Characteristic Analysis and Structural Design of Hollow-Core Photonic Crystal Fibers with Band Gap Cladding Structures
Abstract
:1. Introduction
2. Characteristic Analysis of HC-PCF
2.1. Characteristic Analysis of Normalized Frequency and Infinite Single-Mode Transmission
2.2. Characteristic Analysis of Effective Mode Field Area and Core Optical Power
2.3. Characteristic Analysis of Confinement Loss
3. Finite Element Modeling and Simulation of HC-PCF
3.1. Finite Element Modeling
3.2. Characteristic Analysis of HC-PCF Mode
3.3. Finite Element Simulation of Different Types of HC-PCF
4. Structural Optimization Design of HC-PCF
4.1. Modeling of HC-PCF with Band Gap Cladding Structure
4.2. Effects of the Core Radius on HC-PCF Performance
4.3. Effects of the Relative Thickness of the Core Quartz-Ring on HC-PCF Performance
5. Numerical Results and Discussion
5.1. Characteristic Analysis of the Optimized HC-PCF
5.2. The Relative Sensitivity of the Designed HC-PCF Sensor
6. Conclusions
- (1)
- HC19-1550 has a higher core optical power, lower confinement loss, higher effective mode field area, and higher effective refractive index than HC-1550-02, and its performance is stable. The low confinement loss transmission bandwidths of HC19-1550 and HC-1550-02 are 40 nm and 20 nm, respectively, and both have a high core optical power and a flat and stable effective mode field area.
- (2)
- The core radius and the relative thickness of the core quartz-ring have a relatively large impact on the core optical power, confinement loss, and effective mode field area. When the core radius changed from 1.5 to 1.6 times the spacing of adjacent air holes, and from 1.7 to 1.9 times the spacing of adjacent air holes, the core optical power was higher and the confinement loss was lower. When the relative thickness of the core quartz-ring changed from 1.6 to 2.0 times the spacing of adjacent air holes, the core optical power was higher and the confinement loss was lower, and when the relative thickness of the core quartz-ring was 2.0, the optimal core optical power and confinement loss results were obtained.
- (3)
- The optimal number of cladding layers is eight, the optimal core radius is 1.8 times the spacing of adjacent air holes, and the optimal-relative thickness of the core quartz-ring is 2.0. This optimized structure achieves an ultra-high core optical power and almost zero confinement loss.
- (4)
- The low confinement loss bandwidth of the optimized structure is 225 nm, while the transmission bandwidth of the traditional HC-PCF is in the range of tens of nanometers. In addition, in terms of the transmission bandwidth of the optimized structure, the core optical power is above 98%, the confinement loss is below 9.0 × 10−3 dB/m, the variation range of the effective mode field area does not exceed 10 μm2, and the relative sensitivity is above 0.9570. Compared with the ordinary circular central air hole structure, the relative sensitivity of the optimized HC-PCF is further improved and is closer to the theoretical limit. Therefore, the sensor with this design structure is highly suitable for high-sensitivity gas or liquid sensing.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yablonovitch, E. Inhibited spontaneous emission in solid-state electronics. Phys. Rev. Lett. 1987, 58, 2059–2062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco, A.; Chomski, E.; Grabtchak, S.; Ibisate, M.; John, S.; Leonard, S.W.; Lopez, C.; Meseguer, F.; Miguez, H.; Mondia, J.P.; et al. Large-Scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 2000, 405, 437–440. [Google Scholar] [CrossRef] [PubMed]
- Knight, J.C.; Birks, T.A.; Russell, P.J.; Atkin, D.M. All-Silica single-mode optical fiber with photonic crystal cladding: Errata. Opt. Lett. 1997, 22, 484–485. [Google Scholar] [CrossRef] [PubMed]
- Chourasia, R.K.; Singh, V. Estimation of photonic band gap in the hollow core cylindrical multilayer structure. Superlattices Microstruct. 2018, 116, 191–199. [Google Scholar] [CrossRef]
- Knight, J.C.; Broeng, J.; Birks, T.A.; Russell, P.J. Photonic band gap guidance in optical fibers. Science 1998, 282, 1476–1478. [Google Scholar] [CrossRef] [PubMed]
