Photoacoustic-Based Gas Sensing: A Review
Abstract
:1. Introduction
2. Fundamentals of Photoacoustics
3. Direct vs. Indirect Setups
3.1. Indirect Photoacoustic (NDIR Setups)
3.2. Direct Setups
3.2.1. Non-Resonator Based Setups
3.2.2. Acoustic Resonator-Enhanced Photoacoustic Spectroscopy
3.2.3. Quartz-Enhanced and Cantilever Photoacoustic Absorption Spectroscopy
4. Discussion and Conclusions
Funding
Conflicts of Interest
References
- Bell, A.G. On the Production and Reproduction of Sound by Light. Am. J. Sci. 1880, 20, 305–324. [Google Scholar] [CrossRef] [Green Version]
- Tyndall, J. Action of an Intermittent Beam of Radiant Heat upon Gaseaous Matter. Proc. R. Soc. Lond. 1881, 31, 307–317. [Google Scholar]
- Röntgen, W.C. On tones produced by the intermittent irradiation of a gas. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1881, 11, 308–311. [Google Scholar] [CrossRef] [Green Version]
- Mercadier, E. Sur la radiophonie. J. Phys. Theor. Appl. 1881, 10, 53–68. [Google Scholar] [CrossRef]
- Preece, W.H.I. On the conversion of radiant energy into sonorous vibrations. Proc. R. Soc. Lond. 1881, 31, 506–520. [Google Scholar]
- Wente, E.C. A Condenser Transmitter as a Uniformly Sensitive Instrument for the Absolute Measurement of Sound Intensity. Phys. Rev. 1917, 10, 39–63. [Google Scholar] [CrossRef] [Green Version]
- Wente, E.C. Telephone-Transmitter. U.S. Patent 1,383,744, 16 March 1920. [Google Scholar]
- Veingorow, M.L. Eine neue Methode der Gasanalyse beruhend auf dem optisch-akustischen Tyndall-Röntgeneffekt. Proc. USSR Acad. Sci. 1938, 19, 687–688. [Google Scholar]
- Pfund, A.H. Atmospheric Contamination. Science 1939, 90, 326–327. [Google Scholar] [CrossRef]
- Luft, K.F. Über eine Neue Methode der Registrierenden Gasanalyse mit Hilfe der Absorption Ultraroter Strahlen ohne spektrale Zerlegung. Z. Tech. Phys. 1943, 5, 97–104. [Google Scholar]
- Luft, K.F.; Schaefter, W.; Wiegleb, G. 50 Jahre NDIR-Gasanalyse. Tech. Mess. 1993, 60, 363–371. [Google Scholar] [CrossRef]
- Schmick, H. Determining the Contents of a Gas. U.S. Patent 1,691,138, 13 November 1926. [Google Scholar]
- Lehrer, G.; Luft, K. Verfahren zur Bestimmung von Bestandteilen in Stoffgemischen Mittels Strahlungsabsorption. DE Patent DE730478C, 14 January 1943. [Google Scholar]
- Mcdonald, F.A.; Wetsel, G.C.; Mcdonald, F.A.; Wetsel, G.C. Generalized theory of the photoacoustic effect Generalized theory of the photoacoustic effect. J. Appl. Phys. 1978, 49, 2313–2322. [Google Scholar] [CrossRef]
- Manohar, S.; Razansky, D. Photoacoustics: A historical review. Adv. Opt. Photonics 2016, 8, 586–617. [Google Scholar] [CrossRef] [Green Version]
- Mandelis, A. Photoacoustic, Photothermal, and Diffusion-Wave Sciences in the Twenty-First Century: Triumphs of the Past Set the Trends for the Future. Int. J. 2012, 33, 1776–1777. [Google Scholar] [CrossRef]
- Krzempek, K. A Review of Photothermal Detection Techniques for Gas Sensing Applications. Appl. Sci. 2019, 9, 2826. [Google Scholar] [CrossRef] [Green Version]
- Tam, A.C. Appliacations of photoacoustic sensing techniques. Rev. Mod. Phys. 1986, 58, 381–431. [Google Scholar] [CrossRef]
- West, G.A.; Barrett, J.J.; Siebert, D.R.; Reddy, K.V. Photoacoustic spectroscopy. Rev. Sci. Instrum. 1983, 54, 797–817. [Google Scholar] [CrossRef]
- Steinberg, I.; Huland, D.M.; Vermesh, O.; Frostig, H.E.; Tummers, W.S.; Gambhir, S.S. Photoacoustic clinical imaging. Photoacoustics 2019, 14, 77–98. [Google Scholar] [CrossRef]
- Van Den Berg, P.J.; Daoudi, K.; Steenbergen, W. Review of photoacoustic flow imaging: Its current state and its promises. Photoacoustics 2015, 3, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Wang, L.V. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 2006, 77, 41101. [Google Scholar] [CrossRef] [Green Version]
- Bozóki, Z.; Pogány, A.; Szabó, G. Photoacoustic Instruments for Practical Applications: Present, Potentials, and Future Challenges. Appl. Spectrosc. Rev. 2011, 46, 1–37. [Google Scholar] [CrossRef]
- Li, J.; Chen, W.; Yu, B. Recent Progress on Infrared Photoacoustic Spectroscopy Techniques. Appl. Spectrosc. Rev. 2011, 46, 440–471. [Google Scholar] [CrossRef]
- Haisch, C. Photoacoustic spectroscopy for analytical measurements. Meas. Sci. Technol. 2011, 23, 12001. [Google Scholar] [CrossRef]
- Harren, F.J.M.; Cristescu, S.M. Photoacoustic Spectroscopy in Trace Gas Monitoring. In Encyclopedia of Analytical Chemistry; American Cancer Society: New York City, NY, USA, 2019; pp. 1–29. [Google Scholar]
- Werle, P.; Slemr, F.; Maurer, K.; Kormann, R.; Mücke, R.; Jänker, B. Near- and mid-infrared laser-optical sensors for gas analysis. Opt. Lasers Eng. 2002, 37, 101–114. [Google Scholar] [CrossRef]
- Werle, P. A review of recent advances in semiconductor laser based gas monitors. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1998, 54, 197–236. [Google Scholar] [CrossRef]
- Dinh, T.V.; Choi, I.Y.; Son, Y.S.; Kim, J.C. A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction. Sens. Actuatorsb Chem. 2016, 231, 529–538. [Google Scholar] [CrossRef]
- Ball, D.W. The Basics of Spectroscopy; SPIE Press: Bellingham, WA, USA, 2001. [Google Scholar]
- Demtröder, W. Laser Spectroscopy 1; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Miklós, A.; Hess, P.; Bozóki, Z. Application of acoustic resonators in photoacoustic trace gas analysis and metrology. Rev. Sci. Instrum. 2001, 72, 1937–1955. [Google Scholar] [CrossRef] [Green Version]
- Gondal, M.A.; Yamani, Z.H. Highly sensitive electronically modulated photoacoustic spectrometer for ozone detection. Appl. Opt. 2007, 46, 7083–7090. [Google Scholar] [CrossRef]
- Angelmahr, M.; Miklós, A.; Hess, P. Wavelength- and amplitude-modulated photoacoustics: Comparison of simulated and measured spectra of higher harmonics. Appl. Opt. 2008, 47, 2806–2812. [Google Scholar] [CrossRef]
