Method for Training Convolutional Neural Networks for In Situ Plankton Image Recognition and Classification Based on the Mechanisms of the Human Eye
Abstract
:1. Introduction
2. Materials and Methods
2.1. Existing Method
2.2. The Proposed Method
3. Experimental Design and Analysis
3.1. Dataset Used
3.2. Experimental Procedure
3.3. Analysis of Evaluation Results
3.4. Discussion
4. Summary and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Hemraj, D.A.; Hossain, M.A.; Ye, Q.; Qin, J.G.; Leterme, S.C. Plankton bioindicators of environmental conditions in coastal lagoons. Estuar. Coast. Shelf Sci. 2017, 184, 102–114. [Google Scholar] [CrossRef]
- González, P.; Castaño, A.; Peacock, E.E.; Díez, J.; Del Coz, J.J.; Sosik, H.M. Automatic plankton quantification using deep features. J. Plankton Res. 2019, 41, 449–463. [Google Scholar] [CrossRef]
- Wiebe, P.H.; Benfield, M.C. From the Hensen net toward four-dimensional biological oceanography. Prog. Oceanogr. 2003, 56, 136. [Google Scholar] [CrossRef]
- McQuatters-Gollop, A.; Johns, D.G.; Bresnan, E.; Skinner, J.; Rombouts, I.; Stern, R.; Aubert, A.; Johansen, M.; Bedford, J.; Knights, A. From microscope to management: The critical value of plankton taxonomy to marine policy and biodiversity conservation. Mar. Policy 2017, 83, 1–10. [Google Scholar] [CrossRef]
- Stramski, D.; Boss, E.; Bogucki, D.; Voss, K.J. The role of seawater constituents in light backscattering in the ocean. Prog. Oceanogr. 2004, 61, 27–56. [Google Scholar] [CrossRef]
- Li, C.; Guo, J.; Guo, C. Emerging from water: Underwater image color correction based on weakly supervised color transfer. IEEE Signal Process Lett. 2018, 25, 323–327. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y. Automatic recognition method of zooplankton image in dark field. Rev. Cient. Fac. Cienc. Vet. 2019, 29, 1894–1903. [Google Scholar]
- Liu, F.; Han, P.; Wei, Y.; Yang, K.; Huang, S.; Li, X.; Zhang, G.; Bai, L.; Shao, X. Deeply seeing through highly turbid water by active polarization imaging. Opt. Lett. 2018, 43, 4903–4906. [Google Scholar] [CrossRef]
- Tang, X.; Stewart, W.K.; Huang, H.; Gallager, S.M.; Davis, C.S.; Vincent, L.; Marra, M. Automatic plankton image recognition. Artif. Intell. Rev. 1998, 12, 177–199. [Google Scholar] [CrossRef]
- Luo, T.; Kramer, K.; Goldgof, D.B.; Hall, L.O.; Samson, S.; Remsen, A.; Hopkins, T. Active learning to recognize multiple types of plankton. J Mach. Learn. Res. 2005, 6, 589–613. [Google Scholar]
- Ellen, J.; Li, H.; Ohman, M.D. Quantifying California current plankton samples with efficient machine learning techniques. In Proceedings of the OCEANS 2015-MTS/IEEE Washington, Washington, DC, USA, 19–22 October 2015. [Google Scholar]
- Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep learning for computer vision: A brief review. Comput. Intell. Neurosci. 2018, 2018. [Google Scholar] [CrossRef] [PubMed]
- Moniruzzaman, M.; Islam SM, S.; Bennamoun, M.; Lavery, P. Deep learning on underwater marine object detection: A survey. In International Conference on Advanced Concepts for Intelligent Vision Systems; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Rawat, W.; Wang, Z. Deep convolutional neural networks for image classification: A comprehensive review. Neural Comput. 2017, 29, 2352–2449. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, Y.; Oerlemans, A.; Lao, S.; Wu, S.; Lew, M.S. Deep learning for visual understanding: A review. Neurocomputing 2016, 187, 27–48. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 22 –25 July 2017; pp. 4700–4708. [Google Scholar]
- Kauderer-Abrams, E. Quantifying translation-invariance in convolutional neural networks. arXiv 2017, arXiv:1801.01450. [Google Scholar]
- Bi, H.; Guo, Z.; Benfield, M.C.; Fan, C.; Ford, M.; Shahrestani, S.; Sieracki, J.M. A semi-automated image analysis procedure for in situ plankton imaging systems. PLoS ONE 2015, 10, e0127121. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Nair, V.; Hinton, G. The CIFAR-10 Dataset. 2014. Available online: https://www.cs.toronto.edu/~kriz/cifar.html (accessed on 1 June 2019).
