A Method for Human Facial Image Annotation on Low Power Consumption Autonomous Devices
Abstract
:1. Introduction
1.1. Face Recognition
1.2. Face Attribute Prediction and Annotation
1.3. Other Computer Methods That Use Facial Images
1.4. Contributions of This Research
2. Material and Methods
2.1. The Data Set
2.2. Mobilenetv2
2.3. Histogram of Oriented Gradients Feature Descriptor and Neural Network
2.4. Eigenfaces with K-Nearest Neighbour Classifier
3. Results
4. Discussion
5. Conclusions
Funding
Conflicts of Interest
References
- Zhong, Y.; Sullivan, J.; Li, H. Face attribute prediction using off-the-shelf CNN features. In Proceedings of the 2016 International Conference on Biometrics (ICB), Halmstad, Sweden, 13–16 June 2016; pp. 1–7. [Google Scholar]
- Saez Trigueros, D.; Meng, L.; Hartnett, M. Face Recognition: From Traditional to Deep Learning Methods. J. Theor. Appl. Inf. Technol. 2018, 97, 3332–3342. [Google Scholar]
- Yang, S.; Nian, F.; Wang, Y.; Li, T.C. Real-time face attributes recognition via HPGC: Horizontal pyramid global convolution. J. Real Time Image Process. 2019, 1–12. [Google Scholar] [CrossRef]
- Dikle, S.; Shiurkar, U. Real Time Face Tracking and Recognition Using Efficient Face Descriptor and Features Extraction Algorithms. In Computing in Engineering and Technology; Springer: Singapore, 2020; pp. 55–63. [Google Scholar] [CrossRef]
- Rose, J.; Bourlai, T. Deep learning based estimation of facial attributes on challenging mobile phone face datasets. In Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Vancouver, BC, Canada, 27–30 August 2019; pp. 1120–1127. [Google Scholar] [CrossRef]
- Csaba, B.; Tamás, H.; Horváth, A.; Oláh, A.; Reguly, I.Z. PPCU Sam: Open-source face recognition framework. Procedia Comput. Sci. 2019, 159, 1947–1956. [Google Scholar] [CrossRef]
- Chen, H.; Haoyu, C. Face Recognition Algorithm Based on VGG Network Model and SVM. J. Phys. Conf. Ser. 2019, 1229, 012015. [Google Scholar] [CrossRef]
- Paul, L.; Suman, A. Face recognition using principal component analysis method. Int. J. Adv. Res. Comput. Eng. Technol. 2012, 1, 135–139. [Google Scholar]
- Wang, Y.; Gong, D.; Zhou, Z.; Ji, X.; Wang, H.; Li, Z.; Liu, W.; Zhang, T. Orthogonal Deep Features Decomposition for Age-Invariant Face Recognition. In Computer Vision—ECCV 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 764–779. [Google Scholar]
- Lucena, O.; Junior, A.; Moia, V.; Souza, R.; Valle, E.; Lotufo, R. Transfer Learning Using Convolutional Neural Networks for Face Anti-spoofing. In Image Analysis and Recognition; Karray, F., Campilho, A., Cheriet, F., Eds.; Springer International Publishing: Montreal, QC, Canada; Cham, Switzerland, 2017; pp. 27–34. [Google Scholar]
