A Surface Plasmon Resonance Plastic Optical Fiber Biosensor for the Detection of Pancreatic Amylase in Surgically-Placed Drain Effluent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrates and Reagents
2.2. Horseradish Peroxidase (HRP) Conjugated Amylase
2.3. Biological Samples
2.4. Gold Surface Functionalization
2.5. Surface Characterization
2.5.1. XPS Measurement
2.5.2. Fluorescence Measurement
2.5.3. Contact Angle (CA) Characterization
2.5.4. Chemiluminescence Characterization
2.6. Amylase Measurements on the POF-Biosensor
3. Results and Discussion
3.1. Optimization of the Surface Chemistry for the Preparation of the POF-Biosensor
3.2. Physico-Chemical Characterization of the Anti-Amylase Flat Gold Surface
3.3. Functional Characterization of the Anti-Amylase Flat Gold Surface
3.4. The POF-Biosensor Set Up and Its Use for the Detection of the Amylase in Surgically-Placed Drain Effluent
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bassi, C.; Dervenis, C.; Butturini, G.; Fingerhut, A.; Yeo, C.; Izbicki, J.; Neoptolemos, J.; Sarr, M.; Traverso, W.; Buchler, M.; et al. Postoperative pancreatic fistula: An international study group (ISGPF) definition. Surgery 2005, 138, 8–13. [Google Scholar] [CrossRef]
- Molinari, E.; Bassi, C.; Salvia, R.; Butturini, G.; Crippa, S.; Talamini, G.; Falconi, M.; Pederzoli, P. Amylase value in drains after pancreatic resection as predictive factor of postoperative pancreatic fistula: Results of a prospective study in 137 patients. Ann. Surg. 2007, 246, 281–287. [Google Scholar] [CrossRef]
- Bassi, C.; Molinari, E.; Malleo, G.; Crippa, S.; Butturini, G.; Salvia, R.; Talamini, G.; Pederzoli, P. Early versus late drain removal after standard pancreatic resections: Results of a prospective randomized trial. Ann. Surg. 2010, 252, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Schots, J.P.M.; Luyer, M.D.P.; Nieuwenhuijzen, G.A.P. Abdominal Drainage and Amylase Measurement for Detection of Leakage After Gastrectomy for Gastric Cancer. J. Gastrointest. Surg. 2018, 22, 1163–1170. [Google Scholar] [CrossRef]
- Müssle, B.; Oehme, F.; Schade, S.; Sommer, M.; Bogner, A.; Hempel, S.; Pochhammer, J.; Kahlert, C.; Distler, M.; Weitz, J.; et al. Drain Amylase or Lipase for the Detection of POPF—Adding Evidence to an Ongoing Discussion. J. Clin. Med. 2019, 9, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsiao, H.Y.; Chen, R.L.C.; Chou, C.C.; Cheng, T.J. Hand-held colorimetry sensor platform for determining salivary α-amylase activity and its applications for stress assessment. Sensors 2019, 19, 1571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Yang, W.; Yang, Y.; Liu, H.; Gu, Z. Smartphone-based point-of-care testing of salivary α-amylase for personal psychological measurement. Analyst 2015, 140, 7399–7406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attia, M.S.; Zoulghena, H.; Abdel-Mottaleb, M.S.A. A new nano-optical sensor thin film cadmium sulfide doped in sol—gel matrix for assessment of α-amylase activity in human saliva. Analyst 2014, 139, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Garcia, P.T.; Guimarães, L.N.; Dias, A.A.; Ulhoa, C.J.; Coltro, W.K.T. Amperometric detection of salivary A-amylase on screen-printed carbon electrodes as a simple and inexpensive alternative for point-of-care testing. Sens. Actuators B Chem. 2018, 258, 342–348. [Google Scholar] [CrossRef]
