signal analysis: A review. Electron. Notes Theor. Comput. Sci. 2019, 343, 35–55. [Google Scholar] [CrossRef]
- Sabarimalai Sur, M.; Dandapat, S. Wavelet-based electrocardiogram signal compression methods and their performances: A prospective review. Biomed. Signal Process. Control 2014, 14, 73–107. [Google Scholar] [CrossRef]
- Jeong, D.-U.; Kim, S.-J. Development of a technique for cancelling motion artifact in ambulatory ECG monitoring system. In Proceedings of the 2008 Third International Conference on Convergence and Hybrid Information Technology, Busan, Korea, 11–13 November 2008; Volume 1, pp. 954–961. [Google Scholar]
- De Cooman, T.; Goovaerts, G.; Varon, C.; Widjaja, D.; Van Huffel, S. Heart beat detection in multimodal data using signal recognition and beat location estimation. In Proceedings of the Computing in Cardiology 2014, Cambridge, MA, USA, 7–10 September 2014; pp. 257–260. [Google Scholar]
- Li, Z.; Derksen, H.; Gryak, J.; Ghanbari, H.; Gunaratne, P.; Najarian, K. A novel atrial fibrillation prediction algorithm applicable to recordings from portable devices. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HA, USA, 18–21 July 2018; pp. 4034–4037. [Google Scholar] [CrossRef]
- Ding, Q.; Bai, Y.; Erol, Y.B.; Salas-Boni, R.; Zhang, X.; Li, L.; Hu, X. Multimodal information fusion for robust heart beat detection. In Proceedings of the Computing in Cardiology 2014, Cambridge, MA, USA, 7–10 September 2014; pp. 261–264. [Google Scholar]
- Vollmer, M. Robust detection of heart beats using dynamic thresholds and moving windows. In Proceedings of the Computing in Cardiology 2014, Cambridge, MA, USA, 7–10 September 2014; pp. 569–572. [Google Scholar]
- Yusuf, S.A.A.; Hidayat, R. MFCC feature extraction and KNN classification in ECG signals. In Proceedings of the 2019 6th International Conference on Information Technology, Computer and Electrical Engineering (ICITACEE), Semarang, Indonesia, 26–27 September 2019; pp. 1–5. [Google Scholar]
- Kora, P.; Kumari, C.U.; Swaraja, K.; Meenakshi, K. Atrial Fibrillation detection using Discrete Wavelet Transform. In Proceedings of the 2019 3rd IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, 20–22 February 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Vernekar, S.; Vijaysenan, D.; Ranjan, R. A novel approach for Robust Detection of Heart Beats in Multimodal Data using neural networks and boosted trees. In Proceedings of the 2016 Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 11–14 September 2016; pp. 1137–1140. [Google Scholar]
- Zhang, H.; Wang, Z.; Dong, K.; Ng, S.H.; Lin, Z. Towards precise tracking of electric-mechanical cardiac time intervals through joint ECG and BCG sensing and signal processing. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Seogwipo, Korea, 11–15 July 2017; pp. 751–754. [Google Scholar] [CrossRef]
- De Cooman, T.; Goovaerts, G.; Varon, C.; Widjaja, D.; Willemen, T.; Van Huffel, S. Heart beat detection in multimodal data using automatic relevant signal detection. Physiol. Meas. 2015, 36, 1691. [Google Scholar] [CrossRef]
- Xia, H.; Asif, I.; Zhao, X. Cloud-ECG for real time ECG monitoring and analysis. Comput. Methods Programs Biomed. 2013, 110, 253–259. [Google Scholar] [CrossRef]
- Page, A.; Kocabas, O.; Soyata, T.; Aktas, M.; Couderc, J.P. Cloud-based privacy-preserving remote ECG monitoring and surveillance. Ann. Noninvasive Electrocardiol. 2015, 20, 328–337. [Google Scholar] [CrossRef]
- Kim, H.; Kim, S.; Van Helleputte, N.; Artes, A.; Konijnenburg, M.; Huisken, J.; Van Hoof, C.; Yazicioglu, R.F. A configurable and low-power mixed signal SoC for portable ECG monitoring applications. IEEE Trans. Biomed. Circ. Syst. 2014, 8, 257–267. [Google Scholar] [CrossRef]
- Martín-Yebra, A.; Landreani, F.; Casellato, C.; Pavan, E.; Frigo, C.; Migeotte, P.; Caiani, E.G. Studying heart rate variability from ballistocardiography acquired by force platform: Comparison with conventional ECG. In Proceedings of the 2015 Computing in Cardiology Conference (CinC), Nice, France, 6–9 September 2015; pp. 929–932. [Google Scholar] [CrossRef] [Green Version]
- Mohaar, G.; Maleque, M.; Singh, R. Framework for stochastic modelling of multi-dimensional real-time sensor data. In Proceedings of the 2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), Taipei, Taiwan, 24–27 November 2015; pp. 244–251. [Google Scholar]
- Serhani, M.A.; Benharref, A.; Nujum, A.R. Intelligent remote health monitoring using evident-based DSS for automated assistance. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 2674–2677. [Google Scholar]
- Nawal, M.; Purohit, G.N. ECG based human authentication: A review. Int. J. Emerg. Eng. Res. Technol. 2014, 2, 178–185. [Google Scholar]
- Gusev, M.; Stojmenski, A.; Guseva, A. ECGalert: A Heart Attack Alerting System. In Proceedings of the 9th International Conference, Skopje, Macedonia, 18–23 September 2017. [Google Scholar]
- Němcová, A.; Smíšek, R.; Maršánová, L.; Smital, L.; Vítek, M. A comparative analysis of methods for evaluation of ECG signal quality after compression. BioMed Res. Int. 2018, 2018. [Google Scholar] [CrossRef]
- Villegas, A.; McEneaney, D.; Escalona, O. Arm-ECG wireless sensor system for wearable long-term surveillance of heart arrhythmias. Electronics 2019, 8, 1300. [Google Scholar] [CrossRef] [Green Version]
- Llanas, A.; Guillén, J.; Cardiel, E.; Hernández, P.-R. Development of an interactive system for the visualization of a cardiac model activated by the R-Wave of ECG in a 3D CAVE. In Proceedings of the 2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, Mexico, 5–7 September 2018; pp. 1–5. [Google Scholar]
- Motalova, L.; Krejcar, O.; Polak, T.; Janckulik, D.; Cernohorsky, J. ECG data visualisation in web application using MS Silverlight. In Proceedings of the 2011 1st Middle East Conference on Biomedical Engineering, Sharjah, United Arab Emirates, 21–24 February 2011; pp. 347–350. [Google Scholar] [CrossRef]
- Oresko, J.J.; Jin, Z.; Cheng, J.; Huang, S.; Sun, Y.; Duschl, H.; Cheng, A.C. A wearable smartphone-based platform for real-time cardiovascular disease detection via electrocardiogram processing. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 734–740. [Google Scholar] [CrossRef] [PubMed]
- Sörnmo, L.; Laguna, P. Electrocardiogram (ECG) signal processing. Wiley Encycl. Biomed. Eng. 2006. [Google Scholar] [CrossRef]
- Ding, H.; Sun, H.; Hou, K. Abnormal ECG signal detection based on compressed sampling in Wearable ECG sensor. In Proceedings of the 2011 International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 9–11 November 2011; pp. 1–5. [Google Scholar]
- Shankar, M.G.; Babu, C.G. An exploration of ECG signal feature selection and classification using machine learning techniques. Int. J. Innovative Technol. Exploring Eng. Regul. Issue 2020, 9, 797–804. [Google Scholar] [CrossRef]
- Karnewar, J.S.; Shandilya, D.V.K.; Tambakhe, M.D. A study on ECG signal analysis and ECG databases. Int. J. Res. Advent Technol. 2019, 7, 188–195. [Google Scholar] [CrossRef]
- Moses, D. A survey of data mining algorithms used in cardiovascular disease diagnosis from multi-lead ECG data. Kuwait J. Sci. 2015, 42, 206–235. [Google Scholar]
- Ghodake, S.; Ghumbre, S.; Deshmukh, S. Electrocardiogram Signal Denoising Using Hybrid Filtering for Cardiovascular Diseases Prediction. In Techno-Societal 2018; Springer: Berlin, Germany, 2020; pp. 271–278. [Google Scholar]
- Padmavathi, C.; Veenadevi, S.V. An automated detection of CAD using the method of signal decomposition and non linear entropy using heart signals. Int. J. Image Graph. Signal Process. 2019, 11, 30–39. [Google Scholar] [CrossRef]
- Tychkov, A.; Alimuradov, A.; Churakov, P. The emperical mode decomposition for ECG signal preprocessing. In Proceedings of the 2019 3rd School on Dynamics of Complex Networks and their Application in Intellectual Robotics, DCNAIR, Innopolis, Russia, 9–11 December 2019. [Google Scholar] [CrossRef]