- Aly, S.; Yanikoglu, B. Multi-Label Networks for Face Attributes Classification. In Proceedings of the 2018 IEEE International Conference on Multimedia & Expo Workshops, San Diego, CA, USA, 23–27 July 2018; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Fan, D.; Kim, H.; Kim, J.; Liu, Y.; Huang, Q. Multi-Task Learning Using Task Dependencies for Face Attributes Prediction. Appl. Sci. 2019, 9, 2535. [Google Scholar] [CrossRef] [Green Version]
- Yilmaztürk, M.; Ulusoy, I.; Cicekli, N. Analysis of Face Recognition Algorithms for Online and Automatic Annotation of Personal Videos. In Computer and Information Sciences; Springer: Dordrecht, The Netherlands, 2010; Volume 62, pp. 231–236. [Google Scholar] [CrossRef]
- Conilione, P.; Wang, D. Automatic localization and annotation of facial features using machine learning techniques. Soft Comput. 2011, 15, 1231–1245. [Google Scholar] [CrossRef]
- Nguyen, H.M.; Ly, N.Q.; Phung, T.T.T. Large-Scale Face Image Retrieval System at Attribute Level Based on Facial Attribute Ontology and Deep Neuron Network. In Intelligent Information and Database Systems; Nguyen, N.T., Hoang, D.H., Hong, T.P., Pham, H., Trawiński, B., Eds.; Springer International Publishing: Dong Hoi City, Vietnam; Cham, Switzerland, 2018; pp. 539–549. [Google Scholar]
- Wang, D.; Hoi, S.C.H.; He, Y. Mining Weakly Labeled Web Facial Images for Search-Based Face Annotation. IEEE Trans. Knowl. Data Eng. 2011, 26, 166–179. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.R.; Juang, H.C.; Chen, Y.S.; Chang, C.M. Safe binary particle swam algorithm for an enhanced unsupervised label refinement in automatic face annotation. Multimed. Tools Appl. 2016, 76. [Google Scholar] [CrossRef]
- Firmino, A.; Baptista, C.; Figueirêdo, H.; Pereira, E.; Amorim, B. Automatic and semi-automatic annotation of people in photography using shared events. Multimed. Tools Appl. 2018, 78, 13841–13875. [Google Scholar] [CrossRef]
- Liu, Z.; Luo, P.; Wang, X.; Tang, X. Deep Learning Face Attributes in the Wild. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 3730–3738. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Sullivan, J.; Li, H. Leveraging mid-level deep representations for predicting face attributes in the wild. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3239–3243. [Google Scholar] [CrossRef] [Green Version]
- Torfason, R.; Agustsson, E.; Rothe, R.; Timofte, R. From Face Images and Attributes to Attributes; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef] [Green Version]
- Anzalone, L.; Barra, P.; Barra, S.; Narducci, F.; Nappi, M. Transfer Learning for Facial Attributes Prediction and Clustering. In Smart City and Informatization; Wang, G., El Saddik, A., Lai, X., Martinez Perez, G., Choo, K.K.R., Eds.; Springer: Singapore, 2019; pp. 105–117. [Google Scholar]
