Early Detection of Exposure to Toxic Chemicals Using Continuously Recorded Multi-Sensor Physiology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Exposure and Recording
2.1.2. Extracted Parameters
2.2. Pre-Processing of Data for Modelling
2.3. Modelling
2.3.1. Cross-Validation Approach
2.3.2. Exposure Detection Delay
2.3.3. Feature Set Performance
2.3.4. Generalization
2.3.5. Animal Classification
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Michard, F. A sneak peek into digital innovations and wearable sensors for cardiac monitoring. J. Clin. Monit. Comput. 2017, 31, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Nachman, D.; Gepner, Y.; Goldstein, N.; Kabakov, E.; Ishay, A.B.; Littman, R.; Azmon, Y.; Jaffe, E.; Eisenkraft, A. Comparing blood pressure measurements between a photoplethysmography-based and a standard cuff-based manometry device. Sci. Rep. 2020, 10, 16116. [Google Scholar] [CrossRef]
- Radüntz, T.; Meffert, B. User experience of 7 mobile electroencephalography devices: Comparative study. JMIR Mhealth Uhealth 2019, 7, e14474. [Google Scholar] [CrossRef] [Green Version]
- Sawangjai, P.; Hompoonsup, S.; Leelaarporn, P.; Kongwudhikunakorn, S.; Wilaiprasitporn, T. Consumer grade EEG measuring sensors as research tools: A review. IEEE Sens. J. 2020, 20, 3996–4024. [Google Scholar] [CrossRef]
- Sempionatto, J.R.; Lin, M.; Yin, L.; De la paz, E.; Pei, K.; Sonsa-ard, T.; de Loyola Silva, A.N.; Khorshed, A.A.; Zhang, F.; Tostado, N.; et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng. 2021. [Google Scholar] [CrossRef]
- Rukasha, T.; Woolley, S.I.; Kyriacou, T.; Collins, T. Evaluation of wearable electronics for epilepsy: A systematic review. Electronics 2020, 9, 968. [Google Scholar] [CrossRef]
- Brouwer, A.-M. Challenges and opportunities in consumer neuroergonomics. Front. Neuroergonomics 2021, 2, 3. [Google Scholar] [CrossRef]
- Sano, A.; Taylor, S.; McHill, A.W.; Phillips, A.J.K.; Barger, L.K.; Klerman, E.; Picard, R. Identifying objective physiological markers and modifiable behaviors for self-reported stress and mental health status using wearable sensors and mobile phones: Observational study. J. Med. Internet. Res. 2018, 20, e210. [Google Scholar] [CrossRef] [PubMed]
- Witt, D.; Kellogg, R.; Snyder, M.; Dunn, J. Windows into human health through wearables data analytics. Curr. Opin. Biomed. Eng. 2019, 9, 28–46. [Google Scholar] [CrossRef]
- Alessi, S.M.; Barnett, N.P.; Petry, N.M. Objective continuous monitoring of alcohol consumption for three months among alcohol use disorder treatment outpatients. Alcohol 2019, 81, 131–138. [Google Scholar] [CrossRef]
- Wang, Y.; Fridberg, D.J.; Shortell, D.D.; Leeman, R.F.; Barnett, N.P.; Cook, R.L.; Porges, E.C. Wrist-worn alcohol biosensors: Applications and usability in behavioral research. Alcohol 2021, 92, 25–34. [Google Scholar] [CrossRef]
- Carreiro, S.; Wittbold, K.; Indic, P.; Fang, H.; Zhang, J.; Boyer, E.W. Wearable biosensors to detect physiologic change during opioid use. J. Med. Toxicol. 2016, 12, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Mahmud, M.S.; Fang, H.; Wang, H.; Carreiro, S.; Boyer, E. Automatic detection of opioid intake using wearable biosensor. In Proceedings of the 2018 International Conference on Computing, Networking and Communications (ICNC), Maui, HI, USA, 5–8 March 2018; pp. 784–788. [Google Scholar]
