Design of Multi-Mode Antenna Array for Use in Next-Generation Mobile Handsets
Abstract
:1. Introduction
2. Design and Configuration of the Proposed 5G Antenna Array
3. Characteristics of the Single-Element/Multi-Band PIFA Resonator
4. Characteristics of the Handset Antenna Array
5. Fabrication and Measurements
6. Comparison
7. User Effects on the Characteristics of the Designed Antenna Array
8. Integration of a Compact MM-Wave Phased Array
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nadeem, Q.U.A.; Kammoun, A.; Debbah, M.; Alouini, S.-M. Design of 5G full dimension massive MIMO systems. IEEE Trans. Commun. 2018, 66, 726–740. [Google Scholar] [CrossRef] [Green Version]
- Ojaroudiparchin, N.; Shen, M.; Pedersen, G.F. Multi-layer 5G mobile phone antenna for multi-user MIMO communications. In Proceedings of the 23rd Telecommunications Forum Telfor (TELFOR), Belgrade, Serbia, 24–26 November 2015; pp. 559–562. [Google Scholar]
- Osseiran, A.; Boccardi, F.; Braun, V.; Kusume, K.; Marsch, P.; Maternia, M.; Queseth, O.; Schellmann, M.; Schotten, H.; Taoka, H.; et al. Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Commun. Mag. 2014, 52, 26–35. [Google Scholar] [CrossRef]
- Yang, H.H.; Quel, Y.Q.S. Massive MIMO Meet Small Cell. Springer Briefs Electr. Comput. Eng. 2017. [Google Scholar] [CrossRef]
- Ojaroudi, N.; Ghadimi, N. Design of CPW-fed slot antenna for MIMO system applications. Microw. Opt. Technol. Lett. 2014, 56, 1278–1281. [Google Scholar] [CrossRef]
- Parchin, N.O.; Basherlou, H.J.; Al-Yasir, Y.I.A.; Abd-Alhameed, R.A.; Abdulkhaleq, A.M.; Noras, J.M. Recent developments of reconfigurable antennas for current and future wireless communication systems. Electronics 2019, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Ojaroudiparchin, N.; Shen, M.; Pedersen, G.F. Wide-scan phased array antenna fed by coax-to- microstriplines for 5G cell phones. In Proceedings of the 21st International Conference on Microwaves, Radar and Wireless Communications, Krakow, Poland, 9–11 May 2016. [Google Scholar]
- Hussain, R.; Alreshaid, A.T.; Podilchak, S.K.; Sharawi, M.S. Compact 4G MIMO antenna integrated with a 5G array for current and future mobile handsets. IET Microw. Antennas Propag. 2017, 11, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.K.; Zhang, J.C. What will 5G be? IEEE J. Sel. Areas Commun. 2014, 32, 1065–1082. [Google Scholar] [CrossRef]
- Parchin, N.O.; Al-Yasir, Y.I.A.; Abd-Alhameed, R.A. Microwave/RF Components for 5G Front-End Systems; Avid Science: Telangana, India, 2019; pp. 1–200. [Google Scholar]
- Chen, Q.; Lin, H.; Wang, J.; Ge, L.; Li, Y.; Pei, T.; Sim, C.-Y.-D. Single ring slot-based antennas for metal-rimmed 4G/5G smartphones. IEEE Trans. Antennas Propag. 2018, 67, 1476–1487. [Google Scholar] [CrossRef]
- Bonfante, A.; Giordano, L.G.; López-Pérez, D.; Garcia-Rodriguez, A.; Geraci, G.; Baracca, P.; Majid Butt, M.; Marchetti, N. 5G massive MIMO architectures: Self-backhauled small cells versus direct access. IEEE Trans. Veh. Technol. 2019, 68, 10003–10017. [Google Scholar] [CrossRef] [Green Version]
- Gozalvez, J. 5G worldwide developments [mobile radio]. IEEE Veh. Technol. Mag. 2017, 12, 4–11. [Google Scholar] [CrossRef]
- 5G in the Sub-6 GHz Spectrum Bands. Available online: http://www.rcrwireless.com/20160815/fundamentals/5g-sub-6ghztag31-tag99 (accessed on 15 August 2019).