- Becerra-Riera, F.; Morales-González, A.; Vazquez, H. A survey on facial soft biometrics for video surveillance and forensic applications. Artif. Intell. Rev. 2019. [Google Scholar] [CrossRef]
- Ahmed, S.; Ali, S.; Ahmad, J.; Adnan, M.; Fraz, M. On the frontiers of pose invariant face recognition: A review. Artif. Intell. Rev. 2019. [Google Scholar] [CrossRef]
- Zhang, J.; Zhan, R.; Sun, D.; Pan, G. Symmetry-Aware Face Completion with Generative Adversarial Networks. In Computer Vision—ACCV 2018; Jawahar, C., Li, H., Mori, G., Schindler, K., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 289–304. [Google Scholar]
- Lu, Y.; Tai, Y.W.; Tang, C.K. Attribute-Guided Face Generation Using Conditional CycleGAN. In Computer Vision—ECCV 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 293–308. [Google Scholar]
- Chhabra, S.; Singh, R.; Vatsa, M.; Gupta, G. Anonymizing k Facial Attributes via Adversarial Perturbations. arXiv 2018, arXiv:1805.09380. [Google Scholar] [CrossRef] [Green Version]
- Flouty, E.; Zisimopoulos, O.; Stoyanov, D. FaceOff: Anonymizing Videos in the Operating Rooms. In OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis; Stoyanov, D., Taylor, Z., Sarikaya, D., McLeod, J., González Ballester, M.A., Codella, N.C., Martel, A., Maier-Hein, L., Malpani, A., Zenati, M.A., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 30–38. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 7–9 July 2015. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Zeiler, M.D. ADADELTA: An Adaptive Learning Rate Method. arXiv 2012, arXiv:1212.5701. [Google Scholar]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 886–893. [Google Scholar] [CrossRef] [Green Version]
- Kazemi, V.; Sullivan, J. One Millisecond Face Alignment with an Ensemble of Regression Trees. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014. [Google Scholar] [CrossRef]
- Sagonas, C.; Antonakos, E.; Tzimiropoulos, G.; Zafeiriou, S.; Pantic, M. 300 Faces In-The-Wild Challenge: database and results. Image Vis. Comput. 2016, 47, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2015, arXiv:1412.6980. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar] [CrossRef] [Green Version]
Feature Name | True | False |
---|---|---|
X5_o_Clock_Shadow | 11.11% | 88.89% |
Arched_Eyebrows | 26.7% | 73.3% |
Attractive | 51.25% | 48.75% |
Bags_Under_Eyes | 20.46% | 79.54% |
Bald | 2.24% | 97.76% |
Bangs | 15.16% | 84.84% |
Big_Lips | 24.08% | 75.92% |
Big_Nose | 23.45% | 76.55% |
Black_Hair | 23.93% | 76.07% |
Blond_Hair | 14.8% | 85.2% |
Blurry | 5.09% | 94.91% |
Brown_Hair | 20.52% | 79.48% |
