Flow Control in Porous Media: From Numerical Analysis to Quantitative μPAD for Ionic Strength Measurements
Abstract
:1. Introduction
2. Methodology
2.1. Sensor Description
2.2. Principles of Numerical Simulation
2.2.1. Fluid Flow and Mixing Phenomena
2.2.2. Numerical Modelling of the Paper Substrate
2.2.3. Porous Medium
2.2.4. Boundary Conditions
2.2.5. Grid Independency
2.2.6. Diffusion Evaluation Methods
2.3. Geometry
2.4. Experimental Setup
2.4.1. Reagents
2.4.2. 3D Printed Support
2.4.3. Measurement Configuration
2.4.4. Errors and Data Curing
3. Results and Discussion
3.1. Numerical Simulation
Numerical Analysis of Inlets’ Angle Effect on the Species Diffusion in the Porous Medium
3.2. Experimental Results
3.2.1. Relation between Inlets’ Angle and the Required Time for Measuring the Diffusion
3.2.2. Effect of the Inlets’ Angle on the Diffusion Width
3.2.3. Response Time Optimization for the 30-Degree Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A. Grid Study
Grid | 1 × 10−4 Element Size (m) | 1 × 10−5 Minimum Surface Area (m2) | Minimum Orthogonal Quality | Number of Iterations |
---|---|---|---|---|
Low | 5.0 | 25.1 | 0.833 | 88 |
Medium | 2.5 | 11.68 | 0.787 | 110 |
High | 1.25 | 6.01 | 0.661 | 165 |
Fine | 0.5 | 1.93 | 0.69 | 317 |
Ultra | 0.375 | 1.75 | 0.533 | 358 |
Ultra-fine | 0.25 | 0.798 | 0.301 | 552 |
Appendix B. Limit of Detection
References
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Akyazi, T.; Basabe-Desmonts, L.; Benito-Lopez, F. Review on microfluidic paper-based analytical devices towards commercialisation. Anal. Chim. Acta 2018, 1001, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Fohlerová, Z.; Pekárek, J.; Basova, E.; Neužil, P. Recent advances in lab-on-a-chip technologies for viral diagnosis. Biosens. Bioelectron. 2020, 153, 112041. [Google Scholar] [CrossRef]
- Chinnadayyala, S.R.; Park, J.; Le, H.T.N.; Santhosh, M.; Kadam, A.N.; Cho, S. Recent advances in microfluidic paper-based electrochemiluminescence analytical devices for point-of-care testing applications. Biosens. Bioelectron. 2019, 126, 68–81. [Google Scholar] [CrossRef]
- Karimi, S.; Mehrdel, P.; Farré-Lladós, J.; Casals-Terré, J. A passive portable microfluidic blood-plasma separator for simultaneous determination of direct and indirect ABO/Rh blood typing. Lab Chip 2019, 19, 3249–3260. [Google Scholar] [CrossRef] [PubMed]
- Karimi, S.; Mehrdel, P.; Casals-Terré, J.; Farré-Llados, J. Cost-effective microfabrication of sub-micron-depth channels by femto-laser anti-stiction texturing. Biofabrication 2020, 12, 025021. [Google Scholar] [CrossRef] [PubMed]
- Ai, Y.; Zhang, F.; Wang, C.; Xie, R.; Liang, Q. Recent progress in lab-on-a-chip for pharmaceutical analysis and pharmacological/toxicological test. TrAC—Trends Anal. Chem. 2019, 117, 215–230. [Google Scholar] [CrossRef]
- Amor-Gutiérrez, O.; Costa-Rama, E.; Fernández-Abedul, M.T. Sampling and multiplexing in lab-on-paper bioelectroanalytical devices for glucose determination. Biosens. Bioelectron. 2019, 135, 64–70. [Google Scholar] [CrossRef]
- Yetisen, A.K.; Akram, M.S.; Lowe, C.R. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 2013, 13, 2210–2251. [Google Scholar] [CrossRef]
- Sriram, G.; Bhat, M.P.; Patil, P.; Uthappa, U.T.; Jung, H.Y.; Altalhi, T.; Kumeria, T.; Aminabhavi, T.M.; Pai, R.K.; Madhuprasad; et al. Paper-based microfluidic analytical devices for colorimetric detection of toxic ions: A review. TrAC—Trends Anal. Chem. 2017, 93, 212–227. [Google Scholar] [CrossRef]
- Cate, D.M.; Adkins, J.A.; Mettakoonpitak, J.; Henry, C.S. Recent developments in paper-based microfluidic devices. Anal. Chem. 2015, 87, 19–41. [Google Scholar] [CrossRef]
- Lisowski, P.; Zarzycki, P.K. Microfluidic paper-based analytical devices (μPADs) and micro total analysis systems (μTAS): Development, applications and future trends. Chromatographia 2013, 76, 1201–1214. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Rochefort, D. Activity, conformation and thermal stability of laccase and glucose oxidase in poly(ethyleneimine) microcapsules for immobilization in paper. Process Biochem. 2011, 46, 993–1000. [Google Scholar] [CrossRef]