- Wang, J.; Fang, H.; Carreiro, S.; Wang, H.; Boyer, E. A new mining method to detect real time substance use events from wearable biosensor data stream. In Proceedings of the 2017 International Conference on Computing, Networking and Communications (ICNC), Silicon Valley, CA, USA, 26–29 January 2017; pp. 465–470. [Google Scholar]
- France, C.P.; Ahern, G.P.; Averick, S.; Disney, A.; Enright, H.A.; Esmaeli-Azad, B.; Federico, A.; Gerak, L.R.; Husbands, S.M.; Kolber, B.; et al. Countermeasures for preventing and treating opioid overdose. Clin. Pharmacol. Ther. 2021, 109, 578–590. [Google Scholar] [CrossRef]
- Munro, N. Toxicity of the organophosphate chemical warfare agents GA, GB, and VX: Implications for public protection. Environ. Health Perspect. 1994, 102, 18–38. [Google Scholar] [CrossRef]
- Eddleston, M.; Chowdhury, F.R. Organophosphorus poisoning: The wet opioid toxidrome. Lancet 2020, 6736, 2020–2022. [Google Scholar]
- Peng, P.W.H.; Sandler, A.N. A review of the use of fentanyl analgesia in the management of acute pain in adults. Anesthesiology 1999, 90, 576–599. [Google Scholar] [CrossRef] [PubMed]
- Els, C.; Jackson, T.D.; Kunyk, D.; Lappi, V.G.; Sonnenberg, B.; Hagtvedt, R.; Sharma, S.; Kolahdooz, F.; Straube, S. Adverse events associated with medium- and long-term use of opioids for chronic non-cancer pain: An overview of Cochrane Reviews. Cochrane Database Syst. Rev. 2017, 10, CD012509. [Google Scholar] [PubMed]
- Pattinson, K.T.S. Opioids and the control of respiration. Br. J. Anaesth. 2008, 100, 747–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behzadi, M.; Joukar, S.; Beik, A. Opioids and cardiac arrhythmia: A literature review. Med. Princ. Pract. 2018, 27, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Eddleston, M.; Mohamed, F.; Davies, J.O.J.; Eyer, P.; Worek, F.; Sheriff, M.H.R.; Buckley, N.A. Respiratory failure in acute organophosphorus pesticide self-poisoning. J. Assoc. Physicians 2006, 99, 513–522. [Google Scholar] [CrossRef]
- Hulse, E.J.; Davies, J.O.J.; Simpson, A.J.; Sciuto, A.M.; Eddleston, M. Respiratory complications of organophosphorus nerve agent and insecticide poisoning. implications for respiratory and critical care. Am. J. Respir. Crit. Care Med. 2014, 190, 1342–1354. [Google Scholar] [CrossRef] [Green Version]
- Joosen, M.J.A.; van der Schans, M.J.; van Helden, H.P.M. Percutaneous exposure to the nerve agent VX: Efficacy of combined atropine, obidoxime and diazepam treatment. Chem. Biol. Interact. 2010, 188, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Joosen, M.J.A.; van der Schans, M.J.; Kuijpers, W.C.; van Helden, H.P.M.; Noort, D. Timing of decontamination and treatment in case of percutaneous VX poisoning: A mini review. Chem. Biol. Interact. 2013, 203, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Van Der Schans, M.J.; Lander, B.J.; Van Der Wiel, H.; Langenberg, J.P.; Benschop, H.P. Toxicokinetics of the nerve agent (±)-VX in anesthetized and atropinized hairless guinea pigs and marmosets after intravenous and percutaneous administration. Toxicol. Appl. Pharmacol. 2003, 191, 48–62. [Google Scholar] [CrossRef]