Bushy_Eyebrows | 14.22% | 85.78% |
Chubby | 5.76% | 94.24% |
Double_Chin | 4.67% | 95.33% |
Eyeglasses | 6.51% | 93.49% |
Goatee | 6.28% | 93.72% |
Gray_Hair | 4.19% | 95.81% |
Heavy_Makeup | 38.69% | 61.31% |
High_Cheekbones | 45.5% | 54.5% |
Male | 41.68% | 58.32% |
Mouth_Slightly_Open | 48.34% | 51.66% |
Mustache | 4.15% | 95.85% |
Narrow_Eyes | 11.51% | 88.49% |
No_Beard | 83.49% | 16.51% |
Oval_Face | 28.41% | 71.59% |
Pale_Skin | 4.29% | 95.71% |
Pointy_Nose | 27.74% | 72.26% |
Receding_Hairline | 7.98% | 92.02% |
Rosy_Cheeks | 6.57% | 93.43% |
Sideburns | 5.65% | 94.35% |
Smiling | 48.21% | 51.79% |
Straight_Hair | 20.84% | 79.16% |
Wavy_Hair | 31.96% | 68.04% |
Wearing_Earrings | 18.89% | 81.11% |
Wearing_Hat | 4.85% | 95.15% |
Wearing_Lipstick | 47.24% | 52.76% |
Wearing_Necklace | 12.3% | 87.7% |
Wearing_Necktie | 7.27% | 92.73% |
Young | 77.36% | 22.64% |
Method | Accuracy |
---|---|
LNet [19] | 85.00 |
LNet+ANet [1] | 87.00 |
CNN+SVM [20] | 89.80 |
ft +Color+LBP+SIFT [21] | 90.22 |
MobileNetV2 [22] | 91.00 |
Feature | DNN 37 | DNN 40 | NN 40 | 3-NN | 1-NN |
---|---|---|---|---|---|
X5_o_Clock_Shadow | 93.32 | 93.34 | 90.78 | 88.05 | 85.5 |
Arched_Eyebrows | 78.38 | 81.08 | 77.84 | 69.64 | 67.16 |
Attractive | NA | 78.46 | 75.43 | 66.77 | 64.15 |
Bags_Under_Eyes | 80.81 | 83.44 | 82.32 | 77.6 | 74.21 |
Bald | 98.84 | 98.39 | 97.76 | 97.66 | 96.86 |
Bangs | 94.64 | 95 | 93.1 | 89.19 | 86.83 |
Big_Lips | 69.31 | 70.3 | 69.29 | 65.46 | 62.72 |
Big_Nose | 80.45 | 82.1 | 81.92 | 77.28 | 73.75 |
Black_Hair | 76.63 | 72.35 | 82.15 | 71.77 | 68.45 |
Blond_Hair | 87.85 | 88.13 | 93.26 | 89.02 | 87.28 |
Blurry | NA | 95.48 | 95.29 | 92.04 | 86.49 |
Brown_Hair | 82 | 81.86 | 84.59 | 76.81 | 71.87 |
Bushy_Eyebrows | 87.6 | 89.53 | 90.41 | 84.38 | 80.14 |
Chubby | 95.25 | 95.15 | 94.84 | 94.35 | 92.95 |
Double_Chin | 96.11 | 95.64 | 95.85 | 95.07 | 93.43 |
Eyeglasses | 99.52 | 99.32 | 97.87 | 94.4 | 93.76 |
Goatee | 96.97 | 96.69 | 96.1 | 95.12 | 93.3 |
Gray_Hair | 97.62 | 96.44 | 97.32 | 96.65 | 95.41 |
Heavy_Makeup | 67.8 | 80.38 | 85.53 | 75.64 | 72.48 |
High_Cheekbones | 79.51 | 79.4 | 82.68 | 65.19 | 62.15 |
Male | 92.39 | 95.22 | 94.58 | 83.11 | 80.71 |
Mouth_Slightly_Open | 92.03 | 91.67 | 83.3 | 62.03 | 60.65 |
Mustache | 96.59 | 96.65 | 96.5 | 96.05 | 94.6 |
Narrow_Eyes | 86.88 | 86.09 | 86.66 | 83.75 | 80.02 |
No_Beard | 95.06 | 94.09 | 92.31 | 85.9 | 83.55 |
Oval_Face | 70.81 | 71.89 | 71.87 | 64.49 | 61.98 |
Pale_Skin | NA | 31.95 | 96.55 | 95.51 | 94.76 |
Pointy_Nose | 74.75 | 71.88 | 73.81 | 67 | 63.6 |
Receding_Hairline | 92.83 | 92.12 | 91.95 | 90.31 | 87.41 |
Rosy_Cheeks | 92.83 | 92.83 | 93.7 | 91.62 | 88.95 |
Sideburns | 97.41 | 97.34 | 96.37 | 95.31 | 93.28 |