- Wang, S.; Ge, L.; Song, X.; Yu, J.; Ge, S.; Huang, J.; Zeng, F. Paper-based chemiluminescence ELISA: Lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosens. Bioelectron. 2012, 31, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Lashgari, M.; Yamini, Y. An overview of the most common lab-made coating materials in solid phase microextraction. Talanta 2019, 191, 283–306. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ballerini, D.R.; Shen, W. A perspective on paper-based microfluidics: Current status and future trends. Biomicrofluidics 2012, 6, 011301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jagadeesan, K.K.; Kumar, S.; Sumana, G. Application of conducting paper for selective detection of troponin. Electrochem. Commun. 2012, 20, 71–74. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Song, S.; Park, S.; Joo, C. Recent advances in high-sensitivity detection methods for paper-based lateral-flow assay. Biosens. Bioelectron. 2020, 152, 112015. [Google Scholar] [CrossRef]
- Li, F.; Liu, J.; Guo, L.; Wang, J.; Zhang, K.; He, J.; Cui, H. High-resolution temporally resolved chemiluminescence based on double-layered 3D microfluidic paper-based device for multiplexed analysis. Biosens. Bioelectron. 2019, 141, 111472. [Google Scholar] [CrossRef] [PubMed]
- Escobedo, P.; Erenas, M.M.; Martínez-Olmos, A.; Carvajal, M.A.; Gonzalez-Chocano, S.; Capitán-Vallvey, L.F.; Palma, A.J. General-purpose passive wireless point–of–care platform based on smartphone. Biosens. Bioelectron. 2019, 141, 111360. [Google Scholar] [CrossRef]
- Kim, W.; Lee, S.; Jeon, S. Enhanced sensitivity of lateral flow immunoassays by using water-soluble nanofibers and silver-enhancement reactions. Sens. Actuators B Chem. 2018, 273, 1323–1327. [Google Scholar] [CrossRef]
- Parolo, C.; de la Escosura-Muñiz, A.; Merkoçi, A. Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes. Biosens. Bioelectron. 2013, 40, 412–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walczak, R.; Dziuban, J.; Szczepańska, P.; Scholles, M.; Doyle, H.; Krüger, J.; Ruano-Lopez, J. Toward Portable Instrumentation for Quantitative Cocaine Detection with Lab-on-a-Paper and Hybrid Optical Readout. Procedia Chem. 2009, 1, 999–1002. [Google Scholar] [CrossRef]
- Gerold, C.T.; Bakker, E.; Henry, C.S. Selective Distance-Based K+ Quantification on Paper-Based Microfluidics. Anal. Chem. 2018, 90, 4894–4900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apilux, A.; Dungchai, W.; Siangproh, W.; Praphairaksit, N.; Henry, C.S.; Chailapakul, O. Lab-on-paper with dual electrochemical/ colorimetric detection for simultaneous determination of gold and iron. Anal. Chem. 2010, 82, 1727–1732. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Tian, T.; Jia, S.; Zhu, Z.; Ma, Y.; Sun, J.; Lin, Z.; Yang, C.J. Target-responsive DNA hydrogel mediated stop-flow microfluidic paper-based analytic device for rapid, portable and visual detection of multiple targets. Anal. Chem. 2015, 87, 4275–4282. [Google Scholar] [CrossRef]
- Kong, T.; You, J.B.; Zhang, B.; Nguyen, B.; Tarlan, F.; Jarvi, K.; Sinton, D. Accessory-free quantitative smartphone imaging of colorimetric paper-based assays. Lab Chip 2019, 19, 1991–1999. [Google Scholar] [CrossRef]
- Abo Dena, A.S.; Bayoumi, E.E. Lab-on-paper optical sensor for smartphone-based quantitative estimation of uranyl ions. J. Radioanal. Nucl. Chem. 2018, 318, 1439–1445. [Google Scholar] [CrossRef]
- Jeong, S.G.; Kim, J.; Jin, S.H.; Park, K.S.; Lee, C.S. Flow control in paper-based microfluidic device for automatic multistep assays: A focused minireview. Korean J. Chem. Eng. 2016, 33, 2761–2770. [Google Scholar] [CrossRef]
- Lim, H.; Jafry, A.T.; Lee, J. Fabrication, flow control, and applications of microfluidic paper-based analytical devices. Molecules 2019, 24, 2869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apilux, A.; Ukita, Y.; Chikae, M.; Chailapakul, O.; Takamura, Y. Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing. Lab Chip 2013, 13, 126–135. [Google Scholar] [CrossRef]
- Fu, E.; Liang, T.; Spicar-Mihalic, P.; Houghtaling, J.; Ramachandran, S.; Yager, P. Two-dimensional paper network format that enables simple multistep assays for use in low-resource settings in the context of malaria antigen detection. Anal. Chem. 2012, 84, 4574–4579. [Google Scholar] [CrossRef] [Green Version]
- Lutz, B.; Liang, T.; Fu, E.; Ramachandran, S.; Kauffman, P.; Yager, P. Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics. Lab Chip 2013, 13, 2840–2847. [Google Scholar] [CrossRef]
