A Piezoelectric Wave-Energy Converter Equipped with a Geared-Linkage-Based Frequency Up-Conversion Mechanism
Abstract
:1. Introduction
2. Conceptual Design
2.1. The Components of the Piezoelectric WEC
2.2. Operation of the Piezoelectric Power-Generation Component
2.3. Flexible Piezoelectric Composite Film
3. Design, Analysis, and Testing of the PWEC
3.1. Kinematics Analysis of the Frequency Up-Conversion Mechanism
3.2. The Flexible Piezoelectric Composite Film
3.2.1. Preparation of the PZT Slurry
- (a)
- 1.6 g of PVB powder was added into 44 mL of a 99.9% alcohol solution via vigorous stirring at 600 rpm for 1 h.
- (b)
- 80 g of PZT NPs were added to the PVB–alcohol solution and stirred vigorously at 1000 rpm for 1 h.
- (c)
- The solution was subjected to ultrasonic mixing in an oscillating machine for 1 h.
- (d)
- The solution was vigorously stirred again at a rate of 1000 rpm for 30 min to complete the slurry preparation.
3.2.2. Coating and Sintering Process of the PZT Film
- (a)
- The copper–nickel foil was patterned in the desired shape.
- (b)
- This flexible substrate (Cu/Ni) was rinsed and cleaned with ethanol and DI water via ultra-sonication for 15 min and dried by nitrogen.
- (c)
- The flexible substrate (Cu/Ni) was baked on a hotplate at 100 °C for 5 min.
- (d)
- The spin coater was used to coat the slurry on the substrate at 350 rpm for 20 s.
- (e)
- The low-temperature sintering method was used via heating the piezoelectric film on a hotplate at 100 °C for 10 min.
- (f)
- The sample was cooled down to room temperature.
- (g)
- The sample was cleaned with a nitrogen gun.
- (h)
- Repeat steps (d)–(g) to reach the required thickness.
3.3. Experimental Setup
4. Results and Discussions
4.1. Characterization of the PZT Film
4.2. Comparison with Wave Motion
4.2.1. Movement between the Buoy and the Wave
4.2.2. The Performance of the Frequency Up-Conversion Mechanism
4.3. Electrical Performance of the PWEC
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sannasiraj, S.A.; Sundar, V. Assessment of wave energy potential and its harvesting approach along the Indian coast. Renew. Energy 2016, 99, 398–409. [Google Scholar] [CrossRef]
- Su, W.-R.; Chen, H.; Chen, W.-B.; Chang, C.-H.; Lin, L.-Y.; Jang, J.-H.; Yu, Y.-C. Numerical investigation of wave energy resources and hotspots in the surrounding waters of Taiwan. Renew. Energy 2018, 118, 814–824. [Google Scholar] [CrossRef]
- Drew, B.; Plummer, A.; Sahinkaya, M.N. A review of wave energy converter technology. Proc. Inst. Mech. Eng. Part A: J. Power Energy 2009, 223, 887–902. [Google Scholar] [CrossRef] [Green Version]
- Henderson, R. Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter. Renew. Energy 2006, 31, 271–283. [Google Scholar] [CrossRef]
- Josset, C.; Babarit, A.; Clément, A.H. A wave-to-wire model of the SEAREV wave energy converter. Proc. Inst. Mech. Eng. Part M: J. Eng. Marit. Environ. 2007, 221, 81–93. [Google Scholar] [CrossRef] [Green Version]
- Ruellan, M.; BenAhmed, H.; Multon, B.; Josset, C.; Babarit, A.; Clement, A. Design Methodology for a SEAREV Wave En-ergy Converter. IEEE Trans. Energy Convers. 2010, 25, 760–767. [Google Scholar] [CrossRef]
- Cordonnier, J.; Gorintin, F.; De Cagny, A.; Clément, A.H.; Babarit, A. SEAREV: Case study of the development of a wave energy converter. Renew. Energy 2015, 80, 40–52. [Google Scholar] [CrossRef]
- Falcão, A.F.; Henriques, J.C. Oscillating-water-column wave energy converters and air turbines: A review. Renew. Energy 2016, 85, 1391–1424. [Google Scholar] [CrossRef]
- López, I.; Pereiras, B.; Castro, F.; Iglesias, G. Optimisation of turbine-induced damping for an OWC wave energy con-verter using a RANS–VOF numerical model. Appl. Energy 2014, 127, 105–114. [Google Scholar] [CrossRef]
- Gomes, R.P.; Henriques, J.; Gato, L.; Falcão, A. Hydrodynamic optimization of an axisymmetric floating oscillating water column for wave energy conversion. Renew. Energy 2012, 44, 328–339. [Google Scholar] [CrossRef]
- Zurkinden, A.S.; Ferri, F.; Beatty, S.; Kofoed, J.P.; Kramer, M.M. Non-linear numerical modeling and experimental test-ing of a point absorber wave energy converter. Ocean Eng. 2014, 78, 11–21. [Google Scholar] [CrossRef]
- Bozzi, S.; Miquel, A.; Antonini, A.; Passoni, G.; Archetti, R. Modeling of a Point Absorber for Energy Conversion in Ital-ian Seas. Energies 2013, 6, 3033–3051. [Google Scholar] [CrossRef] [Green Version]