- Wang, Y. An automated ECG Signal Quality Assessment Method with Supervised Learning Algorithm; Delft University of Technology: Delft, The Netherlands, 2018. [Google Scholar]
- Deriche, M.; Aljabri, S.; Al-Akhras, M.; Siddiqui, M.; Deriche, N. An optimal set of features for multi-class heart beat abnormality classification. In Proceedings of the 2019 16th International Multi-Conference on Systems, Signals & Devices (SSD), Istanbul, Turkey, 21–24 March 2019; pp. 418–422. [Google Scholar] [CrossRef]
- Kwon, S.; Lee, D.; Kim, J.; Lee, Y.; Kang, S.; Seo, S.; Park, K. Sinabro: A smartphone-integrated opportunistic electrocardiogram monitoring system. Sensors 2016, 16, 361. [Google Scholar] [CrossRef] [Green Version]
- Alfaouri, M.; Daqrouq, K. ECG signal denoising by wavelet transform thresholding. Am. J. Appl. Sci. 2008, 5, 276–281. [Google Scholar] [CrossRef]
- Valupadasu, R.; Chunduri, B.R.R. Automatic classification of cardiac disorders using MLP algorithm. In Proceedings of the 2019 Prognostics and System Health Management Conference PHM-Paris, Paris, France, 2–5 May 2019. [Google Scholar] [CrossRef]
- El-Saadawy, H.; Tantawi, M.; Shedeed, H.A.; Tolba, M.F. Electrocardiogram (ECG) classification based on dynamic beats segmentation. ACM Int. Conf. Proc. Ser. 2016, 09-11-May-, 75–80. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L.; Zhang, W.; Yao, J. A signal quality assessment method for electrocardiography acquired by mobile device. In Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine BIBM, Madrid, Spain, 3–6 December 2018. [Google Scholar] [CrossRef]
- Mirbagheri, M.; Hakimi, N.; Ebrahimzadeh, E.; Setarehdan, S.K. Quality analysis of heart rate derived from functional near-infrared spectroscopy in stress assessment. Inform. Med. Unlocked 2019, 18, 100286. [Google Scholar] [CrossRef]
- Satija, U.; Ramkumar, B.; Manikandan, M.S. A simple method for detection and classification of ECG noises for wearable ECG monitoring devices. In Proceedings of the 2nd International Conference on Signal Processing and Integrated Networks SPIN, Noida, India, 19–20 February 2015. [Google Scholar] [CrossRef]
- Lamba, P.; Rawal, K. A survey of algorithms for feature extraction and feature classification methods. In Proceedings of the 2019 International Conference on Automation, Computational and Technology Management (ICACTM), London, UK, 24–26 April 2019; pp. 338–341. [Google Scholar] [CrossRef]
- Butun, E.; Yildirim, O.; Talo, M.; Tan, R.-S.; Acharya, U.R. 1D-CADCapsNet: One dimensional deep capsule networks for coronary artery disease detection using ECG signals. Phys. Medica 2020, 70, 39–48. [Google Scholar] [CrossRef] [PubMed]
- ŞEN, S.Y.; ÖZKURT, N. ECG arrhythmia classification by using convolutional neural network and spectrogram. In Proceedings of the 2019 Innovations in Intelligent Systems and Applications Conference (ASYU), Izmir, Turkey, 31 October–2 November 2019; pp. 1–6. [Google Scholar]
- Shashikumar, S.P.; Shah, A.J.; Li, Q.; Clifford, G.D.; Nemati, S. A deep learning approach to monitoring and detecting atrial fibrillation using wearable technology. In Proceedings of the 2017 IEEE EMBS International Conference on Biomedical and Health Informatics BHI, Orlando, FL, USA, 16–19 February 2017. [Google Scholar] [CrossRef]
- Uddin, M.Z. A wearable sensor-based activity prediction system to facilitate edge computing in smart healthcare system. J. Parallel Distrib. Comput. 2019, 123, 46–53. [Google Scholar] [CrossRef]
- Carnevale, L.; Celesti, A.; Fazio, M.; Villari, M. A Big Data Analytics Approach for the Development of Advanced Cardiology Applications. Information 2020, 11, 60. [Google Scholar] [CrossRef] [Green Version]
- Krejcar, O.; Janckulik, D.; Motalova, L.; Musil, K.; Penhaker, M. Real time measurement and visualization of ECG on mobile monitoring stations of biotelemetric system. In Advances in Intelligent Information and Database Systems; Springer: Berlin, Germany, 2010; pp. 67–78. [Google Scholar]
- Medical Expo, the Online Medical Device Exhibition. Available online: https://www.medicalexpo.com/medical-manufacturer/electrocardiography-software-16421.html (accessed on 10 February 2020).
- Morak, J.; Kumpusch, H.; Hayn, D.; Leitner, M.; Scherr, D.; Fruhwald, F.M.; Schreier, G. Near field communication-based telemonitoring with integrated ECG recordings. Appl. Clin. Inform. 2011, 2, 481–498. [Google Scholar] [CrossRef] [Green Version]
- Venkatesan, C.; Karthigaikumar, P.; Satheeskumaran, S. Mobile cloud computing for ECG telemonitoring and real-time coronary heart disease risk detection. Biomed. Signal Process. Control 2018, 44, 138–145. [Google Scholar] [CrossRef]
- Wang, X.; Gui, Q.; Liu, B.; Jin, Z.; Chen, Y. Enabling smart personalized healthcare: A hybrid mobile-cloud approach for ECG telemonitoring. IEEE J. Biomed. Health Inform. 2014, 18, 739–745. [Google Scholar] [CrossRef]
- Benini, A.; Donati, M.; Iacopetti, F.; Fanucci, L. User-friendly single-lead ECG device for home telemonitoring applications. In Proceedings of the International Symposium on Medical Information and Communication Technology ISMICT, Firenze, Italy, 2–4 April 2014. [Google Scholar] [CrossRef]
- Al Hemairy, M.; Serhani, M.; Amin, S.; Alahmad, M. A Comprehensive Framework for Elderly Healthcare Monitoring in Smart Environment; Springer: Berlin/Heidelberg, Germany, 2018; pp. 113–140. [Google Scholar]
- Wang, Y.H.; Chung, C.G.; Lin, C.C.; Lin, C.M. The study of the electrocardiography monitoring for the elderly based on smart clothes. In Proceedings of the 8th International Conference on Information Science and Technology ICIST, Cordoba, Spain, 30 June–6 July 2018. [Google Scholar] [CrossRef]
- Mena, L.J.; Félix, V.G.; Ochoa, A.; Ostos, R.; González, E.; Aspuru, J.; Velarde, P.; Maestre, G.E. Mobile personal health monitoring for automated classification of electrocardiogram signals in elderly. Comput. Math. Methods Med. 2018, 2018, 9128054. [Google Scholar] [CrossRef] [Green Version]
- Drew, B.J.; Califf, R.M.; Funk, M.; Kaufman, E.S.; Krucoff, M.W.; Laks, M.M.; Macfarlane, P.W.; Sommargren, C.; Swiryn, S.; Van Hare, G.F. Practice standards for electrocardiographic monitoring in hospital settings: An American Heart Association scientific statement from the councils on cardiovascular nursing, clinical cardiology, and cardiovascular disease in the young. Circulation 2004, 110, 2721–2746. [Google Scholar] [CrossRef]
- Thorén, A.; Rawshani, A.; Herlitz, J.; Engdahl, J.; Kahan, T.; Djärv, T. ECG monitoring in in-hospital cardiac arrest (IHCA). Resuscitation 2019, 142, e13. [Google Scholar] [CrossRef]
- Mahdy, L.N.; Ezzat, K.A.; Tan, Q. Smart ECG Holter monitoring system using smartphone. In Proceedings of the 2018 IEEE International Conference on Internet of Things and Intelligence System IOTAIS, Bali, Indonesia, 1–3 November 2018. [Google Scholar] [CrossRef]
- Grond, M.; Jauss, M.; Hamann, G.; Stark, E.; Veltkamp, R.; Nabavi, D.; Horn, M.; Weimar, C.; Köhrmann, M.; Wachter, R.; et al. Improved detection of silent atrial fibrillation using 72-hour holter ecg in patients with ischemic stroke: A prospective multicenter cohort study. Stroke 2013, 44, 3357–3364. [Google Scholar] [CrossRef] [Green Version]
- Barrett, P.M.; Komatireddy, R.; Haaser, S.; Topol, S.; Sheard, J.; Encinas, J.; Fought, A.J.; Topol, E.J. Comparison of 24-hour Holter monitoring with 14-day novel adhesive patch electrocardiographic monitoring. Am. J. Med. 2014, 127, 95.e11–95.e17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber-Krüger, M.; Gelbrich, G.; Stahrenberg, R.; Liman, J.; Kermer, P.; Hamann, G.F.; Seegers, J.; Gröschel, K.; Wachter, R. Finding atrial fibrillation in stroke patients: Randomized evaluation of enhanced and prolonged Holter monitoring—Find-AFRANDOMISED—Rationale and design. Am. Heart J. 2014, 168, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, J.S.; Varma, N.; Cygankiewicz, I.; Aziz, P.; Balsam Pawełand Baranchuk, A.; Cantillon, D.J.; Dilaveris, P.; Dubner, S.J.; El-Sherif, N.; Krol, J.; et al. 2017 ISHNE-HRS expert consensus statement on ambulatory ECG and external cardiac monitoring/telemetry. Heart Rhythm 2017, 14, e55–e96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jebin, S.R.; Mohamedbeemubeen, N. Real time physiological status monitorinig through telemetry system for on-spot-accident patients using IoT. Int. J. Trend Sci. Res. Dev. 2019, 3, 1580–1583. [Google Scholar] [CrossRef]
