Deep Compressed Sensing for Learning Submodular Functions
Abstract
:1. Introduction
2. Relevant Work
2.1. Sparse Regression
2.2. Submodularity
2.3. Learning Submodular Functions
2.4. Deep Compressed Sensing
3. Problem Formulation
3.1. Learning Submodular Functions via Compressed Sensing
3.2. Learning Submodular Functions via Deep Compressed Sensing
4. SDCS Algorithm
Algorithm 1: Transformation learning. |
1: Input: , corresponding set combination X |
2: Initial weights in the (), () and W () |
3: for e=1:epoch do |
4: for b=1:♯(batches) do |
5: |
6: , , = AdamOptimizer() |
7: end for |
8: end for |
9: Save trained , , |
Algorithm 2: Fourier coefficient learning. |
1: Input: , X, trained , , threshold |
2: Initial Fourier coefficients () |
3: for e=1:epoch do |
4: |
5: |
6: = AdamOptimizer() |
7: end for |
8: Save trained f |
Algorithm 3: Reconstruction. |
1: Input: Set combinations X, Trained |
2: Output: submodular values (F) corresponding to input combinations (X) |
3: |
5. Experiments
5.1. Experimental Setup
5.2. Reconstruction Results vs. Sparsity
5.3. Greedy Results vs. Sparsity
5.4. Computational Time
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hollinger, G.; Choudhuri, C.; Mitra, U.; Sukhatme, G.S. Squared error distortion metrics for motion planning in robotic sensor networks. In Proceedings of the International Workshop Wireless Networking for Unmanned Autonomous Vehicles, Atlanta, GA, USA, 9–13 December 2013; pp. 1426–1431. [Google Scholar]
- Singh, A.; Krause, A.; Guestrin, C.; Kaiser, W.; Batalin, M. Efficient Planning of Informative Paths for Multiple Robots. IJCAI 2007, 7, 2204–2211. [Google Scholar]
- Tseng, K.S.; Mettler, B. Near-Optimal Probabilistic Search using Spatial Fourier Sparse Set. Auton. Robot. 2018, 42, 329–351. [Google Scholar] [CrossRef]
- Nemhauser, G.L.; Wolsey, L.A.; Fisher, M.L. An analysis of approximations for maximizing submodular set functions. Math. Program. 1978, 14, 265–294. [Google Scholar] [CrossRef]
- Khuller, S.; Moss, A.; Naor, J. The budgeted maximum coverage problem. Inf. Process. Lett. 1999, 70, 39–45. [Google Scholar] [CrossRef]
- Chekuri, C.; Pal, M. A recursive greedy algorithm for walks in directed graphs. In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science, Pittsburgh, PA, USA, 23–25 October 2005; pp. 245–253. [Google Scholar]
- Feige, U. A Threshold of ln n for Approximating Set Cover. J. ACM 1998, 45, 634–652. [Google Scholar] [CrossRef]
- Stobbe, P.; Krause, A. Learning Fourier Sparse Set Functions. In Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics, La Palma, Canary Islands, Spain, 21–23 April 2012; pp. 1125–1133. [Google Scholar]
- Candes, E.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef] [Green Version]
- Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and variable selection via the Elastic Net. J. R. Stat. Soc. Ser. B 2005, 67, 301–320. [Google Scholar] [CrossRef] [Green Version]
- Lorbert, A.; Eis, D.; Kostina, V.; Blei, D.M.; Ramadge, P.J. Exploiting covariate similarity in sparse regression via the pairwise elastic net. In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010; pp. 477–484. [Google Scholar]
- Lorbert, A.; Ramadge, P.J. The Pairwise Elastic Net support vector machine for automatic fMRI feature selection. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 1036–1040. [Google Scholar]
- Friedman, J.; Hastie, T.; Tibshirani, R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics 2008, 9, 432–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baraniuk, R. Compressive Sensing. IEEE Signal Process. Mag. 2007, 24, 118–121. [Google Scholar] [CrossRef]
- Qaisar, S.; Bilal, R.M.; Iqbal, W.; Naureen, M.; Lee, S. Compressive sensing: From theory to applications, a survey. J. Commun. Netw. 2013, 15, 443–456. [Google Scholar] [CrossRef]
- Tseng, K.S.; Mettler, B. Near-Optimal Probabilistic Search via Submodularity and Sparse Regression. Auton. Robot. 2015, 41. [Google Scholar] [CrossRef]