- 5G NR (New Radio). Available online: http://3gpp.org/ (accessed on 12 December 2018).
- Li, M.-Y.; Xu, Z.; Ban, Y.; Yang, Q.; Zhou, Q. Eight-port orthogonally dual-polarized antenna array for 5G smartphone applications. IEEE Trans. Antennas Propag. 2016, 64, 3820–3830. [Google Scholar] [CrossRef]
- Parchin, N.O.; Basherlou, H.J.; Al-Yasir, Y.; Abdulkhaleq, A.M.; Abd-Alhameed, R.A.; Excell, P. Eight-port MIMO antenna system for 2.6 GHz LTE cellular communications. Prog. Electromagn. Res. C 2020, 99, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Li, M.-Y. Eight-port orthogonally dual-polarised MIMO antennas using loop structures for 5G smartphone. IET Microw. Antennas Propag. 2017, 11, 1810–1816. [Google Scholar] [CrossRef]
- Al-Hadi, A.A.; Ilvonen, J.; Valkonen, R.; Viikan, V. Eight-element antenna array for diversity and MIMO mobile terminal in LTE 3500 MHz band. Microw. Opt. Technol. Lett. 2014, 56, 1323–1327. [Google Scholar] [CrossRef]
- Parchin, N.O.; Al-Yasir YI, A.; Ali, A.H.; Elfergani, I.; Noras, J.M.; Rodriguez, J.; Abd-Alhameed, R.A. Eight-element dual-polarized MIMO slot antenna system for 5G smartphone applications. IEEE Access 2019, 9, 15612–15622. [Google Scholar] [CrossRef]
- Parchin, N.O.; Al-Yasir, Y.I.A.; Noras, J.M.; Abd-Alhameed, R.A. Dual-polarized MIMO antenna array design using miniaturized self-complementary structures for 5G smartphone applications. In Proceedings of the 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 31 March–5 April 2019. [Google Scholar]
- Jiang, W.; Liu, B.; Cui, Y.; Hu, W. High-isolation Eight-Element MIMO array for 5G smartphone applications. IEEE Access 2019, 7, 34104–34112. [Google Scholar] [CrossRef]
- Parchin, N.O.; Basherlou, H.J.; Al-Yasir, Y.; Abdulkhaleq, A.M.; Patwary, M.; Abd-Alhameed, R.A. A new CPW-Fed diversity antenna for MIMO 5G smartphones. Electronics 2020, 9, 261. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Zhang, M.; Wen, H.; Wang, J. Deep-subwavelength decoupling for MIMO antennas in mobile handsets with singular medium. Sci. Rep. 2017, 7, 12162. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Sim, C.Y.D.; Luo, Y.; Yang, G. Multiband 10-antenna array for sub-6 GHz MIMO applications in 5-G smartphones. IEEE Access 2018, 6, 28041–28053. [Google Scholar] [CrossRef]
- Wong, K.L.; Lin, B.-W.; Li, W.-Y. Dual-band dual inverted-F/loop antennas as a compact decoupled building block for forming eight 3.5/5.8-GHz MIMO antennas in the future smartphone. Microw. Opt. Technol. Lett. 2017, 59, 2715–2721. [Google Scholar] [CrossRef]
- Zou, H.; Li, Y.; Shen, H.; Wang, H.; Yang, G. Design of 6 × 6 dual-band MIMO antenna array for 4.5G/5G smartphone applications. In Proceedings of the 6th Asia–Pacific Conference on Antennas and Propagation (APCAP), Xi’an, China, 16–19 October 2017; pp. 1–3. [Google Scholar]