- Daoudi, K.; Hussain, A.; Hondebrink, E.; Steenbergen, W. Correcting photoacoustic signals for fluence variations using acousto-optic modulation. Opt. Express 2012, 20, 14117–14129. [Google Scholar] [CrossRef] [Green Version]
- Germer, M.; Wolff, M. Photoacoustic investigation of QCL modulation techniques. J. Phys. Conf. Ser. 2010, 214, 012067. [Google Scholar] [CrossRef] [Green Version]
- Walden, P.; Kneer, J.; Knobelspies, S.; Kronast, W.; Mescheder, U.; Palzer, S. Micromachined Hotplate Platform for the Investigation of Ink-Jet Printed, Functionalized Metal Oxide Nanoparticles. J. Microelectromech. Syst. 2015, 24, 1384–1390. [Google Scholar] [CrossRef]
- Schilt, S.; Thévenaz, L. Wavelength modulation photoacoustic spectroscopy: Theoretical description and experimental results. Infrared Phys. Technol. 2006, 48, 154–162. [Google Scholar] [CrossRef]
- Sigrist, M.W. Trace gas monitoring by laser photoacoustic spectroscopy and related techniques (plenary). Rev. Sci. Instrum. 2003, 74, 486–490. [Google Scholar] [CrossRef]
- Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2013, 24, 012004. [Google Scholar] [CrossRef] [Green Version]
- Swinehart, D.F. The Beer-Lambert Law. J. Chem. Educ. 1962, 39, 333–335. [Google Scholar] [CrossRef]
- Macisaac, D.; Kanner, G.; Anderson, G. Basic Physics of the Incandescent Lamp (Lightbulb). Phys. Teach. 1999, 37, 520–525. [Google Scholar] [CrossRef]
- Lochbaum, A.; Fedoryshyn, Y.; Dorodnyy, A.; Koch, U.; Hafner, C.; Leuthold, J. On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing. ACS Photonics 2017, 4, 1371–1380. [Google Scholar] [CrossRef] [Green Version]
- Rogalski, A. Infrared detectors: An overview. Infrared Phys. Technol. 2002, 43, 187–210. [Google Scholar] [CrossRef] [Green Version]
- Hodgkinson, J.; Smith, R.; Ho, W.O.; Saffell, J.R.; Tatam, R.P. Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2 μm in a compact and optically efficient sensor. Sens. Actuatorsb Chem. 2013, 186, 580–588. [Google Scholar] [CrossRef] [Green Version]
- Tranquillini, W. Der Ultrarot-Absorptions-schreiber im Dienste ökologischer Messungen des pflanzlichen CO2-Umsatzes. Plant Biol. 1952, 65, 102–112. [Google Scholar]
- Schjølberg-Henriksen, K.; Schulz, O.; Ferber, A.; Moe, S.; Lloyd, M.; Müller, G.; Suphar, K.H.; Wang, D.T.; Bernstein, R.W. Sensitive and Selective Photoacoustic Gas Sensor Suitable for High-Volume Manufacturing. IEEE Sens. J. 2008, 8, 1539–1545. [Google Scholar] [CrossRef]
- Ohlckers, P.; Dmitriev, V.K.; Kirpilenko, G.; Coatings, P. A Photoacoustic Gas Sensing Silicon Microsystem. In Proceedings of the 11th International Conference on Solid-State Sensors and Actuators, Munich, Germany, 10–14 June 2001; pp. 780–781. [Google Scholar]
- Schjølberg-Henriksen, K.; Wang, D.T.; Rogne, H.; Ferber, A.; Vogl, A.; Moe, S.; Bernstein, R.; Lapadatu, D.; Sandven, K.; Brida, S. High-resolution pressure sensor for photo acoustic gas detection. Sens. Actuators A 2006, 132, 207–213. [Google Scholar] [CrossRef]
- Scholz, L.; Ortiz Perez, A.; Bierer, B.; Wöllenstein, J.; Palzer, S. Gas sensors for climate research. J. Sens. Sens. Syst. 2018, 7, 535–541. [Google Scholar] [CrossRef] [Green Version]
- Wittstock, V.; Scholz, L.; Bierer, B.; Ortiz Perez, A.; Wöllenstein, J.; Palzer, S. Design of a LED-based sensor for monitoring the lower explosion limit of methane. Sens. Actuatorsb Chem. 2017, 247, 930–939. [Google Scholar] [CrossRef]
- Scholz, L.; Ortiz Perez, A.; Bierer, B.; Eaksen, P.; Wöllenstein, J.; Palzer, S. Miniature low-cost carbon dioxide sensor for mobile devices. IEEE Sens. J. 2017, 17, 2889–2895. [Google Scholar] [CrossRef]
- Friedt, J.-M.; Carry, É. Introduction to the quartz tuning fork. Am. J. Phys. 2007, 75, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Fukuma, T.; Kimura, M.; Kobayashi, K.; Matsushige, K.; Yamada, H. Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy. Rev. Sci. Instrum. 2005, 76, 053704. [Google Scholar] [CrossRef] [Green Version]
- Elia, A.; Lugarà, P.M.; di Franco, C.; Spagnolo, V. Photoacoustic techniques for trace gas sensing based on semiconductor laser sources. Sensors 2009, 9, 9616–9628. [Google Scholar] [CrossRef] [Green Version]
- Bierer, B.; Kress, P.; Nägele, H.; Lemmer, A.; Palzer, S. Investigating flexible feeding effects on the biogas quality in full-scale anaerobic digestion by high resolution, photoacoustic-based NDIR sensing. Eng. Life Sci. 2019, 19, 700–710. [Google Scholar] [CrossRef] [Green Version]
- Knobelspies, S.; Bierer, B.; Ortiz Perez, A.; Wöllenstein, J.; Kneer, J.; Palzer, S. Low-cost gas sensing system for the reliable and precise measurement of methane, carbon dioxide and hydrogen sulfide in natural gas and biomethane. Sens. Actuatorsb Chem. 2016, 236, 885–892. [Google Scholar] [CrossRef]
- Dong, M.; Zheng, C.; Miao, S.; Zhang, Y.; Du, Q.; Wang, Y.; Tittel, F.K. Development and Measurements of a Mid-Infrared Multi-Gas Sensor System for CO, CO2 and CH4 Detection. Sensors 2017, 17, 2221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.; Su, G.; Yuan, H. In situ gas filter correlation: Photoacoustic CO detection method for fire warning. Sens. Actuatorsb Chem. 2005, 109, 233–237. [Google Scholar] [CrossRef]
- Perez, A.O.; Bierer, B.; Scholz, L.; Wöllenstein, J.; Palzer, S. A Wireless Gas Sensor Network to Monitor Indoor Environmental Quality in Schools. Sensors 2018, 18, 4345. [Google Scholar] [CrossRef] [Green Version]
- Bierer, B.; Nägele, H.J.; Ortiz Perez, A.; Wöllenstein, J.; Kress, P.; Lemmer, A.; Palzer, S. Real-Time Gas Quality Data for On-Demand Production of Biogas. Chem. Eng. Technol. 2018, 41, 696–701. [Google Scholar] [CrossRef]
- Köhring, M.; Böttger, S.; Willer, U.; Schade, W. LED-absorption-QEPAS sensor for biogas plants. Sensors 2015, 15, 12092–12102. [Google Scholar] [CrossRef]
