Low-Latency Haptic Open Glove for Immersive Virtual Reality Interaction
Abstract
:1. Introduction
1.1. Motivation and Challenges Definition
1.2. Related Work and State of the Art
1.3. Contribution of the Present Study
2. System Overview
2.1. Rotary Position Sensor
2.2. MMS Filter
2.3. Calibration with MMS Filter
Algorithm 1:Proposed calibration method with the MMS filter. |
|
2.4. Object Handling CONTROL Data
3. Performance Evaluation
3.1. Processing Time
3.2. Finger Motion-Tracking ACCURACY
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiang, Z.; Gabriel, F.; Urbano, E.; Nguyen, G.T.; Reisslein, M.; Fitzek, F.H.P. Reducing Latency in Virtual Machines: Enabling Tactile Internet for Human-Machine Co-Working. IEEE J. Sel. Areas Commun. 2019, 37, 1098–1116. [Google Scholar] [CrossRef]
- Simsek, M.; Aijaz, A.; Dohler, M.; Sachs, J.; Fettweis, G. The 5G-Enabled Tactile Internet: Applications, requirements, and architecture. In Proceedings of the 2016 IEEE Wireless Communications and Networking Conference, Doha, Qatar, 3–6 April 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Di Luca, M.; Machulla, T.K.; Ernst, M.O. Recalibration of multisensory simultaneity: Cross-modal transfer coincides with a change in perceptual latency. J. Vis. 2009, 9, 7. [Google Scholar] [CrossRef]
- Shi, Z.; Zou, H.; Rank, M.; Chen, L.; Hirche, S.; Muller, H.J. Effects of Packet Loss and Latency on the Temporal Discrimination of Visual-Haptic Events. IEEE Trans. Haptics 2010, 3, 28–36. [Google Scholar] [CrossRef]
- Paes, D.; Arantes, E.; Irizarry, J. Immersive environment for improving the understanding of architectural 3D models: Comparing user spatial perception between immersive and traditional virtual reality systems. Autom. Constr. 2017, 84, 292–303. [Google Scholar] [CrossRef]
- Fasth-Berglund, A.; Gong, L.; Li, D. Testing and validating Extended Reality (xR) technologies in manufacturing. Procedia Manuf. 2018, 25, 31–38. [Google Scholar] [CrossRef]
- Bekele, M.K.; Pierdicca, R.; Frontoni, E.; Malinverni, E.S.; Gain, J. A Survey of Augmented, Virtual, and Mixed Reality for Cultural Heritage. J. Comput. Cult. Herit. 2018, 11, 1–36. [Google Scholar] [CrossRef]
- Kallioniemi, P.; Mäkelä, V.; Saarinen, S.; Turunen, M.; Winter, Y.; Istudor, A. User Experience and Immersion of Interactive Omnidirectional Videos in CAVE Systems and Head-Mounted Displays. In 16th IFIP TC 13 International Conference on Human-Computer Interaction—INTERACT 2017—Volume 10516; Springer: Berlin/Heidelberg, Germany, 2017; pp. 299–318. [Google Scholar] [CrossRef] [Green Version]
- Machidori, Y.; Takayama, K.; Sugita, K. Implementation of multi-modal interface for VR application. In Proceedings of the 2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST), Morioka, Japan, 23–25 October 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Guzsvinecz, T.; Szucs, V.; Sik-Lanyi, C. Suitability of the Kinect Sensor and Leap Motion Controller—A Literature Review. Sensors 2019, 19, 1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakkolainen, I.; Freeman, E.; Sand, A.; Raisamo, R.; Brewster, S. A Survey of Mid-Air Ultrasound Haptics and Its Applications. IEEE Trans. Haptics 2021, 14, 2–19. [Google Scholar] [CrossRef] [PubMed]
- Masurovsky, A.; Chojecki, P.; Runde, D.; Lafci, M.; Przewozny, D.; Gaebler, M. Controller-Free Hand Tracking for Grab-and-Place Tasks in Immersive Virtual Reality: Design Elements and Their Empirical Study. Multimodal Technol. Interact. 2020, 4, 91. [Google Scholar] [CrossRef]
- Luimula, M.; Ranta, J.; Al-Adawi, M. Hand Tracking in Fire Safety—Electric Cabin Fire Simulation. In Proceedings of the 2020 11th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Mariehamn, Finland, 23–25 September 2020; pp. 000221–000222. [Google Scholar] [CrossRef]