- Yama, Y.; Ueno, A.; Uchikawa, Y. Development of a wireless capacitive sensor for ambulatory ECG monitoring over clothes. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology, Lyon, France, 23–26 August 2007; pp. 5727–5730. [Google Scholar] [CrossRef]
- Karaoğuz, M.R.; Yurtseven, E.; Aslan, G.; Deliormanlı, B.G.; Adıgüzel, Ö.; Gönen, M.; Li, K.M.; Yılmaz, E.N. The quality of ECG data acquisition, and diagnostic performance of a novel adhesive patch for ambulatory cardiac rhythm monitoring in arrhythmia detection. J. Electrocardiol. 2019, 54, 28–35. [Google Scholar] [CrossRef]
- Rachim, V.P.; Chung, W.Y. Wearable noncontact armband for mobile ECG monitoring system. IEEE Trans. Biomed. Circ. Syst. 2016, 10, 1112–1118. [Google Scholar] [CrossRef]
- Wang, Y.; Doleschel, S.; Wunderlich, R.; Heinen, S. A wearable wireless ECG monitoring system With dynamic transmission power control for long-term homecare. J. Med. Syst. 2015, 39. [Google Scholar] [CrossRef]
- Steinberg, C.; Sanchez, M.; Philippon, F.; O’Hara, G.; Molin, F.; Sarrazin, J.; Nault, I.; Blier, L.; Roy, K.; Plourde, B.; et al. A novel form of wearable ecg sensors for continuous ambulatory rhythm monitoring: Proof of concept and assessment of signal quality. Can. J. Cardiol. 2018, 34, S24–S25. [Google Scholar] [CrossRef] [Green Version]
- Bansal, A.; Kumar, S.; Bajpai, A.; Tiwari, V.N.; Nayak, M.; Venkatesan, S.; Narayanan, R. Remote health monitoring system for detecting cardiac disorders. IET Syst. Biol. 2015, 9, 309–314. [Google Scholar] [CrossRef]
- Tewary, S.; Chakraborty, S.; Majumdar, J.; Majumder, R.; Kundu, D.; Ghosh, S.; Das Gupta, S. A novel approach towards designing a wearable Smart Health Monitoring System measuring the vital parameters and emergency situations in real-time and providing the necessary medical care through telemedicine. In Proceedings of the 2016 IEEE Students’ Conference on Electrical, Electronics and Computer Science, SCEECS, Bhopal, India, 5–6 March 2016; pp. 1–8. [Google Scholar]
- Sarma Dhulipala, V.R.; Kanagachidambaresan, G.R. Cardiac care assistance using self configured sensor network—A remote patient monitoring system. J. Inst. Eng. Ser. B 2014, 95, 101–106. [Google Scholar] [CrossRef]
- Jovanov, E.; Raskovic, D.; Price, J.; Chapman, J.; Moore, A.; Krishnamurthy, A. Patient monitoring using personal area networks of wireless intelligent sensors. Biomed. Sci. Instrum. 2001, 37, 373–378. [Google Scholar] [PubMed]
- Polania, L.F.; Carrillo, R.E.; Blanco-Velasco, M.; Barner, K.E. Exploiting prior knowledge in compressed sensing wireless ECG systems. IEEE J. Biomed. Heath Inform. 2015, 19, 508–519. [Google Scholar] [CrossRef] [PubMed]
- Craven, D.; McGinley, B.; Kilmartin, L.; Glavin, M.; Jones, E. Energy-efficient Compressed Sensing for ambulatory ECG monitoring. Comput. Biol. Med. 2016, 71, 1–13. [Google Scholar] [CrossRef]
- Kanoun, K.; Mamaghanian, H.; Khaled, N.; Atienza, D. A real-time compressed sensing-based personal electrocardiogram monitoring system. In Proceedings of the 2011 Design, Automation and Test in Europe, Grenoble, France, 14–18 March 2011. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.; Rahman, T.; Ghani, N.H.; Hossain, S.; Uddin, J. IoT Based patient monitoring system using ECG sensor. In Proceedings of the 1st International Conference on Robotics, Electrical and Signal Processing Techniques ICREST, Dhaka, Bangladesh, 10–12 January 2019; pp. 378–382. [Google Scholar] [CrossRef]
- Singh, P.; Jasuja, A. IoT based low-cost distant patient ECG monitoring system. In Proceedings of the IEEE International Conference on Computing, Communication and Automation ICCCA, Greater Noida, India, 5–6 May 2017; pp. 1330–1334. [Google Scholar] [CrossRef]
- Sobya, D.; Muruganandham, S.K.; Nallusamy, S.; Chakraborty, P.S. Wireless ECG monitoring system using IoT based signal conditioning module for real time signal acquisition. Indian J. Public Health Res. Dev. 2018, 9, 294–299. [Google Scholar] [CrossRef]
- Jara, A.J.; Zamora-Izquierdo, M.A.; Skarmeta, A.F. Interconnection framework for mHealth and remote monitoring based on the internet of things. IEEE J. Sel. Areas Commun. 2013, 31, 47–65. [Google Scholar] [CrossRef]
- Mohanraj, K.; Balaji, N.; Chithrakkannan, R. IoT based patient monitoring system using raspberry pi 3 and Lab view. Pak. J. Biotechnol. 2017, 14, 337–343. [Google Scholar]
- Granados, J.; Westerlund, T.; Zheng, L.; Zou, Z. IoT platform for real-time multichannel ECG monitoring and classification with neural networks. Lect. Notes Bus. Inf. Process. 2018, 310, 181–191. [Google Scholar] [CrossRef]
- Villarrubia, G.; Bajo, J.; De Paz, J.F.; Corchado, J.M. Monitoring and detection platform to prevent anomalous situations in home care. Sensors 2014, 14, 9900–9921. [Google Scholar] [CrossRef] [Green Version]
- Akrivopoulos, O.; Amaxilatis, D.; Mavrommati, I.; Chatzigiannakis, I. Utilising fog computing for developing a person-centric heart monitoring system. In Proceedings of the 2018 International Conference on Intelligent Environments IE, Rome, Italy, 25–28 June 2018. [Google Scholar] [CrossRef]
- Ji, C.; Liu, F.; Wang, Z.; Li, Y.; Qi, C.; Li, Z. Mobile cloud ECG intelligent monitoring and data processing system. In Proceedings of the 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services Healthcom, Dalian, China, 12–15 October 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Chatzigiannakis, I.; Valchinov, E.S.; Antoniou, A.; Kalogeras, A.; Alexakos, C.; Konstantinopoulos, P. Advanced observation and telemetry heart system utilizing wearable ECG device and a Cloud platform. In Proceedings of the IEEE Symposium on Computers and Communications, Larnaca, Cyprus, 6–9 July 2016; pp. 25–30. [Google Scholar] [CrossRef] [Green Version]
- Aljuaid, M.; Marashly, Q.; AlDanaf, J.; Tawhari, I.; Barakat, M.; Barakat, R.; Zobell, B.; Cho, W.; Chelu, M.G.; Marrouche, N.F. Smartphone ECG monitoring system helps lower emergency room and clinic visits in post–atrial fibrillation ablation patients. Clin. Med. Insights Cardiol. 2020, 14. [Google Scholar] [CrossRef] [Green Version]
- Phan, D.; Siong, L.Y.; Pathirana, P.N.; Seneviratne, A. Smartwatch: Performance evaluation for long-term heart rate monitoring. In Proceedings of the 4th International Symposium on Bioelectronics and Bioinformatics ISBB, Beijing, China, 14–17 October 2015. [Google Scholar] [CrossRef]
- Li, X.; Sun, Y. NCMB-Button: A wearable non-contact system for long-term multiple biopotential monitoring. In Proceedings of the 2017 2nd IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Philadelphia, PA, USA, 17–19 July 2017; pp. 348–355. [Google Scholar]
- Bambang-Oetomo, S.; Feijs, L.; Cluitmans, P.J.M. Designing for reliable textile neonatal ECG monitoring using multi-sensor recordings Medical Simulations View project DOCHANGE View project. IEEE Eng. Med. Biol. Soc. 2011, 2011, 2488–2491. [Google Scholar] [CrossRef]
- Bouwstra, S.; Chen, W.; Feijs, L.; Oetomo, S.B. Smart jacket design for neonatal monitoring with wearable sensors. In Proceedings of the 2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks, Berkeley, CA, USA, 3–5 June 2009. [Google Scholar]
- Attin, M.; Feld, G.; Lemus, H.; Najarian, K.; Shandilya, S.; Wang, L.; Sabouriazad, P.; Lin, C.D. Electrocardiogram characteristics prior to in-hospital cardiac arrest. J. clin. Monit. Comput. 2015, 29, 385–392. [Google Scholar]
- Rafiq, S.; Alam, A.H.M.Z.; Islam, M.R. Development of ECG home monitoring system. In Proceedings of the 2017 IEEE Regional Symposium on Micro and Nanoelectronics RSM, Penang, Malaysia, 23–25 August 2017; pp. 80–83. [Google Scholar] [CrossRef]