- Scholz, L.; Palzer, S. Photoacoustic-based detector for infrared laser spectroscopy. Appl. Phys. Lett. 2016, 109, 041102. [Google Scholar] [CrossRef]
- Uotila, J. Comparison of infrared sources for a differential photoacoustic gas detection system. Infrared Phys. Technol. 2007, 51, 122–130. [Google Scholar] [CrossRef]
- Xiong, L.; Bai, W.; Chen, F.; Zhao, X.; Yu, F.; Diebold, G.J. Photoacoustic trace detection of gases at the parts-per-quadrillion level with a moving optical grating. Proc. Natl. Acad. Sci. USA 2017, 114, 7246–7249. [Google Scholar] [CrossRef] [Green Version]
- Tomberg, T.; Vainio, M.; Hieta, T.; Halonen, L. Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo- acoustic spectroscopy. Sci. Rep. 2018, 8, 1848. [Google Scholar] [CrossRef] [Green Version]
- Belkin, M.A.; Capasso, F. New frontiers in quantum cascade lasers: High performance room temperature terahertz sources. Phys. Scr. 2015, 90, 118002. [Google Scholar] [CrossRef]
- Faist, J.; Capasso, F.; Sivco, D.L.; Sirtori, C.; Hutchinson, A.L.; Cho, A.Y. Quantum Cascade Laser. Science 1994, 264, 553–556. [Google Scholar] [CrossRef] [PubMed]
- Kerr, E.L.; Atwood, J.G. The Laser Illuminated Absorptivity Spectrophone: A Method for Measurement of Weak Absorptivity in Gases at Laser Wavelengths. Appl. Opt. 1968, 7, 915–921. [Google Scholar] [CrossRef] [PubMed]
- Kreuzer, L.B. Ultralow Gas Concentration Infrared Absorption Spectroscopy. J. Appl. Phys. 1971, 42, 2934–2943. [Google Scholar] [CrossRef]
- Patel, C.K.N.; Burkhardt, E.G.; Lambert, C.A. Spectroscopic Measurements of Stratospheric Nitric Oxide and Water Vapor. Science 1974, 184, 1173–1177. [Google Scholar] [CrossRef] [PubMed]
- Patimisco, P.; Sampaolo, A.; Giglio, M.; dello Russo, S.; Mackowiak, V.; Rossmadl, H.; Cable, A.; Tittel, F.K.; Spagnolo, V. Tuning forks with optimized geometries for quartz-enhanced photoacoustic spectroscopy. Opt. Express 2019, 27, 1401–1415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindley, R.E.; Parkes, A.M.; Keen, K.A.; McNaghten, E.D.; Orr-Ewing, A.J. A sensitivity comparison of three photoacoustic cells containing a single microphone, a differential dual microphone or a cantilever pressure sensor. Appl. Phys. B Lasers Opt. 2007, 86, 707–713. [Google Scholar] [CrossRef]
- Bogumil, K.; Orphal, J.; Homann, T.; Voigt, S.; Spietz, P.; Fleischmann, O.C.; Vogel, A.; Hartmann, M.; Kromminga, H.; Bovensmann, H.; et al. Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: Instrument characterization and reference data for atmospheric remote-sensing in the 230–2380 nm region. J. Photochem. Photobiol. A Chem. 2003, 157, 167–184. [Google Scholar] [CrossRef]
- Hall, T.C.; Blacet, F.E. Separation of the Absorption Spectra of NO2 and N2O4 in the Range of 2400–5000 A. J. Chem. Phys. 1952, 20, 1745–1749. [Google Scholar] [CrossRef]
- Gelbwachs, J.A.; Birnbaum, M.; Tucker, A.W.; Fincher, C.L. Fluorescence determination of atmospheric NO2. Opto-Electronics 1972, 4, 155–160. [Google Scholar] [CrossRef]
- Kühn, K.; Pignanelli, E.; Schütze, A. Versatile gas detection system based on combined NDIR transmission and photoacoustic absorption measurements. IEEE Sens. J. 2012, 13, 934–940. [Google Scholar] [CrossRef]
- Sensirion. CO2, Humidity and Temperature Sensor SCD40; Sensirion: Stäfa, Switzerland, 2020. [Google Scholar]
- Infineon Technologies, A.G. XENSIVTM Environmental Sensor; Infineon Technologies AG: Neubiberg, Germany, 2020. [Google Scholar]
- Advanced Energy. INNOVA 1314i—Highly Accurate, Reliable, Stable, and Remote Controllable Quantitative Gas Monitoring System. 2019. Available online: https://www.advancedenergy.com/globalassets/resources-root/data-sheets/en-gs-innova1314i-data-sheet.pdf (accessed on 9 May 2020).
- Tomberg, T.; Hieta, T.; Vainio, M.; Halonen, L. Cavity-enhanced cantilever-enhanced photo-acoustic spectroscopy. Analyst 2019, 144, 2291–2296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinsler, L.E.; Frey, A.R.; Coppens, A.B.; Sanders, J.V. Fundamentals of Acoustics, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2000. [Google Scholar]
- Green, E.I. The Story of Q. Am. Sci. 1955, 43, 584–594. [Google Scholar]
- Miklós, A.; Hess, P.; Mohácsi, Á.; Sneider, J.; Kamm, S.; Schäfer, S. Improved photoacoustic detector for monitoring polar molecules such as ammonia with a 1.53 μm DFB diode laser. AIP Conf. Proc. 1999, 463, 126–128. [Google Scholar]
- Zeninari, V.; Kapitanov, V.A.; Courtois, D.; Ponomarev, Y.N. Design and characteristics of a differential Helmholtz resonant photoacoustic cell for infrared gas detection. Infrared Phys. Technol. 1999, 40, 1–23. [Google Scholar] [CrossRef]
- Rey, J.M.; Sigrist, M.W. Differential mode excitation photoacoustic spectroscopy: A new photoacoustic detection scheme. Rev. Sci. Instrum. 2007, 78, 063104. [Google Scholar] [CrossRef]
- McNaghten, E.D.; Grant, K.A.; Parkes, A.M.; Martin, P.A. Simultaneous detection of trace gases using multiplexed tunable diode lasers and a photoacoustic cell containing a cantilever microphone. Appl. Phys. B 2012, 107, 861–871. [Google Scholar] [CrossRef]
- Glière, A.; Barritault, P.; Berthelot, A.; Constancias, C.; Coutard, J.; Desloges, B.; Duraffourg, L.; Fedeli, J.; Garcia, M.; Lartigue, O. Downsizing and Silicon Integration of Photoacoustic Gas. Int. J. Thermophys. 2020, 41, 16. [Google Scholar] [CrossRef] [Green Version]
- Glière, A.; Rouxel, J.; Brun, M.; Parvitte, B.; Zéninari, V.; Nicoletti, S. Challenges in the Design and Fabrication of a Lab-on-a-Chip Photoacoustic Gas Sensor. Sensors 2014, 14, 957–974. [Google Scholar] [CrossRef] [Green Version]
- Gorelik, A.V.; Ulasevich, A.L.; Kuz, A.A.; Starovoitov, V.S. A Miniature Prototype of a Resonance Photoacoustic Cell for Gas Sensing. Opt. Spectrosc. 2013, 115, 567–573. [Google Scholar] [CrossRef]