- Alakhawand, N.; Frier, W.; Freud, K.M.; Georgiou, O.; Lepora, N.F. Sensing Ultrasonic Mid-Air Haptics with a Biomimetic Tactile Fingertip. In Haptics: Science, Technology, Applications; Nisky, I., Hartcher-O’Brien, J., Wiertlewski, M., Smeets, J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 362–370. [Google Scholar]
- Cardoso, J.C.S. Comparison of Gesture, Gamepad, and Gaze-Based Locomotion for VR Worlds. In Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology, Munich, Germany, 2–4 November 2016; pp. 319–320. [Google Scholar] [CrossRef]
- Silva, E.S.; Abreu, J.; Almeida, J.H.P.D.; Teichrieb, V.; Ramalho, G. A Preliminary Evaluation of the Leap Motion Sensor as Controller of New Digital Musical Instruments. In Proceeding of the 14th Brazilian Symposium on Computer Music, Brasilia, Brazil, 31 October–2 November 2013. [Google Scholar]
- Jin, H.; Chen, Q.; Chen, Z.; Hu, Y.; Zhang, J. Multi-LeapMotion sensor based demonstration for robotic refine tabletop object manipulation task. CAAI Trans. Intell. Technol. 2016, 1, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Biswas, S.; Visell, Y. Emerging Material Technologies for Haptics. Adv. Mater. Technol. 2019, 4, 1900042. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, S.; Takahashi, R.; Nakajima, M.; Hasegawa, K.; Makino, Y.; Shinoda, H. Midair Haptic Display to Human Upper Body. In Proceedings of the 2018 57th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), Nara, Japan, 11–14 September 2018; pp. 848–853. [Google Scholar] [CrossRef]
- Carcagno, S.; Battista, A.; Plack, C. Effects of High-Intensity Airborne Ultrasound Exposure on Behavioural and Electrophysiological Measures of Auditory Function. Acta Acust. United Acust. 2019, 105, 1183–1197. [Google Scholar] [CrossRef]
- Smagowska, B.; Pawlaczyk-Łuszczyńska, M. Effects of Ultrasonic Noise on the Human Body—A Bibliographic Review. Int. J. Occup. Saf. Ergon. 2013, 19, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Blake, J.; Gurocak, H.B. Haptic Glove With MR Brakes for Virtual Reality. IEEE/ASME Trans. Mechatron. 2009, 14, 606–615. [Google Scholar] [CrossRef]
- Kumar, P.; Verma, J.; Prasad, S. Hand data glove: A wearable real-time device for human-computer interaction. Int. J. Adv. Sci. Technol. 2012, 43, 15–26. [Google Scholar]
- Perret, J.; Vander Poorten, E. Touching Virtual Reality: A Review of Haptic Gloves. In Proceedings of the ACTUATOR 2018; 16th International Conference on New Actuators, Bremen, Germany, 25–27 June 2018; pp. 1–5. [Google Scholar]
- Massie, T.H.; Salisbury, J.K. The PHANTOM Haptic Interface: A Device for Probing Virtual Objects. Proc. ASME Winter Annu. Meet. Symp. Haptic Interfaces Virtual Environ. Teleoperator Syst. 1994, 55, 295–300. [Google Scholar]
- Inc, S.D. Senso Glove; 2017. Available online: http://www.sensoglove.com/en/ (accessed on 22 May 2021).
- CI, C. Maestro Glove. 2018. Available online: http://maestroglove.com/ (accessed on 22 May 2021).
- Turner, M.; Gomez, D.H.; Tremblay, M.R.; Cutkosky, M. Preliminary Tests of an Arm-Grounded Haptic Feedback Device in Telemanipulation. ASME IMECE Haptic Symp. 1998, 64, 145–149. [Google Scholar]
- Gu, X.; Zhang, Y.; Sun, W.; Bian, Y.; Zhou, D.; Kristensson, P.O. Dexmo: An Inexpensive and Lightweight Mechanical Exoskeleton for Motion Capture and Force Feedback in VR. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; pp. 1991–1995. [Google Scholar]
- Rubin, J.A.; Crockett, R.S.; Goupil, M.Y.; D’Amelio, J.D.; Rojanachaichanin, B.L.; Sjoberg, K.C.; Piller, P.; Bonafede, N.J., Jr. Haptic Feedback Glove. 2018. Available online: https://patents.google.com/patent/US20180335842A1/en?assignee=haptx&oq=haptx (accessed on 22 May 2021).
- SENSEGLOVE. Sense Glove. 2018. Available online: https://www.senseglove.com/ (accessed on 22 May 2021).