- Osborn, J.L.; Lutz, B.; Fu, E.; Kauffman, P.; Stevens, D.Y.; Yager, P. Microfluidics without pumps: Reinventing the T-sensor and H-filter in paper networks. Lab Chip 2010, 10, 2659–2665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casals-Terré, J.; Farré-Lladós, J.; Zuñiga, A.; Roncero, M.B.; Vidal, T. Novel applications of nonwood cellulose for blood typing assays. J. Biomed. Mater. Res. Part B Appl. Biomater. 2019, 107, 1533–1541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yazdchi, K.; Srivastava, S.; Luding, S. On the validity of the carman-kozeny equation in random fibrous media. In Proceedings of the International Conference on Particle-Based Methods (PARTICLES)—II International Conference on Particle-Based Methods: Fundamentals and Applications (PARTICLES 2011), Barcelona, Spain, 26–28 October 2011; pp. 264–273. [Google Scholar]
- Giri, B. Laboratory Methods in Microfluidics; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 9780128132364. [Google Scholar]
- Du Plessis, E.; Woudberg, S. Modelling of diffusion in porous structures. WIT Trans. Eng. Sci. 2009, 63, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Mehrdel, P.; Karimi, S.; Farré-Lladós, J.; Casals-Terré, J. Novel variable radius spiral-shaped micromixer: From numerical analysis to experimental validation. Micromachines 2018, 9, 552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danner, L.; Niimi, J.; Wang, Y.; Kustos, M.; Muhlack, R.A.; Bastian, S.E.P. Dynamic viscosity levels of dry red and white wines and determination of perceived viscosity difference thresholds. Am. J. Enol. Vitic. 2019, 70, 205–211. [Google Scholar] [CrossRef]
- Ivorra, B.; Redondo, J.L.; Santiago, J.G.; Ortigosa, P.M.; Ramos, A.M. Two- and three-dimensional modeling and optimization applied to the design of a fast hydrodynamic focusing microfluidic mixer for protein folding. Phys. Fluids 2013, 25, 032001. [Google Scholar] [CrossRef] [Green Version]
- Prenesti, E.; Berto, S.; Toso, S.; Daniele, P.G. Acid-base chemistry of white wine: Analytical characterisation and chemical modelling. Sci. World J. 2012, 2012, 249041. [Google Scholar] [CrossRef] [Green Version]
- Mehrdel, P.; Karimi, S.; Farre-llados, J.; Casals-terré, J. Portable 3D-printed sensor to measure ionic strength and pH in buffered and non-buffered solutions Pouya Mehrdel. Food Chem. 2021, 344, 128583. [Google Scholar] [CrossRef] [PubMed]
Property | Value |
---|---|
Density of Cellulose ( cellulose) | 1.5 gr/cm3 [35] |
Diameter of the cellulose fiber (d) | 19.6 µm [35] |
Average length of the cellulose fiber () | 830 µm [35] |
Density of Whatman grade 5 paper ( W5) | 0.53 gr/cm3 [35] |
Pore shape factor | 140 [36] |
Length of the substrate (L) | 30 mm |
Substrate main channel width (Wch) | 10.5 mm |
Substrate inlet channel width (wi) | 2 mm |
Substrate inlet channel length (li) | 15 mm |
Property | Value |
---|---|
Water density (at 25 °C) | 998.2 kg/m3 |
Water viscosity (at 25 °C) | 0.001003 kg/m·s |
Diffusion coefficient of dye (D) | 2 × 10−10 m2/s [37] |
Porosity of the Whatman 5 porous media | 0.6467 |
Viscous permeability | 4.551 × 10−15 m2 |
Property | Value |
---|---|
White wine density | 1080 kg/m3 |
White wine viscosity | 0.00148 kg/m.s [40] |
Tartaric acid molar mass | 150.078 g/mol |
Tartaric acid viscosity | 0.00121 kg/m.s (from producer’s catalogue) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehrdel, P.; Khosravi, H.; Karimi, S.; Martínez, J.A.L.; Casals-Terré, J. Flow Control in Porous Media: From Numerical Analysis to Quantitative μPAD for Ionic Strength Measurements. Sensors 2021, 21, 3328. https://doi.org/10.3390/s21103328
Mehrdel P, Khosravi H, Karimi S, Martínez JAL, Casals-Terré J. Flow Control in Porous Media: From Numerical Analysis to Quantitative μPAD for Ionic Strength Measurements. Sensors. 2021; 21(10):3328. https://doi.org/10.3390/s21103328
Chicago/Turabian StyleMehrdel, Pouya, Hamid Khosravi, Shadi Karimi, Joan Antoni López Martínez, and Jasmina Casals-Terré. 2021. "Flow Control in Porous Media: From Numerical Analysis to Quantitative μPAD for Ionic Strength Measurements" Sensors 21, no. 10: 3328. https://doi.org/10.3390/s21103328
APA StyleMehrdel, P., Khosravi, H., Karimi, S., Martínez, J. A. L., & Casals-Terré, J. (2021). Flow Control in Porous Media: From Numerical Analysis to Quantitative μPAD for Ionic Strength Measurements. Sensors, 21(10), 3328. https://doi.org/10.3390/s21103328