- Bauer, R.; Stewart, G.; Johnstone, W.; Boyd, E.; Lengden, M. 3D-printed miniature gas cell for photoacoustic spectroscopy of trace gases. Opt. Lett. 2014, 39, 4796–4799. [Google Scholar] [CrossRef] [Green Version]
- Rouxel, J.; Coutard, J.; Gidon, S.; Lartigue, O.; Nicoletti, S.; Parvitte, B.; Vallon, R.; Zéninari, V.; Glière, A. Miniaturized differential Helmholtz resonators for photoacoustic trace gas detection. Sens. Actuators B Chem. 2016, 236, 1104–1110. [Google Scholar] [CrossRef]
- Gorelik, A.V.; Ulasevich, A.L.; Nikonovich, F.N.; Zakharich, M.P.; Firago, V.A.; Kazak, N.S.; Starovoitov, V.S. Miniaturized resonant photoacoustic cell of inclined geometry for trace-gas detection. Appl. Phys. B 2010, 100, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Holthoff, E.L.; Heaps, D.A.; Pellegrino, P.M. Development of a MEMS-Scale Photoacoustic Chemical Sensor Using a Quantum Cascade Laser. IEEE Sens. J. 2010, 10, 572–577. [Google Scholar] [CrossRef]
- Hippler, M.; Mohr, C.; Keen, K.A.; Mcnaghten, E.D. Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers: A novel technique for ultratrace gas analysis and high-resolution spectroscopy Cavity-enhanced resonant photoacoustic spectroscopy with optical analysis and high-r. J. Chem. Phys. 2010, 133, 044308. [Google Scholar] [CrossRef]
- Rossi, A.; Buffa, R.; Scotoni, M.; Bassi, D.; Iannotta, S.; Boschetti, A. Optical enhancement of diode laser- photoacoustic trace gas detection by means of external Fabry-Perot. Appl. Phys. Lett. 2005, 87, 041110. [Google Scholar] [CrossRef]
- Rey, J.M.; Marinov, D.; Vogler, D.E.; Sigrist, M.W. Investigation and optimisation of a multipass resonant photoacoustic cell at high absorption levels. Appl. Phys. B 2005, 80, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Harren, F.J.M.; Bijnen, F.G.C.; Reuss, J.; Voesenek, L.A.C.J.; Blom, C.W.P.M. Sensitive intracavity photoacoustic measurements with a CO2 waveguide laser. Appl. Phys. B 1990, 50, 137–144. [Google Scholar] [CrossRef]
- Harren, F.J.M.; Berkelmans, R.; Kuiper, K.; te Lintel Hekkert, S.; Scheepers, P.; Dekhuijzen, R.; Hollander, P.; Parker, D.H. On-line laser photoacoustic detection of ethene in exhaled air as biomarker of ultraviolet radiation damage of the human skin. Appl. Phys. Lett. 1999, 74, 1761–1763. [Google Scholar] [CrossRef] [Green Version]
- Nägele, M.; Sigrist, M.W. Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas sensing. Appl. Phys. B 2000, 70, 895–901. [Google Scholar] [CrossRef]
- Koch, K.P.; Lahmann, W. Optoacoustic detection of sulphur dioxide below the parts per billion level. Appl. Phys. Lett. 1978, 32, 289–291. [Google Scholar] [CrossRef]
- Sandfort, V.; Goldschmidt, J.; Wöllenstein, J.; Palzer, S. Cavity-Enhanced Raman Spectroscopy for Food Chain Management. Sensors 2018, 18, 709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, M.; Liu, Q.; Liu, K.; Yuan, Y.; Gao, X. Temperature-dependent characteristics of a photoacoustic detector. Optik 2013, 124, 2450–2454. [Google Scholar] [CrossRef]
- Szakáll, M.; Csikós, J.; Bozóki, Z.; Szabó, G. On the temperature dependent characteristics of a photoacoustic water vapor detector for airborne application. Infrared Phys. Technol. 2007, 51, 113–121. [Google Scholar] [CrossRef]
- Barreiro, N.; Peuriot, A.; Santiago, G.; Slezak, V. Water-based enhancement of the resonant photoacoustic signal from methane – air samples excited at 3.3 µm. Appl. Phys. B 2012, 108, 369–375. [Google Scholar] [CrossRef]
- Barreiro, N.; Vallespi, A.; Santiago, G.; Slezak, V.; Peuriot, A. Influence of oxygen on the resonant photoacoustic signal from methane excited at the ν 3 mode. Appl. Phys. B 2011, 104, 983–987. [Google Scholar] [CrossRef]
- Barreiro, N.; Peuriot, A.; Slezak, V.; Santiago, G. Vibrational Spectroscopy Study of the dependence of the photoacoustic signal amplitude from methane on different collisional partners. Vib. Spectrosc. 2013, 68, 158–161. [Google Scholar] [CrossRef]
- Pan, Y.; Dong, L.; Yin, X.; Wu, H. Compact and Highly Sensitive NO2 Photoacoustic Sensor for Environmental Monitoring. Molecules 2020, 25, 1201. [Google Scholar] [CrossRef] [Green Version]
- Rück, T.; Bierl, R.; Matysik, F. Physical Low-cost photoacoustic NO2 trace gas monitoring at the pptV-level. Sens. Actuators A Phys. 2017, 263, 501–509. [Google Scholar] [CrossRef]
- Gondal, M.A.; Dastageer, M.A. Design, fabrication, and optimization of photo acoustic gas sensor for the trace level detection of NO2 in the atmosphere. J. Environ. Sci. Heal. Part A 2010, 45, 1406–1412. [Google Scholar] [CrossRef]
- Kalkman, J.; van Kesteren, H.W. Relaxation effects and high sensitivity photoacoustic detection of NO2 with a blue laser diode. Appl. Phys. B 2008, 90, 197–200. [Google Scholar] [CrossRef]
- Lima, J.P.; Vargas, H.; Miklós, A.; Angelmahr, M.; Hess, P. Photoacoustic detection of NO2 and N2O using quantum cascade lasers. Appl. Phys. B 2006, 85, 279–284. [Google Scholar] [CrossRef]
- Yin, X.; Dong, L.; Wu, H.; Zheng, H.; Ma, W.; Zhang, L.; Yin, W.; Jia, S.; Tittel, F.K. Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser. Sens. Actuators B Chem. 2017, 247, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Bernhardt, R.; Santiago, G.D.; Slezak, V.B.; Peuriot, A.; González, M.G. Differential, LED-excited, resonant NO2 photoacoustic system. Sens. Actuatorsb Chem. 2010, 150, 513–516. [Google Scholar] [CrossRef]
- González, M.; Santiago, G.; Slezak, V.; Peuriot, A. Novel optical method for background reduction in resonant photoacoustics. Rev. Sci. Instrum. 2007, 78, 084903. [Google Scholar] [CrossRef] [PubMed]
- Kapp, J.; Weber, C.; Schmitt, K.; Pernau, H.-F.; Wöllenstein, J. Resonant Photoacoustic Spectroscopy of NO2 with a UV-LED Based Sensor. Sensors 2019, 19, 724. [Google Scholar] [CrossRef] [Green Version]