- Lee, M.H.; Thomas, J.L.; Tseng, H.Y.; Lin, W.C.; Da Liu, B.; Lin, H.Y. Sensing of digestive proteins in saliva with a molecularly imprinted poly(ethylene-co-vinyl alcohol) thin film coated quartz crystal microbalance sensor. ACS Appl. Mater. Interfaces 2011, 3, 3064–3071. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, S.R.; Lloyd, C.; Yao, S.; Andrea Salvatore, G.; Whitaker, I.S.; Francis, L.; Conlan, R.S.; Azzopardi, E. Polyaniline-graphene based α-amylase biosensor with a linear dynamic range in excess of 6 orders of magnitude. Biosens. Bioelectron. 2016, 85, 395–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandal, N.; Bhattacharjee, M.; Chattopadhyay, A.; Bandyopadhyay, D. Point-of-care-testing of α-amylase activity in human blood serum. Biosens. Bioelectron. 2019, 124–125, 75–81. [Google Scholar] [CrossRef]
- Hamano, N.; Murata, M.; Kawano, T.; Piao, J.S.; Narahara, S.; Nakata, R.; Akahoshi, T.; Ikeda, T.; Hashizume, M. Förster Resonance Energy Transfer-Based Self-Assembled Nanoprobe for Rapid and Sensitive Detection of Postoperative Pancreatic Fistula. ACS Appl. Mater. Interfaces 2016, 8, 5114–5123. [Google Scholar] [CrossRef] [PubMed]
- Cennamo, N.; Massarotti, D.; Conte, L.; Zeni, L. Low cost sensors based on SPR in a plastic optical fiber for biosensor implementation. Sensors 2011, 11, 11752–11760. [Google Scholar] [CrossRef]
- Cennamo, N.; Massarotti, D.; Galatus, R.; Conte, L.; Zeni, L. Performance Comparison of Two Sensors Based on Surface Plasmon Resonance in a Plastic Optical Fiber. Sensors 2013, 13, 721–735. [Google Scholar] [CrossRef]
- Zeni, L.; Perri, C.; Cennamo, N.; Arcadio, F.; D’Agostino, G.; Salmona, M.; Beeg, M.; Gobbi, M. A portable optical-fibre-based surface plasmon resonance biosensor for the detection of therapeutic antibodies in human serum. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef]
- Cennamo, N.; Di Giovanni, S.; Varriale, A.; Staiano, M.; Di Pietrantonio, F.; Notargiacomo, A.; Zeni, L.; D’Auria, S. Easy to Use Plastic Optical Fiber-Based Biosensor for Detection of Butanal. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadhim, R.A.; Abdul, A.K.K.; Yuan, L. Advances in Surface Plasmon Resonance-Based Plastic Optical Fiber Sensors. IETE Tech. Rev. 2020, 1–18. [Google Scholar] [CrossRef]
- Cennamo, N.; Pesavento, M.; Zeni, L. A review on simple and highly sensitive plastic optical fiber probes for bio-chemical sensing. Sens. Actuators B Chem. 2021, 331. [Google Scholar] [CrossRef]
- Cennamo, N.; Maniglio, D.; Tatti, R.; Zeni, L.; Bossi, A.M. Deformable molecularly imprinted nanogels permit sensitivity-gain in plasmonic sensing. Biosens. Bioelectron. 2020, 156, 112126. [Google Scholar] [CrossRef]
- Grabarek, Z.; Gergely, J. Zero-Lenght Crosslinking Procedure with the Use of Active Eesters. Anal. Biochem. 1990, 185, 131–135. [Google Scholar] [CrossRef]
- Li, Z.; Han, W.; Kozodaev, D.; Brokken-Zijp, J.C.M.; de With, G.; Thüne, P.C. Surface properties of poly(dimethylsiloxane)-based inorganic/organic hybrid materials. Polymer 2006, 47, 1150–1158. [Google Scholar] [CrossRef]