- Ullah, A.; Parchin, N.O.; Ullah, R.; Abdullah, A.A.S.A.; Danjuma, I.M.; Kosha, J.; Abd-Alhameed, R.A.; Elkhazmi, E.; Elfoghi, E.M.I. Dual-band MIMO antenna system for next generation smartphone applications. In Proceedings of the 2020 IMDC-SDSP, Ankara, Turkey, 8–10 April 2020. [Google Scholar]
- Jiang, W.; Cui, Y.; Liu, B.; Hu, W. A Dual-band MIMO antenna with enhanced isolation for 5G smartphone applications. IEEE Access 2019, 7, 112554–112563. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, R.; Luo, Y.; Yang, G. Compact Eight-Element Antenna Array for Triple-Band MIMO Operation in 5G Mobile Terminals. IEEE Access 2020, 8, 19433–19449. [Google Scholar] [CrossRef]
- Wong, K.L.; Tsai, C.Y.; Li, W.Y. Integrated yet decoupled dual antennas with inherent decoupling structures for 2.4/5.2/5.8-GHz WLAN MIMO operation in the smartphone. Microw. Opt. Technol. Lett. 2017, 59, 2235–2241. [Google Scholar] [CrossRef]
- Ren, Z.; Wu, S.; Zhao, A. Triple Band MIMO Antenna System for 5G Mobile Terminals. In Proceedings of the 2019 International Workshop on Antenna Technology (iWAT), Miami, FL, USA, 3–6 March 2019; pp. 163–165. [Google Scholar]
- Parchin, N.O.; Basherlou, H.J.; Alibakhshikenari, M.; Parchin, Y.O.; Al-Yasir, Y.I.A.; Abd-Alhameed, R.A.; Limiti, E. Mobile-phone antenna array with diamond-ring slot elements for 5G massive MIMO systems. Electronics 2019, 8, 521. [Google Scholar] [CrossRef] [Green Version]
- Parchin, N.O.; Ullah, A.; Asharaa, A.S.; Al-Yasir, Y.I.A.; Basherlou, H.J.; Nagala, M.; Abd-Alhameed, R.A.; Noras, J.M. 8×8 MIMO antenna system with coupled-fed elements for 5G handsets. In Proceedings of the The IET Conference on Antennas and Propagation (APC), Birmingham, UK, 11–12 November 2019. [Google Scholar]
- Parchin, N.O.; Basherlou, H.J.; Al-Yasir, Y.I.A.; Ullah, A.; Abd-Alhameed, R.A.; Noras, J.M. Frequency reconfigurable antenna array with compact end-fire radiators for 4G/5G mobile handsets. In Proceedings of the IEEE 2nd 5G World Forum (5GWF), Dresden, Germany, 30 September–2 October 2019. [Google Scholar]
- Parchin, N.O. Multi-band MIMO antenna design with user-impact investigation for 4G and 5G mobile terminals. Sensors 2019, 19, 456. [Google Scholar] [CrossRef] [Green Version]
- Rappaport, T.S.; Sun, S.; Mayzus, R.; Zhao, H.; Azar, Y.; Wang, K.; Wong, G.N.; Schulz, J.K.; Samimi, M.; Gutierrez, F. Millimeter-wave mobile communications for 5G cellular: It will work! IEEE Access 2013, 1, 335–349. [Google Scholar] [CrossRef]
- Ojaroudiparchin, N.; Shen, M.; Pedersen, G.F. 8×8 planar phased array antenna with high efficiency and insensitivity properties for 5G mobile base stations. In Proceedings of the 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 April 2016. [Google Scholar]