- Santiago, G.D.; González, M.G.; Peuriot, A.L.; González, F.; Slezak, V.B. Blue light-emitting diode-based, enhanced resonant excitation of longitudinal acoustic modes in a closed pipe with application to NO2. Rev. Sci. Instrum. 2006, 77, 023108. [Google Scholar] [CrossRef]
- Saarela, J.; Sorvajärvi, T.; Laurila, T.; Toivonen, J. Phase-sensitive method for background-compensated photoacoustic detection of NO2 using high-power LEDs. Opt. Express 2011, 19, A725–A732. [Google Scholar] [CrossRef]
- Linhares, F.G.; Lima, M.A.; Mothe, G.A.; de Castro, M.P.P.; Silva, M.G.; Sthel, M.S. Photoacoustic spectroscopy for detection of N2O emitted from combustion of diesel/beef tallow biodiesel/sugarcane diesel and diesel/beef tallow biodiesel blends. Biomass Convers. Biorefinery 2019, 9, 577–583. [Google Scholar] [CrossRef]
- Da Silva, M.G.; Miklós, A.; Falkenroth, A.; Hess, P. Photoacoustic measurement of N2O concentrations in ambient air with a pulsed optical parametric oscillator. Appl. Phys. B 2006, 82, 329–336. [Google Scholar] [CrossRef]
- Wu, H.; Yin, X.; Dong, L.; Jia, Z.; Zhang, J.; Liu, F.; Ma, W.; Zhang, L.; Yin, W.; Xiao, L.; et al. Ppb-level nitric oxide photoacoustic sensor based on a mid-IR quantum cascade laser operating at 52 °C. Sens. Actuators B Chem. 2019, 290, 426–433. [Google Scholar] [CrossRef]
- Gondal, M.A.; Khalil, A.A.I.; Al-Suliman, N. High sensitive detection of nitric oxide using laser induced photoacoustic spectroscopy at 213 nm. Appl. Opt. 2012, 51, 5724–5734. [Google Scholar] [CrossRef]
- Baptista-Filho, M.; Gonc, H.; Gomes, M.; Luna, F.J.; Werneck, C.G.; Rech, I.; Carlos, J.; Bezerra, M.; Monte, M.; Souza-barros, F.; et al. Ammonia traces detection based on photoacoustic spectroscopy for evaluating ammonia volatization from natural zeolites at typical crop field temperature. Sens. Actuators B Chem. 2011, 158, 241–245. [Google Scholar] [CrossRef] [Green Version]
- Baptista-Filho, M.; da Silva, M.G.; Sthel, M.S.; Schramm, D.U.; Vargas, H.; Miklós, A.; Hess, P. Ammonia detection by using quantum-cascade laser photoacoustic spectroscopy. Appl. Opt. 2006, 45, 4966–4971. [Google Scholar] [CrossRef]
- Paldus, B.A.; Spence, T.G.; Zare, R.N.; Oomens, J.; Harren, F.J.M.; Parker, D.H.; Gmachl, C.; Cappasso, F.; Sivco, D.L.; Baillargeon, J.N.; et al. Photoacoustic spectroscopy using quantum-cascade lasers. Opt. Lett. 1999, 24, 178–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulasevich, A.L.; Gorelik, A.V.; Kouzmouk, A.A.; Starovoitov, V.S. A compact resonant P -shaped photoacoustic cell with low window background for gas sensing. Appl. Phys. B 2014, 117, 549–561. [Google Scholar] [CrossRef]
- Pushkarsky, M.B.; Webber, M.E.; Patel, C.K.N. Ultra-sensitive ambient ammonia detection using CO2-laser-based photoacoustic. Appl. Phys. B 2003, 77, 381–385. [Google Scholar] [CrossRef]
- Bonilla-Manrique, O.E.; Posada-Roman, J.E.; Garcia-Souto, J.A.; Ruiz-Llata, M. Sub-ppm-Level Ammonia Detection Using Photoacoustic Spectroscopy with an Optical Microphone Based on a Phase Interferometer. Sensors 2019, 19, 2890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, S.; Qu, Y.; Ma, Y.; He, Y.; Wang, Y.; Hu, Y.; Yu, X.; Zhang, Z.; Tittel, F.K. A Sensitive Carbon Dioxide Sensor Based on Photoacoustic Spectroscopy with a Fixed Wavelength Quantum Cascade Laser. Sensors 2019, 19, 4187. [Google Scholar] [CrossRef] [Green Version]
- Dumitras, D.C.; Banita, S.; Bratu, A.M.; Cernat, R.; Dutu, D.C.A.; Matei, C.; Patachia, M.; Petrus, M.; Popa, C. Infrared Physics & Technology Ultrasensitive CO2 laser photoacoustic system. Infrared Phys. Technol. 2010, 53, 308–314. [Google Scholar]
- Alahmari, S.; Kang, X.; Hippler, M. Diode laser photoacoustic spectroscopy of CO2, H2S and O2 in a differential Helmholtz resonator for trace gas analysis in the biosciences and petrochemistry. Anal. Bioanal. Chem. 2019, 411, 3777–3787. [Google Scholar] [CrossRef] [Green Version]
- Reed, Z.D.; Sperling, B.; van Zee, R.D.; Hodges, J.T.; Gillis, L.A.; Hodges, J.T. Photoacoustic spectrometer for accurate, continuous measurements of atmospheric carbon dioxide concentration. Appl. Phys. B 2014, 117, 645–657. [Google Scholar] [CrossRef]
- Liu, K.; Mei, J.; Zhang, W.; Chen, W.; Gao, X. Multi-resonator photoacoustic spectroscopy. Sens. Actuators B Chem. 2017, 251, 632–636. [Google Scholar] [CrossRef]
- Hanyecz, V.; Mohácsi, Á.; Pogány, A.; Varga, A.; Bozoki, Z.; Kovács, I.; Szabó, G. Multi-component photoacoustic gas analyzer for industrial applications. Vib. Spectrosc. 2010, 52, 63–68. [Google Scholar] [CrossRef]
- Miklós, A.; Pei, S.-C.; Kung, A.H. Multipass acoustically open photoacoustic detector for trace gas measurements. Appl. Opt. 2006, 45, 2529–2534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonilla-Manrique, O.E.; Moser, H.; Martín-Mateos, P.; Lendl, B.; Ruiz-Llata, M. Hydrogen Sulfide Detection in the Midinfrared Using a 3D-Printed Resonant Gas Cell. J. Sens. 2019, 2019, 6437431. [Google Scholar] [CrossRef] [Green Version]
- Varga, A.; Bozóki, Z.; Szakáll, M.; Szabó, G. Photoacoustic system for on-line process monitoring of hydrogen sulfide (H2S) concentration in natural gas streams. Appl. Phys. B Lasers Opt. 2006, 85, 315–321. [Google Scholar] [CrossRef]
- Szabó, A.; Mohácsi, A.; Gulyás, G.; Bozóki, Z.; Szabó, G. In situ and wide range quantification of hydrogen sulfide in industrial gases by means of photoacoustic spectroscopy. Meas. Sci. Technol. 2013, 24, 065501. [Google Scholar] [CrossRef]
- Yin, X.; Dong, L.; Wu, H.; Ma, W.; Zhang, L.; Yin, W.; Xiao, L.; Jia, S.; Tittel, F.K. Ppb-level H2S detection for SF 6 decomposition based on a fiber-amplified telecommunication diode laser and a background-gas-induced high-Q photoacoustic cell. Appl. Phys. Lett. 2017, 111, 031109. [Google Scholar] [CrossRef] [Green Version]