- Roberts, P.J.; Couny, F.; Sabert, H.; Mangan, B.J.; Williams, D.P.; Farr, L.; Mason, M.W.; Tomlinson, A.; Birks, T.A.; Knight, J.C.; et al. Ultimate low loss of hollow-core photonic crystal fibres. Opt. Express 2005, 13, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.Y. All-Solid silica-based photonic crystal fibers. Opt. Commun. 2006, 266, 151–158. [Google Scholar] [CrossRef]
- Buczynski, R.; Bookey, H.; Pysz, D.; Stepien, R. Supercontinuum generation up to 2.5 μm in photonic crystal fiber made of lead–bismuth–galate glass. Laser Phys. Lett. 2010, 7, 666–672. [Google Scholar] [CrossRef]
- Vieweg, M.; Gissibl, T.; Pricking, S.; Kuhlmey, B.T.; Wu, D.C.; Eggleton, B.; Giessen, H. Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers. Opt. Express 2010, 18, 25232–25240. [Google Scholar] [CrossRef]
- Chu, P.; Chen, J.; Xiong, Z.; Yi, Z. Controllable frequency conversion in the coupled time-modulated cavities with phase delay. Opt. Commun. 2020, 476, 126338. [Google Scholar] [CrossRef]
- Yang, X.; Lu, Y.; Duan, L.; Liu, B.; Yao, J. Temperature sensor based on hollow fiber filled with Graphene–Ag composite nanowire and liquid. Plasmonics 2016, 12, 1805–1811. [Google Scholar] [CrossRef]
- Fan, Z.; Fang, S.; Li, S.; Wei, Z. Refractive index sensor based on high-order surface plasmon resonance in gold nanofilm coated photonic crystal fiber. Chin. Phys. B 2019, 28, 094209–094217. [Google Scholar] [CrossRef]
- Li, T.; Zhu, L.; Yang, X.; Lou, X.; Yu, L. A Refractive index sensor based on H-shaped photonic crystal fibers coated with Ag–Graphene layers. Sensors 2020, 20, 741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, S.F.; Wang, Y.Y.; Ding, W.; Jiang, D.L.; Gu, S.; Zhang, X.; Wang, P. Hollow-Core conjoined-tube negative-curvature fibre with ultralow loss. Nat. Commun. 2018, 9, 2828. [Google Scholar] [CrossRef] [Green Version]
- Jia, C.; Jia, H.; Wang, N.; Chai, J.; Xu, X.; Lei, Y.; Liu, G.; Peng, Y.; Xie, J. Theoretical analysis of a 750-nm bandwidth hollow-core ring photonic crystal fiber with a graded structure for transporting 38 orbital angular momentum modes. IEEE Access 2018, 6, 20291–20297. [Google Scholar] [CrossRef]
- Li, L.; Xiao, L. Plasmonic nodeless hollow-core photonic crystal fibers for in-fiber polarizers. J. Lightw. Technol. 2019, 37, 5199–5211. [Google Scholar] [CrossRef]
- Gao, F.; Song, N.; Xu, X.; Wang, X. Low-Loss hollow-core photonic bandgap fiber with isolated anti-resonance layer. Opt. Commun. 2019, 441, 208–211. [Google Scholar] [CrossRef]
- Frosz, M.H.; Roth, P.; Günendi, M.; Russell, P.J. Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers. Photonics Res. 2017, 2, 91–94. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.; Ning, T.; Pei, L.; Li, J.; Zheng, J. Design and analysis of a modified segmented cladding fiber with parabolic-profile core. Laser Phys. Lett. 2018, 15, 035104. [Google Scholar] [CrossRef]
- Wang, P.; Bo, L.; Guan, C.; Semenova, Y.; Wu, Q.; Brambilla, G.; Farrell, G. Low-Temperature sensitivity periodically tapered photonic crystal-fiber-based refractometer. Opt. Lett. 2013, 38, 3795–3798. [Google Scholar] [CrossRef]
- Kassani, S.H.; Park, J.; Jung, Y.; Kobelke, J.; Kyunghwan, O. Fast response in-line gas sensor using C-type fiber and Ge-doped ring defect photonic crystal fiber. Opt. Express 2013, 21, 14074–14083. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Jin, W.; Cao, Y.; Ho, H.L.; Wang, Y. Towards high sensitivity gas detection with hollow-core photonic bandgap fibers. Opt. Express 2014, 22, 24894–24907. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Cao, Y.; Yang, F.; Ho, H.L. Ultra-Sensitive all-fibre photothermal spectroscopy with large dynamic range. Nat. Commun. 2015, 6, 6767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.; Liu, F.; He, X.; Jin, W.; Zhang, M.; Yang, F.; Ho, H.L. Distributed gas sensing with optical fibre photothermal interferometry. Opt. Express 2017, 25, 31568–31585. [Google Scholar] [CrossRef]
- Tan, Y.; Jin, W.; Yang, F.; Qi, Y.; Zhang, C.; Lin, Y.; Ho, H.L. Hollow-Core fiber-based high finesse resonating cavity for high sensitivity gas detection. J. Lightw. Technol. 2017, 35, 2887–2893. [Google Scholar] [CrossRef]