- Perez, L.; Wang, J. The effectiveness of data augmentation in image classification using deep learning. arXiv 2017, arXiv:1712.04621. [Google Scholar]
- Human Eye: Additional Images. Available online: https://en.wikipedia.org/wiki/Eye (accessed on 23 January 2020).
- Liu, W.; Zhang, H.F. Photoacoustic imaging of the eye: A mini review. Photoacoustics 2016, 4, 112–123. [Google Scholar] [CrossRef] [Green Version]
- Laha, B.; Stafford, B.K.; Huberman, A.D. Regenerating optic pathways from the eye to the brain. Science 2017, 356, 1031–1034. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, B.; Yang, H.; Orchard, G.M.; Le Thi, N.A.; Zhang, S.; Xiang, C. DART: Distribution aware retinal transform for event-based cameras. IEEE Trans. Pattern Anal. Mach. Intell. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarvaiya, J.N.; Patnaik, S.; Kothari, K. Image registration using log polar transform and phase correlation to recover higher scale. J. Pattern Recognit. Res. 2012, 7, 90–105. [Google Scholar] [CrossRef]
- Wolberg, G.; Zokai, S. Robust image registration using log-polar transform. In Proceedings of the 2000 International Conference on Image Processing (Cat. No. 00CH37101), Vancouver, BC, Canada, 10–13 September 2000; Volume 1, pp. 493–496. [Google Scholar]
- Hu, Q.; Davis, C. Automatic plankton image recognition with co-occurrence matrices and Support Vector Machine. Mar. Ecol. Prog. Ser. 2005, 295, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Davis, C. Accurate automatic quantification of taxa-specific plankton abundance using dual classification with correction. Mar. Ecol. Prog. Ser. 2006, 306, 51–61. [Google Scholar] [CrossRef]
- Suykens, J.A.K.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Dogan, Ü.; Glasmachers, T.; Igel, C. A unified view on multi-class support vector classification. J. Mach. Learn. Res. 2016, 17, 1–32. [Google Scholar]
- Fefilatyev, S.; Kramer, K.; Hall, L.; Goldgof, D.; Kasturi, R.; Remsen, A.; Daly, K. Detection of anomalous particles from the deepwater horizon oil spill using the SIPPER3 underwater imaging platform. In Proceedings of the IEEE International Conference on Data Mining Workshops, Vancouver, BC, Canada, 11 December 2011. [Google Scholar]
- Py, O.; Hong, H.; Zhongzhi, S. Plankton classification with deep convolutional neural networks. In Proceedings of the Information Technology, Networking, Electronic & Automation Control Conference, Chongqing, China, 20–22 May 2016. [Google Scholar]
- Cheng, K.; Cheng, X.; Wang, Y.; Bi, H.; Benfield, M.C. Enhanced convolutional neural network for plankton identification and enumeration. PLoS ONE 2019, 14, e0219570. [Google Scholar] [CrossRef] [Green Version]
No. | Model (Detailed Structure) | Precision (%) | Recall Rate (%) | Time (ms/Sample) |
---|---|---|---|---|
1 | AlexNet | 90.083 | 91.071 | 5.601 |
2 | VGG19 | 92.391 | 92.467 | 17.437 |
3 | GoogLeNet | 94.407 | 94.443 | 7.533 |
4 | ResNet50 | 92.579 | 92.586 | 11.677 |
5 | DenseNet201 | 96.456 | 96.471 | 23.281 |
6 | AlexNet + augmented dataset | 90.176 | 91.171 | 5.593 |
7 | VGG19 + augmented dataset | 92.423 | 92.492 | 17.451 |