- Starovoitov, V.S.; Kischkat, J.F.; Semtsiv, M.P.; Masselink, W.T. Intracavity photoacoustic sensing of water vapor with a continuously tunable external-cavity quantum-cascade laser operating near 5.5 μm. Opt. Lett. 2016, 41, 4955–4958. [Google Scholar] [CrossRef]
- Bozókia, Z.; Szakáll, M.; Mohácsi, Á.; Szabó, G.; Bor, Z. Diode laser based photoacoustic humidity sensors. Sens. Actuators B Chem. 2003, 91, 219–226. [Google Scholar] [CrossRef]
- Rey, J.M.; Romer, C.; Gianella, M.; Sigrist, M.W. Near-infrared resonant photoacoustic gas measurement using simultaneous dual-frequency excitation. Appl. Phys. B Lasers Opt. 2010, 100, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Teodoro, C.G.; Schramm, D.U.; Sthel, M.S.; Lima, G.R.; Rocha, M.V.; Tavares, J.R.; Vargas, H. CO2 laser photoacoustic detection of ethylene emitted by diesel engines used in urban public transports. Infrared Phys. Technol. 2010, 53, 151–155. [Google Scholar] [CrossRef]
- Chen, K.; Gong, Z.; Yu, Q. Fiber-amplifier-enhanced resonant photoacoustic sensor for sub-ppb level acetylene detection. Sens. Actuators A Phys. 2018, 274, 184–188. [Google Scholar] [CrossRef]
- Chen, K.; Deng, H.; Guo, M.; Luo, C.; Liu, S.; Zhang, B.; Ma, F.; Zhu, F.; Gong, Z.; Peng, W.; et al. Tube-cantilever double resonance enhanced fiber-optic photoacoustic spectrometer. Opt. Laser Technol. 2020, 123, 105894. [Google Scholar] [CrossRef]
- Grossel, A.; Zeninari, V.; Joly, L.; Parvitte, B.; Courtois, D.; Durry, G. New improvements in methane detection using a Helmholtz resonant photoacoustic laser sensor: A comparison between near-IR diode lasers and mid-IR quantum cascade lasers. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2006, 63, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- Zeninari, V.; Vallon, R.; Risser, C.; Parvitte, B. Photoacoustic Detection of Methane in Large Concentrations with a Helmholtz Sensor: Simulation and Experimentation. Int. J. Thermophys. 2016, 37, 7. [Google Scholar] [CrossRef]
- Rocha, M.V.; Sthel, M.S.; Silva, M.G.; Paiva, L.B.; Pinheiro, F.W.; Miklòs, A.; Vargas, H. Quantum-cascade laser photoacoustic detection of methane emitted from natural gas powered engines. Appl. Phys. B 2012, 106, 701–706. [Google Scholar] [CrossRef]
- Besson, J.; Schilt, S.; Thévenaz, L. Multi-gas sensing based on photoacoustic spectroscopy using tunable laser diodes. Spectrochim. Acta Part A 2004, 60, 3449–3456. [Google Scholar] [CrossRef]
- Miklós, A.; Lim, C.-H.; Hsiang, W.-W.; Liang, G.-C.; Kung, A.H.; Schmohl, A.; Hess, P. Photoacoustic measurement of methane concentrations with a compact pulsed optical parametric oscillator. Appl. Opt. 2002, 41, 2985–2993. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, M.G.; Vargas, H.; Miklós, A.; Hess, P. Photoacoustic detection of ozone using a quantum cascade laser. Appl. Phys. B 2004, 78, 677–680. [Google Scholar] [CrossRef]
- Ajtai, T.; Filep, Á.; Varga, A.; Motika, G.; Szabó, G. Ozone concentration-monitoring photoacoustic system based on a frequency-quadrupled Nd: YAG laser. Appl. Phys. B 2010, 101, 403–409. [Google Scholar] [CrossRef]
- Besson, J.-P.; Schilt, S.; Thévenaz, L. Molecular relaxation effects in hydrogen chloride photoacoustic detection. Appl. Phys. B 2008, 90, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Vogel, M.; Mooser, C.; Karrai, K.; Warburton, R.J. Optically tunable mechanics of microlevers. Appl. Phys. Lett. 2003, 83, 1337–1339. [Google Scholar] [CrossRef]
- Forrer, M.P. A Flexure-Mode Quartz for an Electronic Wrist-Watch. In Proceedings of the 23rd Annual Symposium on Frequency Control, Atlantic City, NJ, USA, 6–8 May 1969; pp. 157–162. [Google Scholar]
- Edwards, H.; Taylor, L.; Duncan, W.; Melmed, A.J. Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor. J. Appl. Phys. 1997, 82, 980–984. [Google Scholar] [CrossRef] [Green Version]
- Kosterev, A.A.; Bakhirkin, Y.A.; Curl, R.F.; Tittel, F.K. Quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 2002, 27, 1902–1904. [Google Scholar] [CrossRef] [Green Version]
- Patimisco, P.; Scamarcio, G.; Tittel, F.K.; Spagnolo, V. Quartz-enhanced photoacoustic spectroscopy: A review. Sensors 2014, 14, 6165–6206. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y. Review of Recent Advances in QEPAS-Based Trace Gas Sensing. Appl. Sci. 2018, 8, 1822. [Google Scholar] [CrossRef] [Green Version]
- Patimisco, P.; Sampaolo, A.; Dong, L.; Tittel, F.K.; Spagnolo, V. Recent advances in quartz enhanced photoacoustic sensing. Appl. Phys. Rev. 2018, 5, 011106. [Google Scholar] [CrossRef]
- Patimisco, P.; Sampaolo, A.; Zheng, H.; Dong, L.; Tittel, F.K.; Spagnolo, V. Quart—Enhanced photoacoustic spectrophones exploiting custom tuning forks: A review. Adv. Phys. X 2017, 2, 169–187. [Google Scholar]
- Ma, Y.; Qiao, S.; Patimisco, P.; Sampaolo, A.; Wang, Y.; Tittel, F.K.; Spagnolo, V. In-plane quartz-enhanced photoacoustic spectroscopy. Appl. Phys. Lett. 2020, 116, 61101. [Google Scholar] [CrossRef]
- Zheng, H.; Dong, L.; Sampaolo, A.; Wu, H.; Patimisco, P.; Yin, X.; Ma, W.; Zhang, L.; Yin, W.; Spagnolo, V.; et al. Single-tube on-beam quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 2016, 41, 978–981. [Google Scholar] [CrossRef] [PubMed]
- Elefante, A.; Giglio, M.; Sampaolo, A.; Menduni, G.; Patimisco, P.; Passaro, V.M.N.; Wu, H.; Rossmadl, H.; Mackowiak, V.; Cable, A.; et al. Dual-Gas Quartz-Enhanced Photoacoustic Sensor for Simultaneous Detection of Methane/Nitrous Oxide and Water Vapor. Anal. Chem. 2019, 91, 12866–12873. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Yin, X.; Dong, L.; Pei, K.; Sampaolo, A.; Patimisco, P.; Zheng, H.; Ma, W.; Zhang, L.; Yin, W.; et al. Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork. Appl. Phys. Lett. 2017, 110, 121104. [Google Scholar] [CrossRef] [Green Version]