- Speranza, G.; Canteri, R. RxpsG a new open project for Photoelectron and Electron Spectroscopy data processing. SoftwareX 2019, 10, 100282. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Willey, T.M.; Vance, A.L.; Bostedt, C.; Van Buuren, T.; Meulenberg, R.W.; Terminello, L.J.; Fadley, C.S. Surface structure and chemical switching of thioctic acid adsorbed on au(111) as observed using near-edge x-ray absorption fine structure. Langmuir 2004, 20, 4939–4944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, X.; Linton, R.W.; Formaggio, F.; Toniolo, C.; Samulski, E.T. Self-assembled monolayers of hexapeptides on gold: Surface characterization and orientation distribution analysis. J. Phys. Chem. A 2004, 108, 9673–9681. [Google Scholar] [CrossRef]
- Ray, S.; Shard, A.G. Quantitative analysis of adsorbed proteins by X-ray photoelectron spectroscopy. Anal. Chem. 2011, 83, 8659–8666. [Google Scholar] [CrossRef]
- Chen, L.C.; Wang, E.; Tai, C.S.; Chiu, Y.C.; Li, C.W.; Lin, Y.R.; Lee, T.H.; Huang, C.W.; Chen, J.C.; Chen, W.L. Improving the reproducibility, accuracy, and stability of an electrochemical biosensor platform for point-of-care use. Biosens. Bioelectron. 2020, 155, 112111. [Google Scholar] [CrossRef]
O 1s (%) | N 1s (%) | C 1s (%) | S 2p (%) | Au 4f (%) | CA [°] | |
---|---|---|---|---|---|---|
Au | 16.4 | - | 14.6 | - | 68.9 | <5 |
Au + SAM | 9.9 | - | 41.8 | 4.0 | 44.3 | 56.1 ± 3.4 |
Au + SAM + IgG AMY | 18.9 | 7.0 | 48.2 | 2.9 | 22.9 | 52.6 ± 3.8 |
Bmax | K | Statistics | |||
---|---|---|---|---|---|
Value | Standard Error | Value | Standard Error | Reduced Chi-Sqr | Adj. R-Square |
3.694 | 0.124 | 1.989 | 0.247 | 1.620 | 0.981 |
Parameters | Value | |
---|---|---|
SPR-POF biosensor | K [ UL−1] | 1.989 |
Sensitivity at low c [nm/UL−1] (Sensitivity at low c = Bmax/K) | 1.857 | |
LOD [UL−1] (3*standard deviation of blank/Sensitivity at low c) | 0.48 |
Sample | POF-Biosensor U/L | Enzymatic Colorimetric Assay U/L | Accuracy (%) |
---|---|---|---|
Drain effluent n.1 | 29,501 ± 6050 | 31,320 | 94.2 |
Drain effluent n.2 | 857 ± 76 | 794 | 92.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasquardini, L.; Cennamo, N.; Malleo, G.; Vanzetti, L.; Zeni, L.; Bonamini, D.; Salvia, R.; Bassi, C.; Bossi, A.M. A Surface Plasmon Resonance Plastic Optical Fiber Biosensor for the Detection of Pancreatic Amylase in Surgically-Placed Drain Effluent. Sensors 2021, 21, 3443. https://doi.org/10.3390/s21103443
Pasquardini L, Cennamo N, Malleo G, Vanzetti L, Zeni L, Bonamini D, Salvia R, Bassi C, Bossi AM. A Surface Plasmon Resonance Plastic Optical Fiber Biosensor for the Detection of Pancreatic Amylase in Surgically-Placed Drain Effluent. Sensors. 2021; 21(10):3443. https://doi.org/10.3390/s21103443
Chicago/Turabian StylePasquardini, Laura, Nunzio Cennamo, Giuseppe Malleo, Lia Vanzetti, Luigi Zeni, Deborah Bonamini, Roberto Salvia, Claudio Bassi, and Alessandra Maria Bossi. 2021. "A Surface Plasmon Resonance Plastic Optical Fiber Biosensor for the Detection of Pancreatic Amylase in Surgically-Placed Drain Effluent" Sensors 21, no. 10: 3443. https://doi.org/10.3390/s21103443
APA StylePasquardini, L., Cennamo, N., Malleo, G., Vanzetti, L., Zeni, L., Bonamini, D., Salvia, R., Bassi, C., & Bossi, A. M. (2021). A Surface Plasmon Resonance Plastic Optical Fiber Biosensor for the Detection of Pancreatic Amylase in Surgically-Placed Drain Effluent. Sensors, 21(10), 3443. https://doi.org/10.3390/s21103443