8 | GoogLeNet + augmented dataset | 94.416 | 94.452 | 7.527 |
9 | ResNet50 + augmented dataset | 93.593 | 93.636 | 12.311 |
10 | DenseNet201 + augmented dataset | 96.459 | 96.473 | 23.297 |
11 | AlexNet-fc + SVM | 91.092 | 91.114 | 5.833 |
12 | VGG19-fc + SVM | 93.591 | 93.557 | 19.109 |
13 | GoogLeNet-fc + SVM | 94.397 | 94.429 | 7.630 |
14 | ResNet50-fc + SVM | 95.257 | 95.271 | 12.089 |
15 | DenseNet201-fc + SVM | 96.568 | 96.586 | 23.912 |
16 | AlexNet-fc+AlexNet_Polar-fc + SVM | 92.793 | 92.783 | 11.235 |
17 | VGG19-fc+VGG19_Polar-fc + SVM | 95.693 | 95.691 | 37.975 |
18 | GoogLeNet-fc + GoogLeNet_Polar-fc + SVM | 96.939 | 96.927 | 14.818 |
19 | ResNet50-fc + ResNet50_Polar-fc + SVM | 97.359 | 97.357 | 23.786 |
20 | DenseNet201-fc + DenseNet201_Polar-fc + SVM | 97.989 | 97.986 | 46.417 |
No. | Model (Detailed Structure) | Precision (%) | Recall Rate (%) | Time (ms/Sample) |
---|---|---|---|---|
1 | AlexNet | 85.30 | 85.57 | 3.75 |
2 | VGG19 | 90.53 | 90.21 | 16.29 |
3 | GoogLeNet | 91.12 | 90.93 | 5.48 |
4 | ResNet50 | 92.61 | 92.59 | 9.10 |
5 | DenseNet201 | 94.14 | 94.12 | 21.57 |
6 | AlexNet + augmented dataset | 85.31 | 85.61 | 3.71 |
7 | VGG19 + augmented dataset | 90.52 | 90.19 | 16.23 |
8 | GoogLeNet + augmented dataset | 91.22 | 90.91 | 5.51 |
9 | ResNet50 + augmented dataset | 92.63 | 92.56 | 9.12 |
10 | DenseNet201 + augmented dataset | 94.16 | 94.12 | 21.56 |
11 | AlexNet-fc + SVM | 85.81 | 85.33 | 4.32 |
12 | VGG19-fc + SVM | 92.03 | 92.02 | 17.05 |
13 | GoogLeNet-fc + SVM | 91.04 | 91.07 | 5.81 |
14 | ResNet50-fc + SVM | 93.27 | 93.26 | 10.35 |
15 | DenseNet201-fc + SVM | 93.70 | 93.69 | 21.63 |
16 | AlexNet-fc + AlexNet_Polar-fc + SVM | 87.26 | 87.28 | 8.83 |
17 | VGG19-fc + VGG19_Polar-fc + SVM | 92.53 | 92.62 | 36.32 |
18 | GoogLeNet-fc + GoogLeNet_Polar-fc + SVM | 92.30 | 92.16 | 10.90 |
19 | ResNet50-fc + ResNet50_Polar-fc+SVM | 93.95 | 93.93 | 19.72 |
20 | DenseNet201-fc + DenseNet201_Polar-fc + SVM | 94.91 | 94.76 | 43.95 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, X.; Ren, Y.; Cheng, K.; Cao, J.; Hao, Q. Method for Training Convolutional Neural Networks for In Situ Plankton Image Recognition and Classification Based on the Mechanisms of the Human Eye. Sensors 2020, 20, 2592. https://doi.org/10.3390/s20092592
Cheng X, Ren Y, Cheng K, Cao J, Hao Q. Method for Training Convolutional Neural Networks for In Situ Plankton Image Recognition and Classification Based on the Mechanisms of the Human Eye. Sensors. 2020; 20(9):2592. https://doi.org/10.3390/s20092592
Chicago/Turabian StyleCheng, Xuemin, Yong Ren, Kaichang Cheng, Jie Cao, and Qun Hao. 2020. "Method for Training Convolutional Neural Networks for In Situ Plankton Image Recognition and Classification Based on the Mechanisms of the Human Eye" Sensors 20, no. 9: 2592. https://doi.org/10.3390/s20092592
APA StyleCheng, X., Ren, Y., Cheng, K., Cao, J., & Hao, Q. (2020). Method for Training Convolutional Neural Networks for In Situ Plankton Image Recognition and Classification Based on the Mechanisms of the Human Eye. Sensors, 20(9), 2592. https://doi.org/10.3390/s20092592