- De Cumis, M.S.; Viciani, S.; Borri, S.; Patimisco, P.; Sampaolo, A.; Scamarcio, G.; De Natale, P.; D’Amato, F.; Spagnolo, V. Widely-tunable mid-infrared fiber-coupled quartz-enhanced photoacoustic sensor for environmental monitoring. Opt. Express 2014, 22, 28222–28231. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Tong, Y.; He, Y.; Jin, X.; Tittel, F.K. Compact and sensitive mid-infrared all-fiber quartz-enhanced photoacoustic spectroscopy sensor for carbon monoxide detection. Opt. Express 2019, 27, 9302–9312. [Google Scholar] [CrossRef]
- Mordmueller, M.; Schade, W.; Willer, U. QEPAS with electrical co-excitation for photoacoustic measurements in fluctuating background gases. Appl. Phys. B 2017, 123, 224. [Google Scholar] [CrossRef]
- Wu, H.; Dong, L.; Zheng, H.; Yu, Y.; Ma, W.; Zhang, L.; Yin, W.; Xiao, L.; Jia, S.; Tittel, F.K. Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring. Nat. Commun. 2017, 8, 15331. [Google Scholar] [CrossRef] [Green Version]
- Peltola, J.; Vainio, M.; Hieta, T.; Uotila, J.; Sinisalo, S.; Metsälä, M.; Siltanen, M.; Halonen, L. High sensitivity trace gas detection by cantilever-enhanced photoacoustic spectroscopy using a mid-infrared continuous-wave optical parametric oscillator. Opt. Express 2013, 21, 10240–10250. [Google Scholar] [CrossRef]
- Peltola, J.; Hieta, T.; Vainio, M. Parts-per-trillion-level detection of nitrogen dioxide by cantilever-enhanced photo-acoustic spectroscopy. Opt. Lett. 2015, 40, 2933–2936. [Google Scholar] [CrossRef]
- Zheng, H.; Dong, L.; Ma, Y.; Wu, H.; Liu, X.; Yin, X.; Zhang, L.; Ma, W.; Yin, W.; Xiao, L.; et al. Scattered light modulation cancellation method for sub-ppb-level NO2 detection in a LD-excited QEPAS system. Opt. Express 2016, 24, A752–A761. [Google Scholar] [CrossRef]
- Rück, T.; Bierl, R.; Matysik, F.-M. NO2 trace gas monitoring in air using off-beam quartz enhanced photoacoustic spectroscopy (QEPAS) and interference studies towards CO2, H2O and acoustic noise. Sens. Actuators B Chem. 2018, 255, 2462–2471. [Google Scholar] [CrossRef]
- Zheng, H.; Dong, L.; Yin, X.; Liu, X.; Wu, H.; Zhang, L.; Ma, W.; Yin, W.; Jia, S. Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED. Sens. Actuators B Chem. 2015, 208, 173–179. [Google Scholar] [CrossRef]
- Jahjah, M.; Ren, W.; Stefański, P.; Lewicki, R.; Zhang, J.; Jiang, W.; Tarka, J.; Tittel, F.K. A compact QCL based methane and nitrous oxide sensor for environmental and medical applications. Analyst 2014, 139, 2065–2069. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Lewicki, R.; Razeghi, M.; Tittel, F.K. QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL. Opt. Express 2013, 21, 1008–1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, L.; Spagnolo, V.; Lewicki, R.; Tittel, F.K. Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor. Opt. Express 2011, 19, 24037–24045. [Google Scholar] [CrossRef]
- Lewicki, R.; Wysocki, G.; Kosterev, A.A.; Tittel, F.K. Carbon dioxide and ammonia detection using 2 μm diode laser based quartz-enhanced photoacoustic spectroscopy. Appl. Phys. B 2007, 87, 157–162. [Google Scholar] [CrossRef]
- Wu, H.; Dong, L.; Liu, X.; Zheng, H.; Yin, X.; Ma, W.; Zhang, L.; Yin, W.; Jia, S. Fiber-Amplifier-Enhanced QEPAS Sensor for Simultaneous Trace Gas Detection of NH3 and H2S. Sensors 2015, 15, 26743–26755. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Dong, L.; Liu, X.; Liu, Y.; Wu, H.; Ma, W.; Zhang, L.; Yin, W.; Jia, S. Near-IR telecommunication diode laser based double-pass QEPAS sensor for atmospheric CO2 detection. Laser Phys. 2015, 25, 125601. [Google Scholar] [CrossRef]
- Wysocki, G.; Kosterev, A.A.; Tittel, F.K. Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ = 2 μm. Appl. Phys. B 2006, 85, 301–306. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Q.; Ching, J.Y.-L.; Wu, J.C.-Y.; Zhang, G.; Ren, W. A portable low-power QEPAS-based CO2 isotope sensor using a fiber-coupled interband cascade laser. Sens. Actuators B Chem. 2017, 246, 710–715. [Google Scholar] [CrossRef]
- Patimisco, P.; Borri, S.; Galli, I.; Mazzotti, D.; Giusfredi, G.; Akikusa, N.; Yamanishi, M.; Scamarcio, G.; De Natale, P.; Spagnolo, V. High finesse optical cavity coupled with a quartz-enhanced photoacoustic spectroscopic sensor. Analyst 2015, 140, 736–743. [Google Scholar] [CrossRef] [PubMed]
- Kuusela, T.; Peura, J.; Matveev, B.A.; Remennyy, M.A.; Stus’, N.M. Photoacoustic gas detection using a cantilever microphone and III-V mid-IR LEDs. Vib. Spectrosc. 2009, 51, 289–293. [Google Scholar] [CrossRef]
- Koskinen, V.; Fonsen, J.; Roth, K.; Kauppinen, J. Cantilever enhanced photoacoustic detection of carbon dioxide using a tunable diode laser source. Appl. Phys. B 2007, 86, 451–454. [Google Scholar] [CrossRef]
- Helman, M.; Moser, H.; Dudkowiak, A.; Lendl, B. Off-beam quartz-enhanced photoacoustic spectroscopy-based sensor for hydrogen sulfide trace gas detection using a mode-hop-free external cavity quantum cascade laser. Appl. Phys. B 2017, 123, 141. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Sampaolo, A.; Dong, L.; Patimisco, P.; Liu, X.; Zheng, H.; Yin, X.; Ma, W.; Zhang, L.; Yin, W.; et al. Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing. Appl. Phys. Lett. 2015, 107, 111104. [Google Scholar] [CrossRef] [Green Version]