- Saggio, G.; Riillo, F.; Sbernini, L.; Quitadamo, L.R. Resistive flex sensors: A survey. Smart Mater. Struct. 2015, 25, 013001. [Google Scholar] [CrossRef]
- Saggio, G. A novel array of flex sensors for a goniometric glove. Sens. Actuators A Phys. 2014, 205, 119–125. [Google Scholar] [CrossRef]
- Abualola, H.; Ghothani, H.A.; Eddin, A.N.; Almoosa, N.; Poon, K. Flexible gesture recognition using wearable inertial sensors. In Proceedings of the 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS), Abu Dhabi, United Arab Emirates, 16–19 October 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, S.J.; Kim, J. MANOVIVO: Design of Smart Glove for Measuring Rheumatoid Arthritis’s Hand Function. Available online: https://repository.hanyang.ac.kr/handle/20.500.11754/161252 (accessed on 22 May 2021).
- Chan, T.K.; Yu, Y.K.; Kam, H.C.; Wong, K.H. Robust Hand Gesture Input Using Computer Vision, Inertial Measurement Unit (IMU) and Flex Sensors. In Proceedings of the 2018 IEEE International Conference on Mechatronics, Robotics and Automation (ICMRA), Hefei, China, 18–21 May 2018; pp. 95–99. [Google Scholar] [CrossRef]
- Hilman, M.; Basuki, D.K.; Sukaridhoto, S. Virtual Hand: VR Hand Controller Using IMU and Flex Sensor. In Proceedings of the 2018 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC), Bali, Indonesia, 29–30 October 2018; pp. 310–314. [Google Scholar] [CrossRef]
- Du, J.; Gerdtman, C.; Lindén, M. Noise Reduction for a MEMS-Gyroscope-Based Head Mouse. Stud. Health Technol. Inform. 2015, 211, 98–104. [Google Scholar] [CrossRef]
- Weill-Duflos, A.; Mohand-Ousaid, A.; Haliyo, S.; Régnier, S.; Hayward, V. Optimizing transparency of haptic device through velocity estimation. In Proceedings of the 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Busan, Korea, 7–11 July 2015; pp. 529–534. [Google Scholar] [CrossRef]
- Ponticelli, R.; Gonzalez de Santos, P. Full perimeter obstacle contact sensor based on flex sensors. Sens. Actuators A Phys. 2008, 147, 441–448. [Google Scholar] [CrossRef]
- Park, Y.; Lee, J.; Bae, J. Development of a finger motion measurement system using linear potentiometers. In Proceedings of the 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Besacon, France, 8–11 July 2014; pp. 125–130. [Google Scholar] [CrossRef]
- Othman, A.; Hamzah, N.; Hussain, Z.; Baharudin, R.; Rosli, A.D.; Ani, A.I.C. Design and development of an adjustable angle sensor based on rotary potentiometer for measuring finger flexion. In Proceedings of the 2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), Penang, Malaysia, 25–27 November 2016; pp. 569–574. [Google Scholar] [CrossRef]
- Bundhoo, V.; Haslam, E.; Birch, B.; Park, E.J. A shape memory alloy-based tendon-driven actuation system for biomimetic artificial fingers, part I: Design and evaluation. Robotica 2009, 27, 131–146. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Jia, W.; Li, C.; Yang, J.; Mao, Z.H.; Sun, M. Magnetic hand motion tracking system for human-machine interaction. Electron. Lett. 2010, 46, 621–623. [Google Scholar] [CrossRef]
- Kim, D.H.; Yoon, S.J.; Park, Y.S.; Jeon, K.W.; Park, S.H. Design and Implementation of a Wearable Hand Rehabilitation Robot for spasticity patient. In Proceedings of the 2014 Korean Society of Computer Information Conference, Seoul, Korea, 2–4 July 2014; pp. 21–24. [Google Scholar]
- Fattahi Sani, M.; Abeywardena, S.; Psomopoulou, E.; Ascione, R.; Dogramadzi, S. Towards Finger Motion Tracking and Analyses for Cardiac Surgery. Proceedings of XV Mediterranean Conference on Medical and Biological Engineering and Computing—MEDICON 2019, Coimbra, Portugal, 26–28 September 2019; pp. 1515–1525. [Google Scholar]
- Lu, S.; Chen, D.; Liu, C.; Jiang, Y.; Wang, M. A 3-D finger motion measurement system via soft strain sensors for hand rehabilitation. Sens. Actuators A Phys. 2019, 285, 700–711. [Google Scholar] [CrossRef]
- Li, X.; Wen, R.; Shen, Z.; Wang, Z.; Luk, K.D.K.; Hu, Y. A Wearable Detector for Simultaneous Finger Joint Motion Measurement. IEEE Trans. Biomed. Circ. Syst. 2018, 12, 644–654. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Kim, B.K.; Jang, M.; Kang, K.; Kim, D.E.; Ju, B.K.; Kim, J. Wearable Hand Module and Real-Time Tracking Algorithms for Measuring Finger Joint Angles of Different Hand Sizes with High Accuracy Using FBG Strain Sensor. Sensors 2020, 20, 1921. [Google Scholar] [CrossRef] [Green Version]
- Gajdosik, R.; Bohannon, R. Clinical Measurement of Range of Motion Review of Goniometry Emphasizing Reliability and Validity. Phys. Ther. 1988, 67, 1867–1872. [Google Scholar] [CrossRef] [PubMed]
- sensors, B. BeBop Sensors Announces World’s First Haptic Glove Designed Exclusively For Oculus Quest™ Forte Data Glove with Oculus Quest Controller. 2019. Available online: https://bebopsensors.com/bebop-sensors-announces-worlds-first-haptic-glove-designed-exclusively-for-oculus-quest-forte-data-glove-with-oculus-quest-controller/ (accessed on 22 May 2021).