- Brugarolas, R.; Latif, T.; Dieffenderfer, J.; Walker, K.; Yuschak, S.; Sherman, B.L.; Roberts, D.L.; Bozkurt, A. Wearable heart rate sensor systems for wireless canine health monitoring. IEEE Sens. J. 2015, 16, 3454–3464. [Google Scholar] [CrossRef]
- Bianchi, A.M.; Di Milano, P.; Politecnico, S.C.; Milano, D.; Mendez, M.O.; Cerutti, S. Processing of signals recorded through smart devices: Sleep-quality assessment central nervous system view project LINK-Linking excellence in biomedical knowledge and computational intelligence research for personalized management of CVD within PHC View p. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 741. [Google Scholar] [CrossRef] [PubMed]
- Tao, X.; Huang, T.; Shen, C.; Ko, Y.; Jou, G.; Koncar, V. Bluetooth low energy-based washable wearable activity motion and electrocardiogram textronic monitoring and communicating system. Adv. Mater. Technol. 2018, 3, 1700309. [Google Scholar] [CrossRef]
- Ankhili, A.; Tao, X.; Cochrane, C.; Coulon, D.; Koncar, V. Washable and reliable textile electrodes embedded into underwear fabric for electrocardiography (ECG) monitoring. Materials 2018, 11, E256. [Google Scholar] [CrossRef] [Green Version]
- Yoon, Y.; Cho, J.H.; Yoon, G. Non-constrained blood pressure monitoring using ECG and PPG for personal healthcare. J. Med. Syst. 2009, 33, 261–266. [Google Scholar] [CrossRef]
- Lee, H.E.; Wang, W.C.; Lu, S.W.; Wu, B.Y.; Ko, L.W. Home-based mobile cardio-pulmonary rehabilitation consultant system. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBC, Boston, MA, USA, 30 August – 3 September 2011; pp. 989–992. [Google Scholar] [CrossRef]
- Ravanshad, N.; Rezaee-Dehsorkh, H. An event-based ECG-monitoring and QRS-detection system based on level-crossing sampling. In Proceedings of the 2017 25th Iranian Conference on Electrical Engineering ICEE, Tehran, Iran, 2–4 May 2017; pp. 302–307. [Google Scholar]
- Ravanshad, N.; Rezaee-Dehsorkh, H.; Lotfi, R.; Lian, Y. A level-crossing based QRS-detection algorithm for wearable ECG sensors. IEEE J. Biomed. Health Inform. 2014, 18, 183–192. [Google Scholar] [CrossRef]
- Fensli, R.; Gunnarson, E.; Gundersen, T. A wearable ECG-recording system for continuous arrhythmia monitoring in a wireless tele-home-care situation. In Proceedings of the IEEE Symposium on Computer-Based Medical Systems, Dublin, Ireland, 23–24 June 2005; pp. 407–412. [Google Scholar]
- Ruwald, M.H.; Zareba, W. ECG monitoring in syncope. Prog. Cardiovasc. Dis. 2013, 56, 203–210. [Google Scholar] [CrossRef]
- Viskin, S.; Postema, P.G.; Bhuiyan, Z.A.; Rosso, R.; Kalman, J.M.; Vohra, J.K.; Guevara-Valdivia, M.E.; Marquez, M.F.; Kogan, E.; Belhassen, B. The response of the QT interval to the brief tachycardia provoked by standing: a bedside test for diagnosing long QT syndrome. J. Am. Coll. Cardiol. 2010, 55, 1955–1961. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.-X.; Tian, X.-W.; Lim, J.S. New algorithm for the depression diagnosis using HRV: A neuro-fuzzy approach. In Proceedings of the International Symposium on Bioelectronics and Bioinformations, Suzhou, China, 3–5 November 2011; pp. 283–286. [Google Scholar]
- Yin, L.; Chen, Y.; Ji, W. A novel method of diagnosing coronary heart disease by analysing ECG signals combined with motion activity. In Proceedings of the 2011 IEEE International Workshop on Machine Learning for Signal Processing, Santander, Spain, 18–21 September 2011; pp. 1–5. [Google Scholar]
- Garudadri, H.; Chi, Y.; Baker, S.; Majumdar, S.; Baheti, P.K.; Ballard, D. Diagnostic grade wireless ECG monitoring. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBS, Boston, USA, 30 August – 3 September 2011; pp. 850–855. [Google Scholar] [CrossRef]
- Abo-Zahhad, M.; Ahmed, S.M.; Elnahas, O. A wireless emergency telemedicine system for patients monitoring and diagnosis. Int. J. Telemed. Appl. 2014, 2014, 380787. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Zhang, J.; Zhu, H.; Wang, L.; Liu, X.; Li, Z. A remote diagnosis service platform for wearable ECG monitors. IEEE Intell. Syst. 2012, 27, 36–43. [Google Scholar] [CrossRef]
- Knoery, C.R.; Bond, R.; Iftikhar, A.; Rjoob, K.; McGilligan, V.; Peace, A.; Heaton, J.; Leslie, S.J. SPICED-ACS: Study of the potential impact of a computer-generated ECG diagnostic algorithmic certainty index in STEMI diagnosis: Towards transparent AI. J. Electrocardiol. 2019, 57, S86–S91. [Google Scholar] [CrossRef] [PubMed]
- Calzone, R.; Pagana, G.; Perez, M.D.; Augustine, R. Innovations in biomedicine: Measuring physiological parameters becomes as simple as applying a plaster on the body. In Proceedings of the 2019 21st International Conference on Electromagnetics in Advanced Applications ICEAA, Granada, Spain, 9–13 September 2019. [Google Scholar] [CrossRef]
- Fensli, R.; Gundersen, T.; Snaprud, T.; Hejlesen, O. Clinical evaluation of a wireless ECG sensor system for arrhythmia diagnostic purposes. Med. Eng. Phys. 2013, 35, 697–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aldana Blanco, A.L.; Grautoff, S.; Hermann, T. CardioSounds: Real-time auditory assistance for supporting cardiac diagnostic and monitoring. ACM Int. Conf. Proc. Ser. 2017, Part F1319, 4–7. [Google Scholar] [CrossRef]
- Chen, Y.P.; Jeon, D.; Lee, Y.; Kim, Y.; Foo, Z.; Lee, I.; Langhals, N.B.; Kruger, G.; Oral, H.; Berenfeld, O.; et al. An injectable 64 nW ECG mixed-signal SoC in 65 nm for arrhythmia monitoring. IEEE J. Solid State Circ. 2015, 50, 375–390. [Google Scholar] [CrossRef]
- Huang, Y.-P.; Huang, C.-Y.; Liu, S.-I. Hybrid intelligent methods for arrhythmia detection and geriatric depression diagnosis. Appl. Soft Comput. 2014, 14, 38–46. [Google Scholar] [CrossRef]
- Chen, X.; Ji, J.; Loparo, K.; Li, P. Real-time personalized cardiac arrhythmia detection and diagnosis: A cloud computing architecture. In Proceedings of the 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Orlando, FL, USA, 16–19 February 2017; pp. 201–204. [Google Scholar]
- Dziubiński, M. PocketECG: A new continuous and real-time ambulatory arrhythmia diagnostic method. Cardiol. J. 2011, 18, 454–460. [Google Scholar]
- Lip, G.Y.H.; Hunter, T.D.; Quiroz, M.E.; Ziegler, P.D.; Turakhia, M.P. Atrial fibrillation diagnosis timing, ambulatory ECG monitoring utilization, and risk of recurrent stroke. Circ. Cardiovasc. Qual. Outcomes 2017, 10, e002864. [Google Scholar] [CrossRef]
- Uittenbogaart, S.B.; Verbiest-van Gurp, N.; Erkens, P.M.G.; Lucassen, W.A.M.; Knottnerus, J.A.; Winkens, B.; van Weert, H.C.P.M.; Stoffers, H.E.J.H. Detecting and diagnosing atrial fibrillation (D 2 AF): study protocol for a cluster randomised controlled trial. Trials 2015, 16, 478. [Google Scholar] [CrossRef] [Green Version]
- Borowsky, L.H.; Regan, S.; Chang, Y.; Ayres, A.; Greenberg, S.M.; Singer, D.E. First diagnosis of atrial fibrillation at the time of stroke. Cerebrovasc. Dis. 2017, 43, 192–199. [Google Scholar] [CrossRef]
- Sufi, F.; Khalil, I. Diagnosis of cardiovascular abnormalities from compressed ECG: A data mining-based approach. IEEE Trans. Inf. Technol. Biomed. 2010, 15, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Tinnakornsrisuphap, T.; Billo, R.E. An interoperable system for automated diagnosis of cardiac abnormalities from electrocardiogram data. IEEE J. Biomed. Health inform. 2014, 19, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Hadjem, M.; Salem, O.; Nait-Abdesselam, F. An ECG monitoring system for prediction of cardiac anomalies using WBAN. In Proceedings of the 2014 IEEE 16th International Conference on e-Health Networking, Applications and Services Healthcom, Natal, Brazil, 15–18 October 2014. [Google Scholar] [CrossRef] [Green Version]
- Perego, P.; Moltani, A.; Andreoni, G. Sport monitoring with smart wearable system. Stud. Health Technol. Inform. 2012, 177, 224–228. [Google Scholar] [PubMed]