- Joosen, M.J.A.; van den Berg, R.M.; de Jong, A.L.; van der Schans, M.J.; Noort, D.; Langenberg, J.P. The impact of skin decontamination on the time window for effective treatment of percutaneous VX exposure. Chem. Biol. Interact. 2017, 267, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Rice, H.; Dalton, C.H.; Price, M.E.; Graham, S.J.; Green, A.C.; Jenner, J.; Groombridge, H.J.; Timperley, C.M. Toxicity and medical countermeasure studies on the organophosphorus nerve agents VM and VX. Proc. R. Soc. A Math. Phys. Eng. Sci. 2015, 471. [Google Scholar] [CrossRef] [Green Version]
- Troyanskaya, O.; Cantor, M.; Sherlock, G.; Brown, P.; Hastie, T.; Tibshirani, R.; Botstein, D.; Altman, R.B. Missing value estimation methods for DNA microarrays. Bioinformatics 2001, 17, 520–525. [Google Scholar] [CrossRef] [Green Version]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
Exposure | Total nr of Animals | Nr of Placebo | Dosage | Vehicle/Volume |
---|---|---|---|---|
Fentanyl intravenous | 26 | 6 | 0–16 mg/kg | PBS/1 mL/kg |
Fentanyl subcutaneous | 45 | 6 | 0–32 mg/kg | PBS/1 mL/kg |
VX percutaneous (1) | 32 | 0 | 1 mg/kg | IPA/16 µL/kg |
VX percutaneous (2) | 32 | 0 | 2 mg/kg | Neat/1 µL |
Model | Training Set | Validation Set | Testing Set | Total Set |
---|---|---|---|---|
1 | 6598 (93) | 1136 (16) | 1844 (26) | 9578 (135) |
2 | 3699 (85) | 565 (13) | 1042 (24) | 5306 (122) |
Feature Set Included | Model 1 Validation Set: Mean Accuracy (%) | Model 2 Validation Set: Mean Accuracy (%) |
---|---|---|
EEG | 73.67 | 98.12 |
ECG | 81.48 | 79.24 |
Respiration | 93.13 | 84.00 |
EEG + ECG | 87.85 | 97.29 |
EEG + respiration | 92.67 | 95.07 |
ECG + respiration | 95.21 | 89.98 |
EEG + ECG + respiration | 92.03 | 91.32 |
Feature Set Included | Model 1 Test Accuracy (%) | Model 2 Test Accuracy (%) |
---|---|---|
EEG | 75.21 | 94.14 |
ECG | 81.97 | 84.81 |
Respiration | 94.22 | 89.58 |
EEG + ECG | 84.85 | 92.19 |
EEG + respiration | 94.23 | 93.60 |
ECG + respiration | 97.84 | 88.33 |
EEG + ECG + respiration | 96.13 | 94.03 |
Accuracy (%) | Tested on… | ||||
---|---|---|---|---|---|
Fentanyl i.v. | Fentanyl s.c. | VX 1 | VX 2 | ||
Trained on… | Fentanyl i.v. | - | 97 | 68 | 95 |
Fentanyl s.c. | 98 | - | 60 | 92 | |
VX 1 | 84 | 89 | - | 95 | |
VX 2 | 89 | 91 | 92 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Baardewijk, J.U.; Agarwal, S.; Cornelissen, A.S.; Joosen, M.J.A.; Kentrop, J.; Varon, C.; Brouwer, A.-M. Early Detection of Exposure to Toxic Chemicals Using Continuously Recorded Multi-Sensor Physiology. Sensors 2021, 21, 3616. https://doi.org/10.3390/s21113616
van Baardewijk JU, Agarwal S, Cornelissen AS, Joosen MJA, Kentrop J, Varon C, Brouwer A-M. Early Detection of Exposure to Toxic Chemicals Using Continuously Recorded Multi-Sensor Physiology. Sensors. 2021; 21(11):3616. https://doi.org/10.3390/s21113616
Chicago/Turabian Stylevan Baardewijk, Jan Ubbo, Sarthak Agarwal, Alex S. Cornelissen, Marloes J. A. Joosen, Jiska Kentrop, Carolina Varon, and Anne-Marie Brouwer. 2021. "Early Detection of Exposure to Toxic Chemicals Using Continuously Recorded Multi-Sensor Physiology" Sensors 21, no. 11: 3616. https://doi.org/10.3390/s21113616
APA Stylevan Baardewijk, J. U., Agarwal, S., Cornelissen, A. S., Joosen, M. J. A., Kentrop, J., Varon, C., & Brouwer, A.-M. (2021). Early Detection of Exposure to Toxic Chemicals Using Continuously Recorded Multi-Sensor Physiology. Sensors, 21(11), 3616. https://doi.org/10.3390/s21113616