- Roh, W.; Seol, J.-Y.; Park, J.; Lee, B.; Lee, J.; Kim, Y.; Cho, J.; Cheun, K.; Aryanfar, F. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Commun. Mag. 2014, 52, 106–113. [Google Scholar] [CrossRef]
- Parchin, N.O.; Abd-Alhameed, R.A.; Shen, M. A radiation-beam switchable antenna array for 5G smartphones. In Proceedings of the PhotonIcs & Electromagnetics Research Symposium (PIERS), Xiamen, China, 17–20 December 2019. [Google Scholar]
- Parchin, N.O.; Abd-Alhameed, R.A.; Shen, M. A substrate-insensitive antenna array with broad bandwidth and high efficiency for 5G mobile terminals. In Proceedings of the PhotonIcs & Electromagnetics Research Symposium (PIERS), Xiamen, China, 17–20 December 2019. [Google Scholar]
- Naqvi, A.; Lim, S. Review of recent phased arrays for millimeter-wave wireless communication. Sensors 2018, 18, 3194. [Google Scholar] [CrossRef] [Green Version]
- Parchin, N.O.; Abd-Alhameed, R.A.; Shen, M. Frequency-switchable patch antenna with parasitic ring load for 5G mobile terminals. In Proceedings of the International Symposium on Antennas and Propagation (ISAP), Xi’an, China, 27–30 October 2019. [Google Scholar]
- Parchin, N.O.; Alibakhshikenari, M.; Basherlou, H.J.; Abd-Alhameed, R.A.; Rodriguez, J.; Limiti, E. MM-wave phased array quasi-Yagi antenna for the upcoming 5G cellular communications. Appl. Sci. 2019, 9, 978. [Google Scholar] [CrossRef] [Green Version]
- Ojaroudiparchin, N.; Shen, M.; Pedersen, G.F. Low-cost planar mm-Wave phased array antenna for use in mobile satellite (MSAT) platforms. In Proceedings of the 23rd Telecommunications Forum Telfor (TELFOR), Belgrade, Serbia, 24–26 November 2015; pp. 528–531. [Google Scholar]
- Parchin, N.O.; Al-Yasir, Y.; Basherlou, H.J.; Abdulkhaleq, A.M.; Sajedin, M.; Abd-Alhameed, R.A.; Noras, J.M. Modified PIFA array design with improved bandwidth and isolation for 5G mobile handsets. In Proceedings of the IEEE 2nd 5G World Forum (5GWF), Dresden, Germany, 30 September–2 October 2019. [Google Scholar]
- Ojaroudi, N.; Ojaroudi, H.; Ghadimi, N. Quadband planar inverted-f antenna (PIFA) for wireless communication systems. Prog. Electromagn. Res. Lett. 2014, 45, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Salonen, P.; Sydänheimo, L.; Keskilammi, M.; Kivikoski, M. A small planar inverted-F antenna for wearable applications. In Proceedings of the IEEE International Symposium on Wearable Computers, San Francisco, CA, USA, 18–19 October 1999; pp. 96–100. [Google Scholar]
- Ojaroudi, N.; Ghadimi, N.; Ojaroudi, Y.; Ojaroudi, S. An omnidirectional PIFA for downlink and uplink satellite applications in C-band. Microw. Opt. Technol. Lett. 2014, 56, 2684–2686. [Google Scholar] [CrossRef]
- CST Microwave Studio; Version 2018; CST: Framingham, MA, USA, 2018.