- Peritz, D.C.; Howard, A.; Ciocca, M.; Chung, E.H. Smartphone ECG aids real time diagnosis of palpitations in the competitive college athlete. J. Electrocardiol. 2015, 48, 896–899. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Zhou, Y.; Fang, Y.; Liu, H. ECG-Enhanced multi-sensor solution for wearable sports devices. In Proceedings of the 2018 IEEE International Conference on Systems, Man, and Cybernetics SMC, Miyazaki, Japan, 7–10 October 2018. [Google Scholar]
- Sun, F.; Yi, C.; Li, W.; Li, Y. A wearable H-shirt for exercise ECG monitoring and individual lactate threshold computing. Comput. Ind. 2017, 92–93, 1–11. [Google Scholar] [CrossRef]
- Pollonini, L.; Re, R.; Simpson, R.J.; Dacso, C.C. Integrated device for the measurement of systemic and local oxygen transport during physical exercise. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 3760–3763. [Google Scholar]
- Gouttebarge, V.; Andersen, T.E.; Cowie, C.; Goedhart, E.; Jorstad, H.; Kemp, S.; Königs, M.; Maas, M.; Orhant, E.; Rantanen, J.; et al. Monitoring the health of transitioning professional footballers: Protocol of an observational prospective cohort study. BMJ Open Sport Exerc. Med. 2019, 5, 1–10. [Google Scholar] [CrossRef]
- Jung, S.J.; Shin, H.S.; Chung, W.Y. Driver fatigue and drowsiness monitoring system with embedded electrocardiogram sensor on steering wheel. IET Intell. Transp. Syst. 2014, 8, 43–50. [Google Scholar] [CrossRef]
- Matsuda, T.; Makikawa, M. ECG monitoring of a car driver using capacitively-coupled electrodes. In Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS’08—“Personalized Healthcare through Technology, Vancouver, BC, Canada, 20–25 August 2008. [Google Scholar] [CrossRef]
- Sun, Y.; Yu, X. An innovative nonintrusive driver assistance system for vital signal monitoring. IEEE J. Biomed. Health Inform. 2014, 18, 1923–1929. [Google Scholar] [CrossRef]
- Zeng, C.; Wang, W.; Chen, C.; Zhang, C.; Cheng, B. Poincaré plot indices of heart rate variability for monitoring driving fatigue. In Proceedings of the CICTP 2019: Transportation in China—Connecting the World - Proceedings of the 19th COTA International Conference of Transportation Professionals; Jiangsu, China, 6–8 July 2019, pp. 652–660. [CrossRef]
- Shin, H.S.; Jung, S.J.; Kim, J.J.; Chung, W.Y. Real time car driver’s condition monitoring system. In Proceedings of the IEEE Sensors, Kona, HI, USA, 1–4 November 2010. [Google Scholar] [CrossRef]
- Trenta, F.; Conoci, S.; Rundo, F.; Battiato, S. Advanced motion-tracking system with multi-layers deep learning framework for innovative car-driver drowsiness monitoring. In Proceedings of the Proceedings - 14th IEEE International Conference on Automatic Face and Gesture Recognition FG, Lille, France, 14–18 May 2019. [Google Scholar] [CrossRef]
- De Nadai, S.; D’Incà, M.; Parodi, F.; Benza, M.; Trotta, A.; Zero, E.; Zero, L.; Sacile, R. Enhancing safety of transport by road by on-line monitoring of driver emotions. In Proceedings of the 2016 11th System of Systems Engineering Conference (SoSE), Kongsberg, Norway, 12–16 June 2016; pp. 1–4. [Google Scholar]
- Kumari, P.; Mathew, L.; Syal, P. Increasing trend of wearables and multimodal interface for human activity monitoring: A review. Biosens. Bioelectron. 2017, 90, 298–307. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, S.H.; Ha, K.S.; Jang, H.C.; Chung, W.Y.; Kim, J.Y.; Chang, Y.S.; Yoo, D.H. Ubiquitous healthcare service using Zigbee and mobile phone for elderly patients. Int. J. Med. Inform. 2009, 78, 193–198. [Google Scholar] [CrossRef]
- Fan, X.; Zhao, Y.; Wang, H.; Tsui, K.L. Forecasting one-day-forward wellness conditions for community-dwelling elderly with single lead short electrocardiogram signals. BMC Med. Inform. Decis. Mak. 2019, 19, 285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valchinov, E.; Antoniou, A.; Rotas, K.; Pallikarakis, N. Wearable ECG system for health and sports monitoring. In Proceedings of the 2014 4th International Conference on Wireless Mobile Communication and Healthcare-Transforming Healthcare Through Innovations in Mobile and Wireless Technologies (MOBIHEALTH), Athens, Greece, 3–5 November 2014; pp. 63–66. [Google Scholar]
- Walinjkar, A.; Woods, J. ECG classification and prognostic approach towards personalized healthcare. In Proceedings of the 2017 International Conference On Social Media, Wearable And Web Analytics, Social Media, London, UK, 19–20 June 2017. [Google Scholar] [CrossRef] [Green Version]
- Katritsis, D.G.; Siontis, G.C.M.; Camm, A.J. Prognostic significance of ambulatory ECG monitoring for ventricular arrhythmias. Prog. Cardiovasc. Dis. 2013, 56, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Benchaira, K.; Bitam, S.; Mellouk, A.; Tahri, A.; Okbi, R. AfibPred: A Novel Atrial Fibrillation Prediction Approach Based on Short Single-Lead ECG Using Deep Transfer Knowledge. In Proceedings of the 4th International Conference on Big Data and Internet of Things, Tangier-Tetuan, Morocco, 23–24 October 2019; pp. 1–6. [Google Scholar]
- El Halabi, N.; Daou, R.A.Z.; Achkar, R.; Hayek, A.; Borcsok, J. Monitoring system for prediction and detection of epilepsy seizure. In Proceedings of the 2019 4th International Conference on Advances in Computational Tools for Engineering Applications ACTEA, Beirut, Lebanon, 3–5 July 2019. [Google Scholar] [CrossRef]
- Behbahani, S.; Dabanloo, N.J.; Nasrabadi, A.M.; Dourado, A. Prediction of epileptic seizures based on heart rate variability. Technol. Health Care 2016, 24, 795–810. [Google Scholar] [CrossRef] [PubMed]
- Barison, A.; Del Torto, A.; Chiappino, S.; Aquaro, G.D.; Todiere, G.; Vergaro, G.; Passino, C.; Lombardi, M.; Emdin, M.; Masci, P.G. Prognostic significance of myocardial extracellular volume fraction in nonischaemic dilated cardiomyopathy. J. Cardiovasc. Med. 2015, 16, 681. [Google Scholar] [CrossRef] [PubMed]
- Massoullié, G.; Bordachar, P.; Irles, D.; Caussin, C.; Da Costa, A.; Defaye, P.; Jean, F.; Mechulan, A.; Mondoly, P.; Souteyrand, G. Prognosis assessment of persistent left bundle branch block after TAVI by an electrophysiological and remote monitoring risk-adapted algorithm: Rationale and design of the multicentre LBBB–TAVI study. BMJ Open 2016, 6, e010485. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Koh, Z.X.; Chua, E.C.-P.; Tan, L.M.-L.; Lin, Z.; Mirza, B.; Ong, M.E.H. Risk scoring for prediction of acute cardiac complications from imbalanced clinical data. IEEE J. Biomed. Health Inform. 2014, 18, 1894–1902. [Google Scholar] [CrossRef]
- Liu, N.; Koh, Z.X.; Goh, J.; Lin, Z.; Haaland, B.; Ting, B.P.; Ong, M.E.H. Prediction of adverse cardiac events in emergency department patients with chest pain using intelligent variable selection and heart rate variability. BMC Med. Inform. Decis. Mak. 2014, 14, 75. [Google Scholar] [CrossRef] [Green Version]
- Nikolaiev, S.; Timoshenko, Y. Reinvention of the cardiovascular diseases prevention and prediction due to ubiquitous convergence of mobile apps and machine learning. In Proceedings of the 2015 Information Technologies in Innovation Business Conference (ITIB), Kharkiv, Ukraine, 7–9 October 2015; pp. 23–26. [Google Scholar]
- Forkan, A.R.M.; Hu, W. A context-aware, predictive and protective approach for wellness monitoring of cardiac patients. In Proceedings of the 2016 Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 11–14 September 2016; pp. 369–372. [Google Scholar]
- Bazan, J.G.; Buregwa-Czuma, S.; Pardel, P.W.; Bazan-Socha, S.; Sokołowska, B.; Dziedzina, S. Predicting the presence of serious coronary artery disease based on 24 hour Holter ECG monitoring. In Transactions on Rough Sets XIX; Springer: Berelin, Germany, 2015; pp. 95–113. [Google Scholar]
- Gupta, N.; Haft, J.I.; Bajaj, S.; Samuel, A.; Parikh, R.; Pandya, D.; Shamoon, F. Role of the combined CHADS2 score and echocardiographic abnormalities in predicting stroke in patients with paroxysmal atrial fibrillation. J. Clin. Neurosci. 2012, 19, 1242–1245. [Google Scholar] [CrossRef]