- Spagnolo, V.; Patimisco, P.; Pennetta, R.; Sampaolo, A.; Scamarcio, G.; Vitiello, M.S.; Tittel, F.K. THz Quartz-enhanced photoacoustic sensor for H2S trace gas detection. Opt. Express 2015, 23, 7574–7582. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; He, Y.; Yu, X.; Zhang, J.; Sun, R.; Tittel, F.K. Compact all-fiber quartz-enhanced photoacoustic spectroscopy sensor with a 30.72 kHz quartz tuning fork and spatially resolved trace gas detection. Appl. Phys. Lett. 2016, 108, 091115. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Tong, Y.; He, Y.; Long, J.-H.; Yu, X. Quartz-Enhanced Photoacoustic Spectroscopy Sensor with a Small-Gap Quartz Tuning Fork. Sensors 2018, 18, 2047. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Xiao, Y.; Ma, Y.; He, Y.; Tittel, F.K. A Miniaturized QEPAS Trace Gas Sensor with a 3D-Printed Acoustic Detection Module. Sensors 2017, 17, 1750. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Chang, J.; Cong, Z.; Feng, Y.; Wang, Z.; Sun, J. Scanned-wavelength intra-cavity QEPAS sensor with injection seeding technique for C2H2 detection. Opt. Laser Technol. 2019, 120, 105751. [Google Scholar] [CrossRef]
- Cao, Y.; Jin, W.; Ho, H.L.; Qi, L.; Yang, Y.H. Acetylene detection based on diode laser QEPAS: Combined wavelength and residual amplitude modulation. Appl. Phys. B 2012, 109, 359–366. [Google Scholar] [CrossRef]
- Wu, H.; Dong, L.; Yin, X.; Sampaolo, A.; Patimisco, P.; Ma, W.; Zhang, L.; Yin, W.; Xiao, L.; Spagnolo, V.; et al. Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with V-T relaxation self-calibration. Sens. Actuators B Chem. 2019, 297, 126753. [Google Scholar] [CrossRef]
- Böttger, S.; Köhring, M.; Willer, M.; Schade, W. Off-beam quartz-enhanced photoacoustic spectroscopy with LEDs. Appl. Phys. B 2013, 113, 227–232. [Google Scholar] [CrossRef]
- Ma, Y.; He, Y.; Yu, X.; Chen, C.; Sun, R.; Tittel, F.K. HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork. Sens. Actuators B Chem. 2016, 233, 388–393. [Google Scholar] [CrossRef] [Green Version]
- Giglio, M.; Elefante, A.; Patimisco, P.; Sampaolo, A.; Sgobba, F.; Rossmadl, H.; Mackowiak, V.; Wu, H.; Tittel, F.K.; Dong, L.; et al. Quartz-enhanced photoacoustic sensor for ethylene detection implementing optimized custom tuning fork-based spectrophone. Opt. Express 2019, 27, 4271–4280. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Geng, J.; Ren, W. Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) Detection of the ν7 Band of Ethylene at Low Pressure with CO2 Interference Analysis. Appl. Spectrosc. 2017, 71, 1834–1841. [Google Scholar] [CrossRef] [PubMed]
- Harren, F.J.M.; Reuss, J.; Woltering, E.J.; Bicanic, D.D. Photoacoustic Measurements of Agriculturally Interesting Gases and Detection of C2H4 below the PPB Level. Appl. Spectrosc. 1990, 44, 1360–1368. [Google Scholar] [CrossRef]
- Rousseau, R.; Loghmari, Z.; Bahriz, M.; Chamassi, K.; Teissier, R.; Baranov, A.N.; Vicet, A. Off-beam QEPAS sensor using an 11 µm DFB-QCL with an optimized acoustic resonator. Opt. Express 2019, 27, 7435–7446. [Google Scholar] [CrossRef]
Light Source | Sound Transducer | Target Gas/Measurement Range | Concentration Range and Limit of Detection (LOD) | Citations |
---|---|---|---|---|
Thermal source | Microphone | Carbon dioxide (CO2) | 0 %–100 % LOD not stated | [57] |
0 ppm–2500 ppm 8.69 ppm | [58] | |||
Carbon Monoxide (CO) | 0 ppm–70 ppm LOD not stated | [59] | ||
0 ppm–2500 ppm 8.83 ppm | [58] | |||
Methane (CH4) | 0 %–100 % LOD not stated | [57] | ||
0 ppm–2500 ppm 10.29 ppm | [58] | |||
LED | Microphone | Carbon dioxide (CO2) | 0 ppm–5000 ppm 100 ppm | [52] |
0 ppm–7000 ppm 345 ppm | [50] | |||
0 ppm–7000 ppm LOD not stated | [60] | |||
0 %–100 % 2,053 ppm | [56] | |||
Methane (CH4) | 0 %–100 % LOD not stated | [61] | ||
0 %–100 % 5024 ppm | [56] | |||
0 %–6 % 2510 ppm | [51] | |||
QTF | Carbon dioxide (CO2) | 0 %–100 % LOD not stated | [62] | |
Methane (CH4) | 0 %–100 % LOD not stated | [62] | ||
Laser | Microphone | Methane (CH4) | 0 ppm–1100 ppm LOD not stated | [63] |
Cantilever | Ethylene (C2H4) | 0 ppm–1000 ppm 10 ppb | [64] |
Target Gas (es) | Light Source | Reference |
---|---|---|
Nitrogen Dioxide (NO2) | LD | [108,109,110,111,112] |
Multimode LD | [113] | |
LED | [114,115,116,117,118] | |
Nitric Oxide (N2O) | QCL | [112,119] |
OPO | [120] | |
Nitrogen oxide (NO) | QCL | [121] |
LD | [122] | |
Ammonia (NH3) | QCL | [123,124,125] |
CO2 laser | [126,127] | |
LD | [128] | |
Carbon Dioxide (CO2) | QCL | [129] |
CO2 laser | [130] | |
LD | [131,132,133,134] | |
OPO | [135] | |
Hydrogel Sulfide (H2S) | QCL | [136] |
CO2 Laser | [130] | |
LD | [137,138,139] | |
Water (H2O) | QCL | [125,140] |
LD | [133,134,141] | |
LED | [142] | |
Acetylene (C2H2) | CO2 Laser | [143] |
LD | [87,144,145] | |
Methane (CH4) | QCL | [146,147,148] |
LD | [87,133,146,149] | |
OPO | [150] | |
Ozone (O3) | QCL | [151] |
quadrupled Nd:YAG | [152] | |
Hydrogen Chloride (HCl) | LD | [149,153] |
Ethylene (C2H4) | CO2 Laser | [98] |
Target Gas(es) | Setup | Reference |
---|---|---|
Nitrogen Dioxide (NO2) | QTF with acoustic resonator | [172,173] |
QTF using LED | [174] | |
Nitrous Oxide (N2O) | QTF with optical cavity | [164,175,176] |
Nitric oxide (NO) | QTF using laser | [177] |
Ammonia (NH3) | QTF using laser | [178,179] |
Carbon Dioxide (CO2) | QTF using laser | [178,180,181,182] |
QTF with optical cavity | [183] | |
LED with cantilever | [184] | |
Laser with cantilever | [185] | |
Hydrogel Sulfide (H2S) | QTF using laser | [179,186,187,188] |
Water (H2O) | QTF using laser | [169,189,190] |
Acetylene (C2H2) | QTF using laser | [191,192,193] |
Methane (CH4) | QTF using laser | [164,169,175,194] |
Ozone (O3) | QTF using laser | [195] |
Hydrogen Chloride (HCl) | QTF using laser | [196] |
Ethylene (C2H4) | QTF using laser | [197,198,199,200] |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palzer, S. Photoacoustic-Based Gas Sensing: A Review. Sensors 2020, 20, 2745. https://doi.org/10.3390/s20092745
Palzer S. Photoacoustic-Based Gas Sensing: A Review. Sensors. 2020; 20(9):2745. https://doi.org/10.3390/s20092745
Chicago/Turabian StylePalzer, Stefan. 2020. "Photoacoustic-Based Gas Sensing: A Review" Sensors 20, no. 9: 2745. https://doi.org/10.3390/s20092745
APA StylePalzer, S. (2020). Photoacoustic-Based Gas Sensing: A Review. Sensors, 20(9), 2745. https://doi.org/10.3390/s20092745