- Valizade, A.; Ghobadi, C.; Nourinia, J.; Parchin, N.O.; Ojaroudi, M. Band-notch slot antenna with enhanced bandwidth by using Ω-shaped strips protruded inside rectangular slots for UWB applications. Appl. Comput. Electromagn. Soc. J. 2012, 27, 816–822. [Google Scholar]
- Bahmani, M.; Mazloum, J.; Parchin, N.O. A compact UWB slot antenna with reconfigurable band-notched function for multimode applications. ACES J. 2016, 13, 975–980. [Google Scholar]
- Al-Yasir, Y.; Abd-Alhameed, R.A.; Noras, J.M.; Abdulkhaleq, A.M.; Parchin, N.O. Design of very compact combline band-pass filter for 5G applications. In Proceedings of the 2018 Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK, 12–13 November 2013; pp. 1–4. [Google Scholar]
- Ojaroudi, N.; Ojaroudi, M.; Amiri, S. Enhanced bandwidth of small square monopole antenna by using inverted U-shaped slot and conductor-backed plane. Appl. Comput. Electromagn. Soc. 2012, 27, 685–690. [Google Scholar] [CrossRef]
- Ojaroudi Parchin, N.; Jahanbakhsh Basherlou, H.; Al-Yasir, Y.I.A.; Abdulkhaleq, A.M.; Abd-Alhameed, R.A. Ultra-wideband diversity MIMO antenna system for future mobile handsets. Sensors 2020, 20, 2371. [Google Scholar] [CrossRef]
- Jamesn, J.R.; Hall, P.S. Handbook of Microstrip Antennas; Peter Peregrinus Ltd.: London, UK, 1989. [Google Scholar]
- Mazloum, J.; Ghorashi, A.; Ojaroudi, M.; Ojaroudi, N. Compact triple-band S-shaped monopole diversity antenna for MIMO applications. Appl. Comput. Electromagn. Soc. J. 2015, 30, 975–980. [Google Scholar]
- Valizade, A.; Ojaroudi, M.; Ojaroudi, N. CPW-fed small slot antenna with reconfigurable circular polarization and impedance bandwidth characteristics for DCS/WiMAX applications. Prog. Electromagn. Res. C 2015, 56, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Kumar, G.; Ray, K.P. Broadband Microstrip Antennas; Artech House Inc.: Norwood, MA, USA, 2003. [Google Scholar]
- Parchin, N.O.; Shen, M.; Pedersen, G.F. End-fire phased array 5G antenna design using leaf-shaped bow-tie elements for 28/38 GHz MIMO applications ICUWB. In Proceedings of the IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), Nanjing, China, 16–19 October 2016. [Google Scholar]
- AI-Yasir, Y.I.A.; Ojaroudi Parchin, N.; Alabdullah, A.; Mshwat, W.; Ullah, A.; Abd-Alhameed, R. New pattern reconfigurable circular disk antenna using two PIN diodes for WiMax/WiFi (IEEE 802.11a) applications. In Proceedings of the IEEE International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), Lausanne, Switzerland, 15–18 July 2019. [Google Scholar]
- Zolghadr, J.; Cai, Y.; Ojaroudi, N. UWB slot antenna with band-notched property with time domain modeling based on genetic algorithm optimization. Appl. Comput. Electromagn. Soc. J. 2016, 31, 926–932. [Google Scholar]
- Siahkal-Mahalle, B.H.; Ojaroudi, N.; Ojaroudi, M. A new design of small square monopole antenna with enhanced bandwidth by using cross-shaped slot and conductor-backed plane. Microw. Opt. Technol. Lett. 2012, 54, 2656–2659. [Google Scholar] [CrossRef]