- Siriphuwanun, V.; Punjasawadwong, Y.; Lapisatepun, W.; Charuluxananan, S.; Uerpairojkit, K. Prognostic factors for death and survival with or without complications in cardiac arrest patients receiving CPR within 24 hours of anesthesia for emergency surgery. Risk Manag. Healthc. Policy 2014, 7, 199. [Google Scholar]
- Jing, B.; Zhang, T.; Wang, Z.; Jin, Y.; Liu, K.; Qiu, W.; Ke, L.; Sun, Y.; He, C.; Hou, D.; et al. A deep survival analysis method based on ranking. Artif. Intell. Med. 2019, 98, 1–9. [Google Scholar] [CrossRef]
- Biagini, E.; Pazzi, C.; Olivotto, I.; Musumeci, B.; Limongelli, G.; Boriani, G.; Pacileo, G.; Mastromarino, V.; Reggiani, M.L.B.; Lorenzini, M. Usefulness of electrocardiographic patterns at presentation to predict long-term risk of cardiac death in patients with hypertrophic cardiomyopathy. Am. J. Cardiol. 2016, 118, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Zamanifar, A.; Nazemi, E. An approach for predicting health status in IoT health care. J. Netw. Comput. Appl. 2019, 134, 100–113. [Google Scholar] [CrossRef]
- Mansouri, S.; Farahmand, F.; Vossoughi, G.; Ghavidel, A.A. A comprehensive multimodality heart motion prediction algorithm for robotic-assisted beating heart surgery. Int. J. Med. Robot. Comput. Assist. Surg. 2019, 15, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Bie, R.; Zhang, G.; Sun, Y.; Xu, S.; Li, Z.; Song, H. Smart assisted diagnosis solution with multi-sensor Holter. Neurocomputing 2017, 220, 67–75. [Google Scholar] [CrossRef]
- Somanna, J.; Joshi, D.; Gundu, H.; Srinivasa, G. Automated classification of sleep apnea and hypopnea on polysomnography data. In Proceedings of the 2019 12th Biomedical Engineering International Conference (BMEiCON), Laos, Thailand, 18–21 December 2019; pp. 1–5. [Google Scholar]
- Fahruzi, I.; Purnama, I.K.E.; Purnomo, M.H. Screening of non-overlapping apnea and non-apnea from single lead ECG-apnea recordings using time-frequency approach. In Proceedings of the 2019 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM), Surabaya City, Indonesia, 19–20 November 2019; pp. 1–6. [Google Scholar]
- Chen, Z.; Tian, F.; Zhao, Q.; Hu, B. A Non-contact and unconstrained sleep health monitoring system. In Proceedings of the International Conference on Human Centered Computing, Čačak, Serbia, 5–9 August 2019; pp. 56–66. [Google Scholar]
- Pirbhulal, S.; Samuel, O.W.; Wu, W.; Sangaiah, A.K.; Li, G. A joint resource-aware and medical data security framework for wearable healthcare systems. Futur. Gener. Comput. Syst. 2019, 95, 382–391. [Google Scholar] [CrossRef]
- Yu, B.; Xu, L.; Li, Y. Bluetooth Low Energy (BLE) based mobile electrocardiogram monitoring system. In Proceedings of the 2012 IEEE International Conference on Information and Automation ICIA, Shenyang, China, 6–8 June 2012. [Google Scholar] [CrossRef]
- Mahmud, M.S.; Wang, H.; Esfar-E-Alam, A.M.; Fang, H. A wireless health monitoring system using mobile phone accessories. IEEE Intern. Things J. 2017, 4, 2009–2018. [Google Scholar] [CrossRef]
- Nia, A.M.; Mozaffari-Kermani, M.; Sur-Kolay, S.; Raghunathan, A.; Jha, N.K. Energy-efficient long-term continuous personal health monitoring. IEEE Trans. Multi Scale Comput. Syst. 2015, 1, 85–98. [Google Scholar] [CrossRef]
- Ma, T.; Shrestha, P.L.; Hempel, M.; Peng, D.; Sharif, H.; Chen, H.-H. Assurance of energy efficiency and data security for ECG transmission in BASNs. IEEE Trans. Biomed. Eng. 2012, 59, 1041–1048. [Google Scholar]
- Altini, M.; Polito, S.; Penders, J.; Kim, H.; Van Helleputte, N.; Kim, S.; Yazicioglu, F. An ECG patch combining a customized ultra-low-power ECG SoC with Bluetooth low energy for long term ambulatory monitoring. In Proceedings of the 2nd Conference on Wireless Health, San Diego, CA, USA, 5–9 August 2011; pp. 1–2. [Google Scholar]
- Zhou, B.; Chen, X.; Hu, X.; Ren, R.; Tan, X.; Fang, Z.; Xia, S. A Bluetooth low energy approach for monitoring electrocardiography and respiration. In Proceedings of the 2013 IEEE 15th International Conference on e-Health Networking, Applications and Services (Healthcom 2013), Lisbon, Portugal, 9–12 October 2013; pp. 130–134. [Google Scholar]
- Touati, F.; Erdene-Ochir, O.; Mehmood, W.; Hassan, A.; Mnaouer, A.B.; Gaabab, B.; Rasid, M.F.A.; Khriji, L. An experimental performance evaluation and compatibility study of the Bluetooth low energy based platform for ECG monitoring in WBANs. Int. J. Distrib. Sens. Netw. 2015, 11, 645781. [Google Scholar] [CrossRef]
- Chen, X.; Xie, J.; Fang, Z.; Xia, S. Low power electrocardiography and impedance cardiography detection system based on labview and bluetooth low energy. In Proceedings of the 2015 IET International Conference on Biomedical Image and Signal Processing (ICBISP 2015), Beijing, China, 19 November 2015. [Google Scholar] [CrossRef]
- Pandya, U.T.; Desai, U.B. Feasibility study of filtering algorithms for low cost wireless physiological monitoring system. In Proceedings of the 2011 2nd International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology (Wireless VITAE), Chennai, India, 28 February–3 March 2011; pp. 1–6. [Google Scholar]
- Nabar, S.; Banerjee, A.; Gupta, S.K.S.; Poovendran, R. GeM-REM: Generative model-driven resource efficient ECG monitoring in body sensor networks. In Proceedings of the 2011 International Conference on Body Sensor Networks, Dallas, TX, USA, 23–25 May 2011; pp. 1–6. [Google Scholar]
- Samie, F.; Tsoutsouras, V.; Xydis, S.; Bauer, L.; Soudris, D.; Henkel, J. Distributed QoS management for internet of things under resource constraints. In Proceedings of the Eleventh IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, Pittsburgh, PA, USA, 11–16 October 2016; pp. 1–10. [Google Scholar]
- Pathak, S.; Kumar, M.; Mohan, A.; Kumar, B. Energy optimization of zigBee based WBAN for patient monitoring. Procedia Comput. Sci. 2015, 70, 414–420. [Google Scholar] [CrossRef] [Green Version]
- Milis, M.; Michaelides, K.; Kounoudes, A.; Ansaloni, G.; Atienza, D.; Giroud, F.; Ruedi, P.-F.; Masson, F. IcyHeart: Highly integrated ultra-low-power SoC solution for unobtrusive and energy efficient wireless cardiac monitoring: Research project for the benefit of specific groups (FP7, Capacities). In Proceedings of the 2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE), Chania, Greece, 11–13 November 2012; pp. 105–109. [Google Scholar]
- Sudha, G.; Karthik, S.; Kumar, N.S. Activity aware energy efficient priority based multi patient monitoring adaptive system for body sensor networks. Technol. Health Care 2014, 22, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Aldammas, M.A.; Tabbabi, E.; Soudani, A. Low-Energy ECG Processing for Accurate Features’ Extraction in Wireless Body Sensor Networks. In Proceedings of the 2nd International Conference on Computer Applications and Information Security ICCAIS, Riyadh, Saudi Arabia, 1–3 May 2019. [Google Scholar] [CrossRef]
- Ferretti, L.; Ansaloni, G.; Pozzi, L.; Aminifar, A.; Atienza, D.; Cammoun, L.; Ryvlin, P. Tailoring SVM inference for resource-efficient ECG-based epilepsy monitors. In Proceedings of the 2019 Design, Automation and Test in Europe Conference and Exhibition DATE, Florence, Italy, 25–29 March 2019. [Google Scholar] [CrossRef]
- Huang, H.; Hu, S.; Sun, Y. Energy-Efficient ECG Signal Compression for User Data Input in Cyber-Physical Systems by Leveraging Empirical Mode Decomposition. ACM Trans. Cyber Phys. Syst. 2019, 3, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Jung, T.-P.; Makeig, S.; Rao, B.D. Compressed sensing for energy-efficient wireless telemonitoring of noninvasive fetal ECG via block sparse Bayesian learning. IEEE Trans. Biomed. Eng. 2012, 60, 300–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bortolotti, D.; Bartolini, A.; Mangia, M.; Rovatti, R.; Setti, G.; Benini, L. Energy-aware bio-signal compressed sensing reconstruction: FOCUSS on the WBSN-gateway. In Proceedings of the 2015 IEEE 9th International Symposium on Embedded Multicore/Many-core Systems-on-Chip, Turin, Italy, 23–25 September 2015; pp. 120–126. [Google Scholar]