Smiling | 90.97 | 88.33 | 88.16 | 66.01 | 63.2 |
Straight_Hair | 81.57 | 80.16 | 78.8 | 72.99 | 68.23 |
Wavy_Hair | 77.28 | 78.75 | 73.29 | 67.34 | 64.88 |
Wearing_Earrings | 84.58 | 87.71 | 81.45 | 77.15 | 73.68 |
Wearing_Hat | 98.74 | 98.24 | 97.97 | 96.71 | 96.36 |
Wearing_Lipstick | 67.86 | 90.27 | 90.84 | 79.21 | 75.23 |
Wearing_Necklace | 86.31 | 86.28 | 85.92 | 81.89 | 78.24 |
Wearing_Necktie | 96.7 | 95.44 | 94.75 | 92.95 | 91.05 |
Young | 86.34 | 84.17 | 83.29 | 76.38 | 73.52 |
Averaged accuracy | 87.15 | 86.59 | 88.20 | 82.19 | 79.57 |
DNN 37 | DNN 40 | NN 40 | 3-NN | 1-NN | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Feature | TPR | TNR | TPR | TNR | TPR | TNR | TPR | TNR | TPR | TNR |
X5_o_Clock_Shadow | 38.97 | 99.35 | 45.54 | 98.65 | 58.81 | 94.39 | 22.77 | 95.43 | 31.76 | 91.58 |
Arched_Eyebrows | 30.57 | 97.39 | 53.52 | 92.04 | 63.8 | 83.61 | 39.48 | 82.04 | 43.02 | 77.08 |
Attractive | NA | NA | 66.05 | 90.66 | 89.59 | 60.82 | 68.51 | 64.96 | 65.85 | 62.4 |
Bags_Under_Eyes | 71.52 | 83.18 | 31.67 | 96.59 | 39.98 | 93.25 | 18.98 | 92.74 | 27.03 | 86.4 |
Bald | 74.23 | 99.38 | 40.9 | 99.63 | 17.66 | 99.45 | 6.59 | 99.59 | 17.07 | 98.55 |
Bangs | 69.73 | 99.24 | 74.27 | 98.83 | 66.94 | 97.87 | 48.73 | 96.57 | 50.54 | 93.45 |
Big_Lips | 8.98 | 98.63 | 31.54 | 89.14 | 20.57 | 92.98 | 19.94 | 87.59 | 27.86 | 79.67 |
Big_Nose | 64.3 | 84.79 | 53.28 | 89.85 | 34.53 | 94.74 | 22.59 | 92.07 | 29.36 | 85.76 |
Black_Hair | 23.88 | 96.29 | 10.88 | 95.27 | 49.93 | 94.06 | 35.61 | 85.13 | 40.15 | 78.91 |
Blond_Hair | 9.14 | 99.95 | 11.88 | 99.85 | 62.06 | 98.22 | 47.56 | 95.61 | 50.72 | 93.09 |
Blurry | NA | NA | 58.12 | 97.47 | 0.4 | 99.95 | 10.49 | 96.04 | 18.46 | 89.83 |
Brown_Hair | 0 | 99.96 | 0.03 | 99.78 | 49.78 | 92.32 | 29.25 | 87.37 | 36.85 | 79.65 |
Bushy_Eyebrows | 4.41 | 99.98 | 24.9 | 99.15 | 44.12 | 97.43 | 15.62 | 94.81 | 25.25 | 88.47 |
Chubby | 14.18 | 99.79 | 18.62 | 99.43 | 25.56 | 98.66 | 9.16 | 99.04 | 16.65 | 97.16 |
Double_Chin | 19.93 | 99.76 | 4.71 | 99.99 | 18.12 | 99.51 | 8.58 | 99.14 | 17.29 | 97.01 |
Eyeglasses | 94.49 | 99.87 | 92.94 | 99.76 | 76.45 | 99.27 | 11.42 | 99.78 | 19.06 | 98.61 |
Goatee | 45.9 | 99.42 | 71.91 | 97.88 | 33.29 | 99.06 | 10.36 | 99.11 | 17.27 | 96.88 |
Gray_Hair | 57.08 | 98.95 | 68.87 | 97.35 | 38.32 | 99.22 | 21.36 | 99.07 | 30.34 | 97.51 |
Heavy_Makeup | 20.61 | 99.92 | 53.54 | 98.64 | 92.95 | 80.28 | 67.74 | 81.24 | 64.38 | 78.22 |
High_Cheekbones | 59.58 | 98.04 | 59.25 | 98.12 | 78.46 | 86.77 | 61.12 | 69.15 | 58.98 | 65.22 |
Male | 99.21 | 88.1 | 96.09 | 94.68 | 90.54 | 97.04 | 72.84 | 89.38 | 71.71 | 86.21 |
Mouth_Slightly_Open | 90.22 | 93.81 | 91.17 | 92.16 | 89.5 | 77.12 | 55.35 | 68.67 | 55.18 | 66.09 |