- Toprak, A.; Tigli, O. Piezoelectric energy harvesting: State-of-the-art and challenges. Appl. Phys. Rev. 2014, 1, 031104. [Google Scholar] [CrossRef]
- Pillatsch, P.; Yeatman, E.M.; Holmes, A.S. A piezoelectric frequency up-converting energy harvester with rotating proof mass for human body applications. Sens. Actuators A Phys. 2014, 206, 178–185. [Google Scholar] [CrossRef]
- Hamlehdar, M.; Kasaeian, A.; Safaei, M.R. Energy harvesting from fluid flow using piezoelectrics: A critical review. Renew. Energy 2019, 143, 1826–1838. [Google Scholar] [CrossRef]
- Mutsuda, H.; Tanaka, Y.; Patel, R.; Doi, Y. Harvesting flow-induced vibration using a highly flexible piezoelectric energy device. Appl. Ocean Res. 2017, 68, 39–52. [Google Scholar] [CrossRef]
- Kan, J.; Fan, C.; Wang, S.; Zhang, Z.; Wen, J.; Huang, L. Study on a piezo-windmill for energy harvesting. Renew. Energy 2016, 97, 210–217. [Google Scholar] [CrossRef]
- Zhao, L.; Tang, L.; Yang, Y. Comparison of modeling methods and parametric study for a piezoelectric wind energy harvester. Smart Mater. Struct. 2013, 22, 125003. [Google Scholar] [CrossRef]
- Dai, H.L.; Abdelkefi, A.; Wang, L. Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations. Nonlinear Dyn. 2014, 77, 967–981. [Google Scholar] [CrossRef]
- Mutsuda, H.; Tanaka, Y.; Doi, Y.; Moriyama, Y. Application of a flexible device coating with piezoelectric paint for har-vesting wave energy. Ocean Eng. 2019, 172, 170–182. [Google Scholar] [CrossRef]
- Fan, K.; Chang, J.; Pedrycz, W.; Liu, Z.; Zhu, Y. A nonlinear piezoelectric energy harvester for various mechanical motions. Appl. Phys. Lett. 2015, 106, 223902. [Google Scholar] [CrossRef]
- Li, H.; Tian, C.; Deng, Z.D. Energy harvesting from low frequency applications using piezoelectric materials. Appl. Phys. Rev. 2014, 1, 041301. [Google Scholar] [CrossRef] [Green Version]
- Fan, K.; Chang, J.; Chao, F.; Pedrycz, W. Design and development of a multipurpose piezoelectric energy harvester. Energy Convers. Manag. 2015, 96, 430–439. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, Y. Dynamics of a mechanical frequency up-converted device for wave energy harvesting. J. Sound Vib. 2016, 367, 170–184. [Google Scholar] [CrossRef]
- Renzi, E. Hydroelectromechanical modelling of a piezoelectric wave energy converter. Proc. R. Soc. Lond. 2016, 472, 20160715. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Tang, L.; Li, H. Vibration energy harvesting using macro-fiber composites. Smart Mater. Struct. 2009, 18. [Google Scholar] [CrossRef]
- Orrego, S.; Shoele, K.; Ruas, A.; Doran, K.; Caggiano, B.; Mittal, R.; Kang, S.H. Harvesting ambient wind energy with an inverted piezoelectric flag. Appl. Energy 2017, 194, 212–222. [Google Scholar] [CrossRef]
- Hsueh, C.-H.; Wu, C.-C. Fabrication of lead zirconium titanium and silica composite films on copper/polyimide flexible substrates. Smart Mater. Struct. 2010, 19, 124005. [Google Scholar] [CrossRef]
Material | Copper (Cu) | Nickel (Ni) | PZT | Silver (Ag) |
---|---|---|---|---|
100 | 10 | 158 | 10 | |
Young’s modules (GPa) | 128 | 200 | 67 | 83 |
Density (kg/m3) | 8960 | 8908 | 7800 | 10,490 |
Poisson’s ratio | 0.34 | 0.31 | 0.39 | 0.37 |
Piezoelectric constant (pm/V) | N/a | N/a | −210 | N/a |
Wave Height (mm) | 100 | 75 |
---|---|---|
Period (1 s) | Case 01 | Case 02 |
Period (1.5 s) | Case 03 | Case 04 |
Case 01 | Case 02 | Case 03 | Case 04 | |
---|---|---|---|---|
Maximum voltage (V) | 2.8 | 2.28 | 2.24 | 2.02 |
RMS Voltage (mV) | 824 | 595 | 630 | 506 |
Average electric power (μW) | 1.37 | 0.71 | 0.8 | 0.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.-E.; Yang, R.-Y.; Wu, G.-K.; Wu, C.-C. A Piezoelectric Wave-Energy Converter Equipped with a Geared-Linkage-Based Frequency Up-Conversion Mechanism. Sensors 2021, 21, 204. https://doi.org/10.3390/s21010204
Chen S-E, Yang R-Y, Wu G-K, Wu C-C. A Piezoelectric Wave-Energy Converter Equipped with a Geared-Linkage-Based Frequency Up-Conversion Mechanism. Sensors. 2021; 21(1):204. https://doi.org/10.3390/s21010204
Chicago/Turabian StyleChen, Shao-En, Ray-Yeng Yang, Guang-Kai Wu, and Chia-Che Wu. 2021. "A Piezoelectric Wave-Energy Converter Equipped with a Geared-Linkage-Based Frequency Up-Conversion Mechanism" Sensors 21, no. 1: 204. https://doi.org/10.3390/s21010204
APA StyleChen, S.-E., Yang, R.-Y., Wu, G.-K., & Wu, C.-C. (2021). A Piezoelectric Wave-Energy Converter Equipped with a Geared-Linkage-Based Frequency Up-Conversion Mechanism. Sensors, 21(1), 204. https://doi.org/10.3390/s21010204