- Biswas, D.; Mazomenos, E.B.; Maharatna, K. ECG compression for remote healthcare systems using selective thresholding based on energy compaction. In Proceedings of the 2012 International Symposium on Signals, Systems, and Electronics (ISSSE), Potsdam, Germany, 3–5 October 2012; pp. 1–6. [Google Scholar]
- Bortolotti, D.; Mangia, M.; Bartolini, A.; Rovatti, R.; Setti, G.; Benini, L. Energy-aware bio-signal compressed sensing reconstruction on the WBSN-gateway. IEEE Trans. Emerg. Top. Comput. 2016, 6, 370–381. [Google Scholar] [CrossRef]
- Gavriel, C.; Parker, K.H.; Faisal, A.A. Smartphone as an ultra-low cost medical tricorder for real-time cardiological measurements via ballistocardiography. In Proceedings of the 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Turin, Italy, 23–25 September 2015; pp. 1–6. [Google Scholar]
- Rebolledo-Nandi, Z.; Chavez-Olivera, A.; Cuevas-Valencia, R.E.; Alarcon-Paredes, A.; Alonso, G.A. Design of a versatile low cost mobile health care monitoring system using an android application. In Proceedings of the 2015 Pan American Health Care Exchanges (PAHCE), Vina del Mar, Chile, 23–28 March 2015; pp. 1–4. [Google Scholar]
- Abrar, S.; Aziz, U.S.; Choudhry, F.; Mansoor, A. Design and implementation of an embedded system for transmitting human ECG and web server for emergency services and remote health monitoring: A low cost ECG signal simulator and its transmitter, to send and store data in electronic databases, in remote l. In Proceedings of the 2012 International Conference on Open Source Systems and Technologies, Lahore, Pakistan, 20–22 December 2012; pp. 1–6. [Google Scholar]
- Deb, S.; Islam, S.M.R.; Robaiatmou, J.; Islam, M.T. Design and implementation of low Cost ECG monitoring system for the patient using smart device. In Proceedings of the ECCE 2017—International Conference on Electrical, Computer and Communication Engineering, Cox’s Bazar, Bangladesh, 16–18 February 2017. [Google Scholar] [CrossRef]
- Krachunov, S.; Beach, C.; Casson, A.J.; Pope, J.; Fafoutis, X.; Piechocki, R.J.; Craddock, I. Energy efficient heart rate sensing using a painted electrode ECG wearable. In Proceedings of the GIoTS 2017—Global Internet of Things Summit, Geneva, Switzerland, 6–9 June 2017. [Google Scholar] [CrossRef] [Green Version]
- Nguyen Gia, T.; Jiang, M.; Sarker, V.K.; Rahmani, A.M.; Westerlund, T.; Liljeberg, P.; Tenhunen, H. Low-cost fog-assisted health-care IoT system with energy-efficient sensor nodes. In Proceedings of the 2017 13th International Wireless Communications and Mobile Computing Conference IWCMC, Valencia, Spain, 26–30 June 2017. [Google Scholar] [CrossRef]
- Preučil, T.; Novotný, M. Low-cost portable ECG. In Proceedings of the 2019 8th Mediterranean Conference on Embedded Computing MECO, Budva, Montenegro, 10–14 June 2019. [Google Scholar] [CrossRef]
- Alhalabi, W. Patient monitoring at home using 32-channel cost-effective data acquisition device. Telemat. Inform. 2018, 35, 883–891. [Google Scholar] [CrossRef]
- Piuzzi, E.; Pisa, S.; Pittella, E.; Podestà, L.; Sangiovanni, S. Low-cost and portable impedance plethysmography system for the simultaneous detection of respiratory and heart activities. IEEE Sens. J. 2018, 19, 2735–2746. [Google Scholar] [CrossRef]
- Yong, J.H.E.; Thavorn, K.; Hoch, J.S.; Mamdani, M.; Thorpe, K.E.; Dorian, P.; Sharma, M.; Laupacis, A.; Gladstone, D.J. Potential Cost-Effectiveness of Ambulatory Cardiac Rhythm Monitoring after Cryptogenic Stroke. Stroke 2016, 47, 2380–2385. [Google Scholar] [CrossRef]
- Steinhubl, S.R.; Edwards, A.M.; Waalen, J.; Zambon, R.; Mehta, R.; Ariniello, L.; Ebner, G.; Baca-Motes, K.; Carter, C.; Felicione, E.; et al. Healthcare resource UTILIZATION associated with electrocardiograph (ECG) sensor patch screening for atrial fibrillation (AF): Results from the mhealth screening to prevent strokes (MSTOPS) trial. J. Am. Coll. Cardiol. 2019, 73, 296. [Google Scholar] [CrossRef]
- Wang, H.; Peng, D.; Wang, W.; Sharif, H.; Chen, H.H.; Khoynezhad, A. Resource-aware secure ECG healthcare monitoring through body sensor networks. IEEE Wirel. Commun. 2010, 17, 12–19. [Google Scholar] [CrossRef]
- Majhi, R.R.; Chattopadhyay, S.; Chattopadhyay, S.; Ghosh, A. Analysis of electro-cardiogram by radar and DWT based Kurtosis comparison. In Proceedings of the IET Conference Publications, Kolkata, India, 12–13 September 2015; Volume 2015, pp. 621–625. [Google Scholar] [CrossRef]
- Chioukh, L.; Boutayeb, H.; Deslandes, D.; Wu, K. Noise and sensitivity of harmonic radar architecture for remote sensing and detection of vital signs. IEEE Trans. Microw. Theory Tech. 2014, 62, 1847–1855. [Google Scholar] [CrossRef]
- Mostov, K.; Liptsen, E.; Boutchko, R. Medical applications of shortwave FM radar: Remote monitoring of cardiac and respiratory motion. Med. Phys. 2010, 37, 1332–1338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinci, G.; Lindner, S.; Barbon, F.; Mann, S.; Hofmann, M.; Duda, A.; Weigel, R.; Koelpin, A. Six-port radar sensor for remote respiration rate and heartbeat vital-sign monitoring. IEEE Trans. Microw. Theory Tech. 2013, 61, 2093–2100. [Google Scholar] [CrossRef]
- Tu, J.; Lin, J. Fast acquisition of heart rate in noncontact vital sign radar measurement using time-window-variation technique. IEEE Trans. Instrum. Meas. 2016, 65, 112–122. [Google Scholar] [CrossRef]
- Xiong, Y.; Chen, S.; Dong, X.; Peng, Z.; Zhang, W. Accurate measurement in doppler radar vital sign detection based on parameterized demodulation. IEEE Trans. Microw. Theory Tech. 2017, 65, 4483–4492. [Google Scholar] [CrossRef]
- Giancaterino, S.; Lupercio, F.; Nishimura, M.; Hsu, J.C. Current and future use of insertable cardiac monitors. JACC Clin. Electrophysiol. 2018, 4, 1383–1396. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H. Miniaturized human insertable cardiac monitoring system with wireless power transmission technique. J. Sens. 2016, 2016, 1–7. [Google Scholar] [CrossRef]
- Riistama, J.; Väisänen, J.; Heinisuo, S.; Harjunpää, H.; Arra, S.; Kokko, K.; Mäntylä, M.; Kaihilahti, J.; Heino, P.; Kellomäki, M.; et al. Wireless and inductively powered implant for measuring electrocardiogram. Med. Biol. Eng. Comput. 2007, 45, 1163–1174. [Google Scholar] [CrossRef]
- Mittal, S.; Pokushalov, E.; Romanov, A.; Ferrara, M.; Arshad, A.; Musat, D.; Preminger, M.; Sichrovsky, T.; Steinberg, J.S. Long-term ECG monitoring using an implantable loop recorder for the detection of atrial fibrillation after cavotricuspid isthmus ablation in patients with atrial flutter. Heart Rhythm 2013, 10, 1598–1604. [Google Scholar] [CrossRef]
- Ishikawa, N.; Watanabe, G. Robot-assisted cardiac surgery. Ann. Thorac. Cardiovasc. Surg. 2015, 21, 322–328. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Zhang, Y.; Wan, J.; Zhang, D.; Pan, N.; Org, D. Robot and cloud-assisted multi-modal healthcare system Enabling comfortable sports therapy for patient: A novel lightweight durable and portable ECG monitoring system View project VENDNET: Vehicular Named Data Network View project Robot and cloud-assisted. Comput. Netw. 2015, 18, 1295–1306. [Google Scholar]
- Deng, Z.Y.; Li, H.C.; Chiang, H.H.; Lee, T.T. Robotic Aids for ECG Monitoring and Diagnosis in Assisted Living Environments. In Proceedings of the 2018 IEEE International Conference on Systems, Man, and Cybernetics, SMC, Miyazaki, Japan, 7–10 October 2018; pp. 2176–2181. [Google Scholar]
- Hattori, K.; Asamoto, M.; Otsuji, M.; Ito, N.; Kasahara, S.; Hashimoto, Y.; Yamada, Y. Quantitative evaluation of stress in Japanese anesthesiology residents based on heart rate variability and psychological testing. J. Clin. Monit. Comput. 2019, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, P.; Etemad, A. Self-supervised ecg representation learning for emotion recognition under review. arXiv 2020, arXiv:2002.03898. [Google Scholar]