- Tseng, K.S.; Mettler, B. Human Planning and Coordination in Spatial Search Problems. In Proceedings of the 1st IFAC Conference on Cyber-Physical and Human-Systems, Florianopolis, Brazil, 7–9 December 2016. [Google Scholar]
- Tseng, K.S.; Mettler, B. Analysis and Augmentation of Human Performance on Telerobotic Search Problems. IEEE Access 2020, 8, 56590–56606. [Google Scholar] [CrossRef]
- Krause, A.; Guestrin, C.; Gupta, A.; Kleinberg, J. Near-optimal sensor placements: Maximizing information while minimizing communication cost. In Proceedings of the International Conference on Information Processing in Sensor Networks, Nashville, TN, USA, 19–21 April 2006; pp. 2–10. [Google Scholar]
- Hollinger, G.; Sukhatme, G.S. Sampling-based motion planning for robotic information gathering. Robot. Sci. Syst. Conf. 2013, 33. [Google Scholar] [CrossRef]
- Balcan, M.F.; Harvey, N.J. Learning submodular functions. In Proceedings of the 43rd annual ACM symposium on Theory of Computing, San Jose, CA, USA, 6–8 June 2011. [Google Scholar]
- Adler, A.; Boublil, D.; Zibulevsky, M. Block-based compressed sensing of images via deep learning. In Proceedings of the IEEE International Workshop on Multimedia Signal Processing (MMSP), Luton, UK, 16–18 October 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Mousavi, A.; Patel, A.B.; Baraniuk, R.G. A Deep Learning Approach to Structured Signal Recovery. In Proceedings of the Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 29 September–2 October 2015; pp. 1336–1343. [Google Scholar]
- Shi, W.; Jiang, F.; Zhang, S.; Zhao, D. Deep networks for compressed image sensing. In Proceedings of the IEEE International Conference on Multimedia and Expo (ICME), Hong Kong, China, 10–14 July 2017; pp. 877–882. [Google Scholar]
- Kulkarni, K.; Lohit, S.; Turaga, P.; Kerviche, R.; Ashok, A. ReconNet: Non-Iterative Reconstruction of Images from Compressively Sensed Measurements. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 449–458. [Google Scholar]
- Canh, T.N.; Jeon, B. Multi-Scale Deep Compressive Sensing Network. In Proceedings of the 2018 IEEE Visual Communications and Image Processing (VCIP), Taichung, Taiwan, 9–12 December 2018. [Google Scholar]
- Mousavi, A.; Baraniuk, R. Learning to Invert: Signal Recovery via Deep Convolutional Networks. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, LA, USA, 5–9 March 2017; pp. 2272–2276. [Google Scholar]
- Yao, H.; Dai, F.; Zhang, S.; Zhang, Y.; Tian, Q.; Xu, C. DR2-Net: Deep Residual Reconstruction Network for image compressive sensing. Neurocomputing 2019, 359, 483–493. [Google Scholar] [CrossRef] [Green Version]
- Gregor, K.; LeCun, Y. Learning Fast Approximations of Sparse Coding. In Proceedings of the 27th International Conference on International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010; pp. 399–406. [Google Scholar]
- Ito, D.; Takabe, S.; Wadayama, T. Trainable ISTA for Sparse Signal Recovery. IEEE Trans. Signal Process. 2019, 67, 3113–3125. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Ghanem, B. ISTA-Net: Interpretable Optimization-Inspired Deep Network for Image Compressive Sensing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 1828–1837. [Google Scholar]
- Schmidt, M. Least Squares Optimization with L1-Norm Regularization. CS542B Project Report. Available online: https://www.cs.ubc.ca/~schmidtm/Documents/2005_Notes_Lasso.pdf (accessed on 2 May 2020).
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, Y.-C.; Tseng, K.-S. Deep Compressed Sensing for Learning Submodular Functions. Sensors 2020, 20, 2591. https://doi.org/10.3390/s20092591
Tsai Y-C, Tseng K-S. Deep Compressed Sensing for Learning Submodular Functions. Sensors. 2020; 20(9):2591. https://doi.org/10.3390/s20092591
Chicago/Turabian StyleTsai, Yu-Chung, and Kuo-Shih Tseng. 2020. "Deep Compressed Sensing for Learning Submodular Functions" Sensors 20, no. 9: 2591. https://doi.org/10.3390/s20092591
APA StyleTsai, Y. -C., & Tseng, K. -S. (2020). Deep Compressed Sensing for Learning Submodular Functions. Sensors, 20(9), 2591. https://doi.org/10.3390/s20092591