- Quintero, S.M.M.; Valente, L.C.G.; Paula Gomes, M.S.; Silva, H.G.; Souza, B.C.; Morikawa, S.R.K. All-Fiber CO2 sensor using hollow core PCF operating in the 2 µm region. Sensors 2018, 18, 4393. [Google Scholar] [CrossRef] [Green Version]
- Portosi, V.; Laneve, D.; Falconi, M.C.; Prudenzano, F. Advances on photonic crystal fiber sensors and applications. Sensors 2019, 19, 1892. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Duan, L.; Shi, W.; Sheng, Q.; Lu, Y.; Yao, J. Dual-Point automatic switching intracavity-absorption photonic crystal fiber gas sensor based on mode competition. Sens. Actuators B Chem. 2017, 247, 124–128. [Google Scholar] [CrossRef]
- Yi, Z.; Li, J.; Lin, J.; Qin, F.; Chen, X.; Yao, W.; Liu, Z.; Cheng, S.; Wu, P.; Li, H. Broadband polarization-insensitive and wide-angle solar energy absorber based on tungsten ring-disc array. Nanoscale 2020, 12, 23077–23083. [Google Scholar] [CrossRef]
- Yu, P.; Yang, H.; Chen, X.; Yi, Z.; Yao, W.; Chen, J.; Yi, Y.; Wu, P. Ultra-wideband solar absorber based on refractory titanium metal. Renew. Energy 2020, 158, 227–235. [Google Scholar] [CrossRef]
- An, S.; Lv, J.; Yi, Z.; Liu, C.; Yang, L.; Wang, F.; Liu, Q.; Su, W.; Li, X.; Sun, T.; et al. Ultra-short and dual-core photonic crystal fiber polarization splitter composed of metal and gallium arsenide. Optik 2021, 226, 165779. [Google Scholar] [CrossRef]
- Zhu, Y.; Duan, K.; Yang, H.; Zhao, B.; Zhao, W. Very large mode area optical fiber with complex ring cores. Optik 2014, 125, 7016–7019. [Google Scholar] [CrossRef]
- Birks, T.A.; Knight, J.C.; Russell, P.J. Endlessly single-mode photonic crystal fiber. Opt. Lett. 1997, 22, 961–963. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, N.A.; Folkenberg, J.R.; Nielsen, M.D.; Hansen, K.P. Modal cutoff and the V parameter in photonic crystal fibers. Opt. Lett. 2003, 28, 1879–1881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saitoh, K.; Koshiba, M. Numerical modeling of photonic crystal fibers. J. Lightw. Technol. 2005, 23, 3580–3590. [Google Scholar] [CrossRef] [Green Version]
- Wei, X. Power-Weighted dispersion distribution function for characterizing nonlinear properties of long-haul optical transmission links. Opt. Lett. 2006, 31, 2544–2546. [Google Scholar] [CrossRef]
- Ferrarini, D.; Vincetti, L.; Zoboli, M.; Cucinotta, A.; Stefano, S. Leakage properties of photonic crystal fibers. Opt. Express 2002, 10, 1314–1319. [Google Scholar] [CrossRef]
- Saitoh, K.; Mortensen, N.; Koshiba, M. Air-Core photonic band-gap fibers: The impact of surface modes. Opt. Express 2004, 12, 394–400. [Google Scholar] [CrossRef] [Green Version]
- Finazzi, V.; Monro, T.M.; Richardson, D.J. The role of confinement loss in highly nonlinear silica holey fibers. IEEE Photon. Technol. Lett. 2003, 15, 1246–1248. [Google Scholar] [CrossRef] [Green Version]
- Berenger, J.P. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 1994, 114, 185–200. [Google Scholar] [CrossRef]
- Kubota, H.; Kosake, N.; Miyoshi, Y.; Ohashi, M. Unique loss characteristics in TE01 modes of conventional photonic bandgap fibers. Opt. Lett. 2018, 43, 2599–2602. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, N.V.; Petrovich, M.N.; Slavík, R.; Baddela, N.; Numkam, E.; Hayes, J.R.; Gray, D.R.; Poletti, F.; Richardson, D.J. Wide-Bandwidth, low-loss, 19-cell hollow core photonic band gap fiber and its potential for low latency data transmission. In Proceedings of the National Fiber Optic Engineers Conference, Southampton, UK, 15 March 2012. [Google Scholar] [CrossRef] [Green Version]
- Amezcua-Correa, R.; Broderick, N.G.R.; Petrovich, M.N.; Poletti, F.; Richardson, D.J. Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers. Opt. Express 2006, 14, 7974–7985. [Google Scholar] [CrossRef] [PubMed]
- Amezcua-Correa, R.; Gérôme, F.; Leon-Saval, S.; Broderick, N.G.R.; Birks, T.A.; Knight, J.C. Control of surface modes in low loss hollow-core photonic bandgap fibers. Opt. Express 2008, 16, 1142–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://www.thorlabs.us/thorproduct.cfm?partnumber=HC19-1550 (accessed on 20 December 2020).