- Yin, W.; Yang, X.; Li, L.; Zhang, L.; Kitsuwan, N.; Shinkuma, R.; Oki, E. Self-adjustable domain adaptation in personalized ECG monitoring integrated with IR-UWB radar. Biomed. Signal Process. Control 2019, 47, 75–87. [Google Scholar] [CrossRef]
- Golany, T.; Radinsky, K. PGANs: Personalized Generative Adversarial Networks for ECG Synthesis to Improve Patient-Specific Deep ECG Classification. Proc. AAAI Conf. Artif. Intell. 2019, 33, 557–564. [Google Scholar] [CrossRef]
- Meghani, D.; Geetha, S. ECG steganography to secure patient data in an E-healthcare system. ACM Int. Conf. Proc. Ser. 2016, 21–22, 66–70. [Google Scholar]
- Yang, C.-Y.; Cheng, L.-T.; Wang, W.-F. Effective reversible data hiding in electrocardiogram based on fast discrete cosine transform. In Proceedings of the Future Technologies Conference, Vancouver, BC, Canada, 13–14 November 2018; pp. 640–648. [Google Scholar]
- Ibaida, A.; Khalil, I. Wavelet-based ECG steganography for protecting patient confidential information in point-of-care systems. IEEE Trans. Biomed. Eng. 2013, 60, 3322–3330. [Google Scholar] [CrossRef]
- Malasri, K.; Wang, L. Addressing security in medical sensor networks. In Proceedings of the HealthNet’07: 1st ACM SIGMOBILE International Workshop on Systems and Networking Support for Healthcare and Assisted Living Environments, San Juan, Puerto Rico, 11 June 2007; pp. 7–12. [Google Scholar] [CrossRef]
- Lee, W.B.; Lee, C.D. A cryptographic key management solution for HIPAA privacy/security regulations. IEEE Trans. Inf. Technol. Biomed. 2008, 12, 34–41. [Google Scholar] [CrossRef]
- Marvel, L.M.; Boncelet, C.G.; Retter, C.T. Spread spectrum image steganography. IEEE Trans. Image Process. 1999, 8, 1075–1083. [Google Scholar] [CrossRef] [Green Version]
- Gusev, M.; Stojmenski, A.; Chorbev, I. Challenges for development of an ECG m-Health solution ECGalert View project SIARS (Smart I (eye) Advisory Rescue System) View project Challenges for development of an ECG m-Health solution. J. Emerging Res. Solutions 2016, 1, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Jarchi, D.; Mahdi, A.; Tarassenko, L.; Clifton, D.A. Visualisation of long-term ECG signals applied to post-intensive care patients. In Proceedings of the 2018 IEEE 15th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Las Vegas, NV, USA, 4–7 March 2018; pp. 165–168. [Google Scholar] [CrossRef]
- Navaz, A.N.; Serhani, M.A.; Al-Qirim, N.; Gergely, M. Towards an efficient and Energy-Aware mobile big health data architecture. Comput. Methods Programs Biomed. 2018, 166, 137–154. [Google Scholar] [CrossRef]
- Jovanov, E.; Milenkovic, A. Body area networks for ubiquitous healthcare applications: Opportunities and challenges. J. Med. Syst. 2011, 35, 1245–1254. [Google Scholar] [CrossRef] [PubMed]
- Spanò, E.; Di Pascoli, S.; Iannaccone, G. Low-power wearable ECG monitoring system for multiple-patient remote monitoring. IEEE Sens. J. 2016, 16, 5452–5462. [Google Scholar] [CrossRef]
Primary Processes | Supporting Processes | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Signal Acquisition | Signal Preprocessing | Feature Extraction | Processing | Visualization | Signal Selection | Compression | Data Storage | Modeling | Encryption | |
[58] | ✓ | ✓ | ✓ | ✓ | ✓ | |||||
[42,43,44,45,61,62,63] | ✓ | ✓ | ||||||||
[64] | ✓ | |||||||||
[46,47,65,66,67] | ✓ | ✓ | ✓ | |||||||
[68] | ✓ | ✓ | ✓ | |||||||
[62] | ✓ | ✓ | ✓ | ✓ | ||||||
[69] | ✓ | ✓ | ✓ | |||||||
[70] | ✓ | ✓ | ✓ | |||||||
[12] | ✓ | ✓ | ||||||||
[13] | ✓ | ✓ | ✓ | ✓ | ||||||
[71] | ✓ | ✓ | ✓ | ✓ | ||||||
[72] | ✓ | ✓ | ✓ | ✓ | ✓ | |||||
[73,74] | ✓ | ✓ | ✓ | ✓ | ||||||
[61] | ✓ | ✓ | ||||||||
[75] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
[76] | ✓ | ✓ | ✓ | ✓ | ||||||
[77] | ✓ | ✓ | ✓ | ✓ | ||||||
[55] | ✓ | ✓ | ✓ | ✓ | ✓ | |||||
[54] | ✓ | ✓ | ✓ | ✓ | ✓ | |||||
[49] | ✓ | ✓ | ✓ | ✓ | ||||||
[78] | ✓ | ✓ | ✓ | ✓ | ✓ | |||||
[79] | ✓ | ✓ | ✓ | ✓ | ||||||
[80,81,82] | ✓ | |||||||||
[83] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
[84,85] | ✓ | ✓ | ✓ | ✓ | ||||||
[86,87] | ✓ | ✓ | ✓ | ✓ | ||||||
[88] | ✓ | ✓ | ✓ | ✓ |
Context-Aware ECG Monitoring Systems | Category | Selected Papers |
---|---|---|
Home Setting | Telemonitoring | [109,110,111,112] |
Wearable continuous monitoring | [18,19,20] | |
Elderly monitoring | [24,113,114,115] | |
Hospital Setting | ICU clinical setting | [16,17] |
non-ICU clinical settings | [14,15,116,117] | |
Holter monitoring | [36,118,119,120,121] | |
Ambulatory Setting | Ambulatory cardiac/telemetry monitoring | [8,21,22,23,122,123,124] |
Wearable ECG monitoring | [25,29,125,126,127,128] | |
Remote Setting | Telemonitoring | [10,129,130] |
Smart device-based ECG monitoring | [12,24,126,131,132] | |
Compressed ECG sensing | [133,134,135] |
Technology-Aware ECG Monitoring Systems | Category | Selected Papers |
---|---|---|
Enabling Technologies | IoT | [12,25,26,27,132,136,137,138,139,140,141,142] |
Cloud | [24,26,143,144,145] | |
Fog/Edge | [25,26,28,29] | |
Monitoring Devices | Mobile-based | [30,31,32,139,146] |
Wearable-based | [14,21,22,29,30,125,126,127,147] | |
Sensor-based | [12,26,28,136,138,139,142] |
Computational Dimension | Monitoring Frequency | Selected Papers | |
---|---|---|---|
Monitoring Scheme | Traditional | Continuous | (Smart Jacket [149,150]), (IoT [17]) |
Episodic | (alarm-based [32]) | ||
Ad hoc | (ECG Check [146]), (lab-designed single-lead [112]), (analog heart rate sensor [31]), (three-lead wet electrodes [152]) | ||
Real-time | Continuous | (single lead EMP and 12-leads 24-h Holter [125]), (Smart Shirt [5]), (T-shirts/bed sheets with electrodes [154]), (single-lead wireless [6]), (wearable, washable, [155,156]), | |
Episodic | (pre-scheduled assessment [157]), (pre-scheduled pulmonary rehabilitation [158]), (event-based [159,160]), |
Service-Based | Category | Selected Papers | |
---|---|---|---|
Diagnosis | Cardiovascular Diseases | Arrhythmia | [56,171,172,173,174,175,176] |
Atrial Fibrillation | [57,67,177,178,179] | ||
Other Abnormalities | [11,88,162,163,164,165,166,167,168,169,170,180,181,182,218] | ||
Sleep Apnea | [6,219,220,221] | ||
Activities | Elderly | [114,196,197,198] | |
Sports | [36,37,38,183,184,185,186,187,188] | ||
Drivers / Driving | [189,190,191,192,193,194,195] | ||
Daily Activities | [33,34,35,155,156,199] | ||
Prognosis | Cardiovascular Diseases | Arrhythmia | [200,201] |
Atrial Fibrillation | [63,202] | ||
Other Abnormalities | [89,205,206,207,208,209,210,211,212] | ||
Epilepsy | [203,204] | ||
Survival | [213,214,215] | ||
Mood Related | [39,40,41] | ||
Health status and activity prediction | [105,216] |
Performance-Based | Category | Selected papers | |
---|---|---|---|
Energy | Transmission | BLE | [126,155,222,223,224,225,226,227,228,229,230,231,232,233] |
Other Wireless | [234,235] | ||
Processing | [222,223,236,237,238] | ||
Compression | [134,135,239,240,241,242,243] | ||
Cost | Device | Phone | [231,244,245,246] |
Circuit | [247] | ||
Wearable | [248,249] | ||
Others | [10,250,251,252] | ||
Disease Prevention | [253,254] | ||
Resources | Storage | [232] | |
Other resource allocation | [222,233,255] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serhani, M.A.; T. El Kassabi, H.; Ismail, H.; Nujum Navaz, A. ECG Monitoring Systems: Review, Architecture, Processes, and Key Challenges. Sensors 2020, 20, 1796. https://doi.org/10.3390/s20061796
Serhani MA, T. El Kassabi H, Ismail H, Nujum Navaz A. ECG Monitoring Systems: Review, Architecture, Processes, and Key Challenges. Sensors. 2020; 20(6):1796. https://doi.org/10.3390/s20061796
Chicago/Turabian StyleSerhani, Mohamed Adel, Hadeel T. El Kassabi, Heba Ismail, and Alramzana Nujum Navaz. 2020. "ECG Monitoring Systems: Review, Architecture, Processes, and Key Challenges" Sensors 20, no. 6: 1796. https://doi.org/10.3390/s20061796
APA StyleSerhani, M. A., T. El Kassabi, H., Ismail, H., & Nujum Navaz, A. (2020). ECG Monitoring Systems: Review, Architecture, Processes, and Key Challenges. Sensors, 20(6), 1796. https://doi.org/10.3390/s20061796