- Ullah, A.; Parchin, N.O.; Abd-Alhameed, R.A.; Excell, P. Coplanar waveguide antenna with defected ground structure for 5G millimeter wave communications. In Proceedings of the IEEE Middle East & North Africa COMMunications Conference, Manama, Bahrain, 19–21 November 2019. [Google Scholar]
- Ojaroudi, N. Design of microstrip antenna for 2.4/5.8 GHz RFID applications. In Proceedings of the German Microwave Conference, GeMic 2014, RWTH Aachen University, Aachen, Germany, 10–12 March 2014. [Google Scholar]
- Ojaroudi, N. Circular microstrip antenna with dual band-stop performance for ultra-wideband systems. Microw. Opt. Technol. Lett. 2014, 56, 2095–2098. [Google Scholar] [CrossRef]
- Basherlou, H.J.; Parchin, N.O.; Abd-Alhameed, R.A. MIMO monopole antenna design with improved isolation for 5G WiFi applications. Int. J. Electr. Electron. Sci. 2019, 7, 1–5. [Google Scholar]
- Sharawi, M.S. Printed multi-band MIMO antenna systems and their performance metrics [wireless corner]. IEEE Antennas Propag. Mag. 2013, 55, 218–232. [Google Scholar] [CrossRef]
- Elfergani, I.T.E.; Hussaini, A.S.; Rodriguez, J.; Abd-Alhameed, R. Antenna Fundamentals for Legacy Mobile Applications and Beyond; Springer: Cham, Switzerland, 2017; pp. 1–659. [Google Scholar]
- Parchin, N.O.; Al-Yasir, Y.; Basherlou, H.J.; Abd-Alhameed, R.A. A closely spaced dual-band MIMO patch antenna with reduced mutual coupling for 4G/5G applications. Prog. Electromagn. Res. C 2020, 101, 71–80. [Google Scholar]
- Parchin, N.O. Low-profile air-filled antenna for next generation wireless systems. Wirel. Pers. Commun. 2017, 97, 3293–3300. [Google Scholar] [CrossRef]
- Parchin, N.O.; Shen, M.; Pedersen, G.F. Small-size tapered slot antenna (TSA) design for use in 5G phased array applications. Appl. Comput. Electromagn. Soc. J. 2017, 32, 193–202. [Google Scholar]
- Ojaroudi, Y.; Ojaroudi, N.; Ghadimi, N. Circularly polarized microstrip slot antenna with a pair of spur-shaped slits for WLAN applications. Microwave Opt. Technol. Lett. 2017, 57, 756–759. [Google Scholar] [CrossRef]
- Syrytsin, I.; Zhang, S.; Pedersen, G.F. Performance investigation of a mobile terminal phased array with user effects at 3.5 GHz for LTE advanced. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1847–1850. [Google Scholar] [CrossRef] [Green Version]
- Ojaroudiparchin, N.; Shen, M.; Pedersen, G.F. Design of Vivaldi antenna array with end-fire beam steering function for 5G mobile terminals. In Proceedings of the 23rd Telecommunications Forum Telfor (TELFOR), Belgrade, Serbia, 24–26 November 2015; pp. 587–590. [Google Scholar]
- Khan, R.; Al-Hadi, A.A.; Soh, P.J.; Kamarudin, M.R.; Ali, M.T. User influence on mobile terminal antennas: A review of challenges and potential solution for 5G antennas. IEEE Access 2018, 6, 77695–77715. [Google Scholar] [CrossRef]
- Stuchly, M. Electromagnetic fields and health. IEEE Potentials 1993, 12, 34–39. [Google Scholar] [CrossRef]
- Hussain, R.; Sharawi, M.S.; Shamim, A. 4-element concentric pentagonal slot-line-based ultra-wide tuning frequency reconfigurable MIMO antenna system. IEEE Trans. Antennas Propag. 2018, 66, 4282–4287. [Google Scholar] [CrossRef]
