Universal Programmable Portable Measurement Device for Diagnostics and Monitoring of Industrial Fluid Power Systems
Abstract
:1. Introduction
2. Universal Programmable PMD
3. Adaptation of the PMD to Measure the Leakage Flow Rate in CAS
4. Measurement Results
5. Discussion
6. Conclusions
7. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Watton, J. Modelling, Monitoring and Diagnostic Techniques for Fluid Power Systems; Springer: London, UK, 2007. [Google Scholar]
- Schütze, A.; Helwig, N.; Tizian Schneider, T. Sensors 4.0—Smart sensors and measurement technology enable Industry 4.0. J. Sens. Sens. Syst. 2018, 7, 359–371. [Google Scholar] [CrossRef]
- Athanasatos, P.; Costopoulos, T.; Skarmea, M. Condition monitoring techniques for industrial fluid power systems. In Proceedings of the 1st International Conference on Experiments/Process/System Modelling/Simulation/Optimization, Athens, Greece, 6–9 July 2005; pp. 1–8. [Google Scholar]
- Portable Data Recorder HMG 400 Datasheet; Hydac Electronic GmbH: Saarbrücken, Germany, 2012.
- MultiHandy 3020 Datasheet; Hydrotechnik GmbH: Limburg, The Netherlands, 2013.
- DS 500 Mobile Datasheet; CS Instruments: Tannheim, Austria, 2018.
- Service Master Plus Diagnostic Instruments Datasheet; Parker Hannifin Corporation: Minneapolis, MN, USA, 2018.
- Icli, C.; Stepanenko, O.; Bonev, I. New method and portable measurement device for the calibration of industrial robots. Sensors 2020, 20, 5919. [Google Scholar] [CrossRef] [PubMed]
- Park, D.-H.; Oh, S.-T.; Lim, J.-H. Development of a UV index sensor-based portable measurement device with the EUVB ratio of natural light. Sensors 2019, 19, 754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.-K.; Yu, C.-H.; Lai, H.-J.; Teng, T. Development of an objective portable measurement device for spinal joint accessory motion testing. Sensors 2020, 20, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eren, H. Electronic Portable Instruments. In Design and Applications; CRC Press: London, UK, 2004. [Google Scholar]
- Kaya, D.; Phelan, P.; Chau, D.; Sarac, H.I. Energy conservation in compressed-air systems. Int. J. Eng. Res. 2002, 26, 837–849. [Google Scholar] [CrossRef]
- Radgen, P.; Blaustein, E. Compressed Air Systems in the European Union; Frauenhofer ISI: Feldbach, Austria, 2010. [Google Scholar]
- Compressed Air Compendium; Hoppenstedt-Verlag: Darmstadt, Germany, 2004.
- Ruppelt, E. Druckluft-Handbuch; Vulkan-Verlag: Essen, Germany, 1998. [Google Scholar]
- Dindorf, R.; Wos, P. Indirect method of leakage flow rate measurement in compressed air pipelines. Appl. Mech. Mater. 2014, 630, 288–293. [Google Scholar] [CrossRef]
- Dindorf, R.; Wos, P. Test of a measurement device for the estimation of leakage flow rate in pneumatic pipeline systems. Meas. Cont. 2018, 51, 514–527. [Google Scholar] [CrossRef] [Green Version]
- Dindorf, R.; Wos, P. Automatic measurement system for determination of leakage flow rate in the compressed air pipeline system. Met. Meas. Syst. 2018, 25, 159–170. [Google Scholar]
- Dindorf, R.; Wos, P. Device for Measuring Leakage Rates in Pipelines for Gas Transmission, Especially Compressed Air. Poland Patent P.426255, 6 June 2019. [Google Scholar]
- ISO 6358-3 2014. Pneumatic Fluid Power—Determination of Flow Rate Characteristics of Components Compressible Fluids—Part 3: Method for Calculating Steady-State Flow-Rate Characteristics of Systems. Available online: https://www.iso.org/standard/56616.html (accessed on 1 October 2014).
- SO/IEC Guide 98-3 2008. Uncertainty of Measurement—Part 3: Guide to the Expression of Uncertainty in Measurement. Available online: https://www.iso.org/standard/50461.html (accessed on 1 October 2008).
- ISO 6358-1 2013. Pneumatic Fluid Power—Determination of Flow Rate Characteristics of Components Compressible Fluids—Part 1: General Rules and Test Methods for Steady-State Flow. Available online: https://www.iso.org/standard/56612.html (accessed on 1 May 2013).
- Oppenheim, A.V.; Schafer, R.W. Discrete-Time Signal Processing, 3rd ed.; Prentice-Hall: New York, NY, USA, 2010. [Google Scholar]
- Alpaydın, E. Introduction to Machine Learning, 3rd ed.; The MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Dindorf, R. Estimating potential energy savings in compressed air systems. Proc. Eng. 2012, 39, 204–211. [Google Scholar] [CrossRef] [Green Version]
d mm | Tm K | pL bar | tL s | pLc bar | tLc s | qvc m3/h | qL m3/h |
---|---|---|---|---|---|---|---|
0.3 | 314 | 6.8 | 8 | 4.7 | 2 | 6 | 0.39 |
6.6 | 4.2 | ||||||
0.7 | 314 | 6.7 | 8 | 5.7 | 2 | 6 | 2.14 |
6.3 | 5.3 |
d mm | p bar | T K | qL m3/h | qLd m3/h | δL % |
---|---|---|---|---|---|
0.6 | 6.6 | 321 | 0.324 | 0.335 | 3.28 |
0.8 | 6.6 | 321 | 1.275 | 1.318 | 3.26 |
1.0 | 6.6 | 321 | 1.911 | 1.976 | 3.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dindorf, R.; Wos, P. Universal Programmable Portable Measurement Device for Diagnostics and Monitoring of Industrial Fluid Power Systems. Sensors 2021, 21, 3440. https://doi.org/10.3390/s21103440
Dindorf R, Wos P. Universal Programmable Portable Measurement Device for Diagnostics and Monitoring of Industrial Fluid Power Systems. Sensors. 2021; 21(10):3440. https://doi.org/10.3390/s21103440
Chicago/Turabian StyleDindorf, Ryszard, and Piotr Wos. 2021. "Universal Programmable Portable Measurement Device for Diagnostics and Monitoring of Industrial Fluid Power Systems" Sensors 21, no. 10: 3440. https://doi.org/10.3390/s21103440
APA StyleDindorf, R., & Wos, P. (2021). Universal Programmable Portable Measurement Device for Diagnostics and Monitoring of Industrial Fluid Power Systems. Sensors, 21(10), 3440. https://doi.org/10.3390/s21103440