- Duan, L.; Yang, X.; Ying, L.; Yao, J. Hollow-Fiber-Based surface plasmon resonance sensor with large refractive index detection range and high linearity. Appl. Opt. 2017, 56, 9907–9912. [Google Scholar] [CrossRef]
- Sotskii, A.B.; Sotskaya, L.I. Calculation of optical properties of hollow-core photonic crystal fibers. J. Appl. Spectrosc. 2009, 76, 292–301. [Google Scholar] [CrossRef]
- Popenda, M.; Stawska, H.; Mazur, L.; Jakubowski, K.; Kosolapov, A.; Kolyadin, A.; Bereś-Pawlik, E. Application of negative curvature hollow-core fiber in an optical fiber sensor setup for multiphoton spectroscopy. Sensors 2017, 17, 2278. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, Y.; Kwok, Y.C.; Shum, P. Highly sensitive photonic crystal fiber based on absorption spectroscopy. Sens. Actuat. B Chem. 2010, 145, 110–113. [Google Scholar] [CrossRef]
- Armani, A.; Li, W.; Leu, M.C.; Hilmas, G.E. A novel freeform extrusion fabrication process for producing solid ceramic components with uniform layered radiation drying. Addit. Manuf. 2017, 15, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Sharma, D.K.; Sharma, A.; Tripathi, S.M. Cladding mode coupling in long-period gratings in index-guided microstructured optical fibers. Appl. Phys. B 2017, 123, 187. [Google Scholar] [CrossRef]
- Swinehart, D.F. The Beer–Lambert law. J. Chem. Educ. 1962, 39, 333–335. [Google Scholar] [CrossRef]
- Sultana, J.; Islam, M.S.; Ahmed, K.; Dinovitser, A.; Brian, W.H.; Abbott, D. Terahertz detection of alcohol using a photonic crystal fiber sensor. Appl. Opt. 2018, 57, 2426–2433. [Google Scholar] [CrossRef] [PubMed]
- Arif, F.H.; Ahmed, K.; Asaduzzaman, S.; Azad, A.K. Design and optimization of photonic crystal fiber for liquid sensing applications. Photon. Sens. 2016, 6, 279–288. [Google Scholar] [CrossRef] [Green Version]
- Olyaee, S.; Naraghi, A. Design and optimization of index-guiding photonic crystal fiber gas sensor. Photon. Sens. 2013, 3, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Duan, L.; Lu, Y.; Hao, C.; Wu, B.; Yao, J. Gas sensor based on hollow-core photonic crystal fibers with high relative sensitivity. In Proceedings of the Asia Pacific Optical Sensors Conference 2013, Wuhan, China, 15–18 October 2013. [Google Scholar] [CrossRef]
- Podder, E.; Hossain, M.B.; Jibon, R.H.; Bulbul, A.A.; Mondal, H.S. Chemical sensing through photonic crystal fiber: Sulfuric acid detection. Front. Optoelectron. 2019, 12, 372–381. [Google Scholar] [CrossRef]
- Malavika, R.; Prabu, K. Design optimization of a highly sensitive spiral photonic crystal fiber for liquid and chemical sensing applications. Opt. Fiber Technol. 2019, 51, 36–40. [Google Scholar] [CrossRef]
- Ahmed, S.; Mou, J.R.; Mollah, M.A.; Debnath, N. Hollow-Core photonic crystal fiber sensor for refractive index sensing. In Proceedings of the IEEE International Conference on Telecommunications and Photonics (ICTP), Dhaka, Bangladesh, 28–30 December 2019. [Google Scholar] [CrossRef]