- Ojaroudiparchin, N.; Shen, M.; Zhang, S.; Pedersen, G.F. A switchable 3-D-coverage-phased array antenna package for 5G mobile terminals. IEEE Antennas Wireless Propag. Lett. 2016, 15, 1747–1750. [Google Scholar] [CrossRef] [Green Version]
- Parchin, N.O.; Al-Yasir, Y.; Basherlou, H.J.; Noras, J.M.; Abd-Alhameed, R.A. Orthogonally dual-polarized MIMO antenna array with pattern diversity for sub-6 GHz 5G mobile terminals. IET Microw. Antennas Propaga. 2020, 14, 457–467. [Google Scholar] [CrossRef]
- Halaoui, M.E.; Kaabal, A.; Asselman, H.; Ahyoud, S.; Asselman, A. Multiband planar inverted-F antenna with independent operating bands control for mobile handset applications. Int. J. Antennas Propag. 2017, 2017, 8794039. [Google Scholar] [CrossRef] [Green Version]
- Parchin, N.O.; Al-Yasir, Y.; Abdulkhaleq, A.M.; Elfergani, I.T.E.; Rayit, A.; Noras, J.M.; Rodriguez, J.; Abd-Alhameed, R.A. Frequency reconfigurable antenna array for mm-Wave 5G mobile handsets. In Proceedings of the 9th International Conference on Broadband Communications, Networks, and Systems, Faro, Portugal, 19–20 September 2018. [Google Scholar]
- Parchin, N.O.; Shen, M.; Pedersen, G.F. Wideband Fabry-Pérot resonator for 28 GHz applications. In Proceedings of the IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), Nanjing, China, 16–19 October 2016; pp. 1–4. [Google Scholar]
- Li, R.; Zhang, Q.; Kuang, Y.; Chen, X.; Xiao, Z.; Zhang, J. Design of a miniaturized antenna based on split ring resonators for 5G wireless communications. In Proceedings of the Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), Taiyuan, China, 18–21 July 2019; pp. 1–4. [Google Scholar]
- Liu, D.; Gaucher, B. Design considerations for millimeter wave antennas within a chip package. In Proceedings of the IEEE International Workshop on Anti-counterfeiting, Security, Identification, Xiamen, China, 16–18 April 2007; pp. 13–17. [Google Scholar]
- Ojaroudiparchin, N.; Shen, M.; Pedersen, G.F. Investigation on the performance of low-profile insensitive antenna with improved radiation characteristics for the future 5G applications. Microw. Opt. Technol. Lett. 2016, 58, 2148–2158. [Google Scholar] [CrossRef] [Green Version]
- Al-Yasir, Y.I.A.; Hasanain, A.H.A.; Baha, A.S.; Parchin, N.O.; Ahmed, M.A.; Abdulkareem, S.A.; Raed, A.A. New Radiation Pattern-Reconfigurable 60-GHz Antenna for 5G Communications. IntechOpen, 2019. Available online: https://www.intechopen.com/online-first/new-radiation-pattern-reconfigurable-60-ghz-antennafor-5g-communications (accessed on 26 September 2019).
- Gomez-Tagle, J.; Christodoulou, C.G. Broadband characterization of the active reflection coefficient of finite-sized phased array microstrip antennas. In Proceedings of the 2000 IEEE International Conference on Phased Array Systems and Technology (Cat. No.00TH8510), Dana Point, CA, USA, 21–25 May 2000; pp. 255–258. [Google Scholar]
- Bai, T.; Heath, R. Coverage and rate analysis for millimeter wave cellular networks. IEEE Trans. Wirel. Commun. 2015, 14, 1110–1114. [Google Scholar] [CrossRef]
Parameter | WX | LX | WX1 | LX1 | WX2 | W | L | Wf |
---|---|---|---|---|---|---|---|---|
Value (mm) | 150 | 75 | 83 | 18 | 5 | 20.5 | 6.5 | 1 |