Mustache | 19.69 | 99.68 | 27.2 | 99.44 | 22.6 | 99.32 | 3.04 | 99.61 | 10.12 | 97.83 |
Narrow_Eyes | 18.83 | 98.76 | 9.84 | 99.41 | 21.93 | 97.74 | 5.18 | 97.2 | 13.47 | 91.42 |
No_Beard | 98.7 | 73.78 | 95.33 | 86.85 | 97.04 | 64.52 | 95.77 | 27.92 | 91.7 | 35.7 |
Oval_Face | 2 | 99.69 | 6.96 | 99.13 | 21.65 | 93.58 | 31.01 | 78.97 | 38.07 | 72.32 |
Pale_Skin | NA | NA | 97.14 | 29.08 | 45.85 | 98.84 | 2 | 99.75 | 11.16 | 98.55 |
Pointy_Nose | 21.32 | 96.13 | 2.09 | 99.8 | 35.01 | 89.63 | 32.96 | 80.88 | 38.97 | 73.64 |
Receding_Hairline | 41.38 | 97.6 | 14.46 | 99.32 | 8.2 | 99.64 | 12.05 | 97.5 | 21.66 | 93.44 |
Rosy_Cheeks | 0 | 100 | 0 | 100 | 24.64 | 99.13 | 13.3 | 97.78 | 22.25 | 94.2 |
Sideburns | 52.92 | 99.57 | 67.71 | 98.78 | 37.97 | 99.21 | 10.7 | 99.43 | 17.91 | 96.96 |
Smiling | 84.2 | 97.74 | 78.33 | 98.35 | 89.76 | 86.49 | 64.87 | 67.2 | 62.34 | 64.1 |
Straight_Hair | 29.02 | 95.53 | 24.75 | 94.88 | 0 | 100 | 20.28 | 87.16 | 29.72 | 78.59 |
Wavy_Hair | 40.46 | 98.36 | 48.3 | 96.19 | 50.34 | 86.66 | 44.61 | 80.57 | 46.31 | 75.69 |
Wearing_Earrings | 27.73 | 99.38 | 52.34 | 96.92 | 24.93 | 96.57 | 20.81 | 92.22 | 29.32 | 85.54 |
Wearing_Hat | 79.5 | 99.58 | 76.16 | 99.21 | 54.05 | 99.65 | 14.53 | 99.85 | 19.93 | 99.28 |
Wearing_Lipstick | 38.49 | 99.92 | 84.81 | 96.23 | 88.66 | 93.34 | 78.7 | 79.79 | 73.8 | 76.88 |
Wearing_Necklace | 1.05 | 99.95 | 1.6 | 99.83 | 0 | 100 | 15 | 92.86 | 23.48 | 87.21 |
Wearing_Necktie | 72.27 | 98.55 | 39.81 | 99.63 | 42.67 | 98.66 | 19.2 | 98.49 | 28.44 | 95.76 |
Young | 94.34 | 61.41 | 88.21 | 71.58 | 95.01 | 45.89 | 91.01 | 29.72 | 85.33 | 35.84 |
Averaged | 43.75 | 95.98 | 46.87 | 94.74 | 47.54 | 92.12 | 31.98 | 87.04 | 36.97 | 83.52 |
Computer | HOG [s] | Aligning [s] | Loading [s] | Predicting [s] | Total [s] | RAM [GB] | CPU [%] |
---|---|---|---|---|---|---|---|
PC | 0.429 | 0.004 | 0.053 | 0.027 | 4.816 | 1.139 | 20.5 |
Raspberry | 10.485 | 0.059 | 1.668 | 0.225 | 107.5 | 0.311 | 100 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hachaj, T. A Method for Human Facial Image Annotation on Low Power Consumption Autonomous Devices. Sensors 2020, 20, 2140. https://doi.org/10.3390/s20072140
Hachaj T. A Method for Human Facial Image Annotation on Low Power Consumption Autonomous Devices. Sensors. 2020; 20(7):2140. https://doi.org/10.3390/s20072140
Chicago/Turabian StyleHachaj, Tomasz. 2020. "A Method for Human Facial Image Annotation on Low Power Consumption Autonomous Devices" Sensors 20, no. 7: 2140. https://doi.org/10.3390/s20072140
APA StyleHachaj, T. (2020). A Method for Human Facial Image Annotation on Low Power Consumption Autonomous Devices. Sensors, 20(7), 2140. https://doi.org/10.3390/s20072140