- Paul, B.K.; Elangovan, R.; Asaduzzaman, S.; Islam, M.S.; Ahmed, K.; Amiri, I.S.; Zakaria, R. Design and analysis of slotted core photonic crystal fiber for gas sensing application. Results Phys. 2018, 11, 643–650. [Google Scholar] [CrossRef]
- Atiqullah, S.M.; Palit, A.; Reja, M.I.; Akhtar, J.; Fatema, S.; Absar, R. Detection of harmful food additives using highly sensitive photonic crystal fiber. Sens. Bio-Sens. Res. 2019, 23, 100275. [Google Scholar] [CrossRef]
- Sen, S.; Abdullah, M.A.A.; Kabir, A. Hexagonal photonic crystal fiber (H-PCF) based optical sensor with high relative sensitivity and low confinement loss for terahertz (THz) regime. Sens. Bio-Sens. Res. 2020, 30, 100377. [Google Scholar] [CrossRef]
- Hossain, M.B.; Podder, E. Design and investigation of PCF-based blood components sensor in terahertz regime. Appl. Phys. A 2019, 125, 861. [Google Scholar] [CrossRef]
Prior in PCFs | Operating Region | Relative Sensitivity (%)/Analyte | Confinement Loss (dB/m) | Design of Structure | |
---|---|---|---|---|---|
Cladding | Core | ||||
Ref. [56] | λ = 1.56 μm | 99.98/Air | 2.811 × 10−4 | Floriated hole | Circular |
Ref. [57] | λ = 1.50 μm | 63.40/Sulfuric acid | 1.422 × 10−17 | Elliptical holes | Hexagonal |
Ref. [58] | λ = 1.55 μm | 58.3/Propane | 9.2 × 10−7 | Spiral holes | Elliptical |
62.7/Propylene | 7.1 × 10−7 | ||||
Ref. [59] | λ = 1.25 μm | 96.198/Sorbitol | 2.24 × 10−9 | Circular holes | Hexagonal |
94.124/Sorbitol | 1.67 × 10−10 | Hexagonal holes | |||
Ref. [60] | λ = 1.33 μm | 53.07/N2 & N2H2 | 1.26 × 10−5 | Circular holes | Rectangular slot |
Ref. [61] | λ = 1.33 μm | 88.75/Saccharin | 1.8414 × 10−15 | Hexagonal holes | Hexagonal |
87.37/Sorbitol | 1.5462 × 10−14 | ||||
86.72/Butyl Acetate | 6.3245 × 10−13 | ||||
Ref. [62] | f01 = 1 THz | 81.46/Ethanol | 5.85 × 10−8 | Hexagonal holes | Hexagonal |
82.26/Benzene | 6.07 × 10−8 | ||||
79.22/Water | 5.84 × 10−8 | ||||
Ref. [63] | f0 = 2 THz | 93.50/Red blood cells | 3.11 × 10−14 | Rectangular holes | Rectangular |
This work | λ = 1.55 μm | 99.85/Air | 7.31 × 10−5 | Circular holes | Quartz-Ring |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, B.; Zhu, L.; Ma, X.; Li, T.; Zhang, J. Characteristic Analysis and Structural Design of Hollow-Core Photonic Crystal Fibers with Band Gap Cladding Structures. Sensors 2021, 21, 284. https://doi.org/10.3390/s21010284
Wan B, Zhu L, Ma X, Li T, Zhang J. Characteristic Analysis and Structural Design of Hollow-Core Photonic Crystal Fibers with Band Gap Cladding Structures. Sensors. 2021; 21(1):284. https://doi.org/10.3390/s21010284
Chicago/Turabian StyleWan, Bowei, Lianqing Zhu, Xin Ma, Tianshu Li, and Jian Zhang. 2021. "Characteristic Analysis and Structural Design of Hollow-Core Photonic Crystal Fibers with Band Gap Cladding Structures" Sensors 21, no. 1: 284. https://doi.org/10.3390/s21010284
APA StyleWan, B., Zhu, L., Ma, X., Li, T., & Zhang, J. (2021). Characteristic Analysis and Structural Design of Hollow-Core Photonic Crystal Fibers with Band Gap Cladding Structures. Sensors, 21(1), 284. https://doi.org/10.3390/s21010284