Parameter | Lf | W1 | L1 | W2 | L2 | W3 | L3 | L4 |
Value (mm) | 1 | 1 | 15.3 | 3.5 | 14.3 | 16 | 5.5 | 4.5 |
Reference | Antenna Type | Elements | Bandwidth (GHz) | Efficiency (%) | Overall Size (mm2) | Isolation (dB) | ECC |
---|---|---|---|---|---|---|---|
Single-Band MIMO Handset Antennas | |||||||
[16] | Coupled-Fed | 8 | 2.55–2.68 | 48–63 | 136 × 68 | 12 | <0.15 |
[17] | Petal Slot | 8 | 2.55–2.66 | - | 150 × 75 | 10 | <0.1 |
[18] | Loop | 8 | 2.55–2.6 | 48–63 | 136 × 68 | 11 | <0.15 |
[19] | PIFA Slot | 8 | 3.4–3.6 | 62–78 | 140 × 70 | 10 | <0.20 |
[20] | Slot-Ring | 8 | 3.4–3.8 | 55–70 | 150 × 75 | 15 | <0.05 |
[21] | Patch-Slot | 8 | 3.55–3.65 | 52–76 | 150 × 75 | 11 | - |
[22] | Loop Element | 8 | 3.3–3.6 | 40 | 120 × 70 | 15 | <0.02 |
[23] | CPW-Fed Slot | 8 | 3.4–4.4 | 65 | 150 × 75 | 16 | <0.01 |
[24] | Monopole | 8 | 4.55–4.75 | 50–70 | 136 × 68 | 10 | - |
Dual-Band MIMO Handset Antennas | |||||||
[25] | Coupled-Fed Slot | 10 | 3.4–3.8 | 41–84 | 150 × 80 | 12 | <0.15 |
5.15–5.92 | 47–79 | ||||||
[26] | Dual Mode Monopole | 2 | 3.4–3.6, | 50–61, | 150 × 76.6 | 10.5 | <0.2 |
5.725–5.875 | 67–80 | ||||||
[27] | Cuboid Monopole | 6 | 2.6–2.7 | 60–70 | 140 × 05 | 10 | <0.05 |
5.1–5.9 | 70–80 | ||||||
[28] | Monopole | 8 | 3.2–3.9 | 60–80 | 150 × 75 | 12 | - |
5–5.5 | 70–85 | ||||||
[29] | Folded Monopole | 8 | 2.45–2.6 | 40–60 | 124 × 74 | 15 | <0.2 |
3.45–3.65 | 50–80 | ||||||
Tri-Band MIMO Handset Antennas | |||||||
[30] | Coupled-Fed Arm | 8 | 3.3–3.8, | 55–72, | 130 × 70 | 10 | <0.1 |
4.8–5, | 50–65, | ||||||
5.1–5.9 | 43–73 | ||||||
[31] | Yet-Decoupled Antennas | 2 | 2.40–2.48 | 44–48, | 150 × 75 | 15 | <0.14 |
5.15–5.35, | 74–80, | ||||||
5.72–5.92 | 75 | ||||||
[32] | F-Shaped Monopole | 4 | 3.3–4.2, | 60–80 | 150 × 75 | 12 | <0.1 |
4.4–5, | |||||||
5.15–5.85 | |||||||
Proposed | Modified Diversity PIFA | 8 | 2.45–2.65, | 40–65, | 150 × 75 | 11 | <0.01 |
3.4–3.75, | 50–70, | ||||||
5.6–6 | 60–80 |
Component | Material | Permittivity |
---|---|---|
Screen | LCD film | 4.8 |
Battery. Camera, Speaker | perfect electric conductor (PEC) | - |
USB Connector | Brass (PEC) | |
Button | Rubber | 3.5 |
printed circuit board (PCB) | FR-4 | 4.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ojaroudi Parchin, N.; Jahanbakhsh Basherlou, H.; Abd-Alhameed, R.A. Design of Multi-Mode Antenna Array for Use in Next-Generation Mobile Handsets. Sensors 2020, 20, 2447. https://doi.org/10.3390/s20092447
Ojaroudi Parchin N, Jahanbakhsh Basherlou H, Abd-Alhameed RA. Design of Multi-Mode Antenna Array for Use in Next-Generation Mobile Handsets. Sensors. 2020; 20(9):2447. https://doi.org/10.3390/s20092447
Chicago/Turabian StyleOjaroudi Parchin, Naser, Haleh Jahanbakhsh Basherlou, and Raed A. Abd-Alhameed. 2020. "Design of Multi-Mode Antenna Array for Use in Next-Generation Mobile Handsets" Sensors 20, no. 9: 2447. https://doi.org/10.3390/s20092447
APA StyleOjaroudi Parchin, N., Jahanbakhsh Basherlou, H., & Abd-Alhameed, R. A. (2020). Design of Multi-Mode Antenna Array for Use in Next-Generation Mobile Handsets. Sensors, 20(9), 2447. https://doi.org/10.3390/s20092447