Conventional Method | Proposed Method | ||
---|---|---|---|
Flex Sensor + LPF | 9-DoF IMU Sensor + Kalman Filter | Rotary Position Sensor + MMS Filter | |
Glove type | Closed | Open or Closed | Open |
Number of sensors required | 2 EA/finger | 1 EA/finger | 2 EA/finger |
Motion detection accuracy | Neither adduction nor abduction detection | Accurate | Accurate |
Latency | Shorter | Longer | Shortest |
Robustness to finger length variance | Weak | Weak | Strong |
Kalman Filter | Low-Pass Filter | MMS Filter | |
---|---|---|---|
IMU sensor | 1920.36 μs | N/A | N/A |
Flex sensor | 738.02 μs | 280.02 μs | 145.64 μs |
Rotary Position sensor | 370.95 μs | 280.69 μs | 145.37 μs |
Finger Length | 70.5 | 69.5 | 67.8 | 65.6 | 67.3 | 67.6 | 72.2 | 71.0 | 69.5 | 70.5 | MAE |
Flexion and Extension | 2.25 | 4.25 | 4.50 | 2.25 | 4.25 | 3.75 | 3.00 | 4.25 | 3.00 | 2.50 | 3.091 |
Adduction and Abduction | 1.75 | 2.75 | 2.25 | 2.00 | 3.00 | 2.25 | 2.00 | 2.50 | 2.00 | 2.25 | 2.068 |
Sensors | Angle Error | |
---|---|---|
Lu et al. [47] | strain sensor | <3.5 |
Li et al. [48] | IMU sensor + bend sensor | |
Jun et al. [49] | FBG strain sensor | |
Gu et al. [29] | rotational sensor | |
BeBop [51] | fabric bend sensor | |
Proposed glove | rotary position sensor | and |
Sensors | Latency | |
---|---|---|
Lu et al.[47] | strain sensor | |
Li et al. [48] | IMU sensor + bend sensor | 24.35 1.54 ms |
Jun et al. [49] | FBG strain sensor | 20–40 ms |
Gu et al. [29] | rotational sensor | 20–40 ms |
BeBop [51] | fabric bend sensor | 6 ms |
Proposed glove | rotary position sensor | 4 ms |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sim, D.; Baek, Y.; Cho, M.; Park, S.; Sagar, A.S.M.S.; Kim, H.S. Low-Latency Haptic Open Glove for Immersive Virtual Reality Interaction. Sensors 2021, 21, 3682. https://doi.org/10.3390/s21113682
Sim D, Baek Y, Cho M, Park S, Sagar ASMS, Kim HS. Low-Latency Haptic Open Glove for Immersive Virtual Reality Interaction. Sensors. 2021; 21(11):3682. https://doi.org/10.3390/s21113682
Chicago/Turabian StyleSim, Donghyun, Yoonchul Baek, Minjeong Cho, Sunghoon Park, A. S. M. Sharifuzzaman Sagar, and Hyung Seok Kim. 2021. "Low-Latency Haptic Open Glove for Immersive Virtual Reality Interaction" Sensors 21, no. 11: 3682. https://doi.org/10.3390/s21113682
APA StyleSim, D., Baek, Y., Cho, M., Park, S., Sagar, A. S. M. S., & Kim, H. S. (2021). Low-Latency Haptic Open Glove for Immersive Virtual Reality Interaction. Sensors, 21(11), 3682. https://doi.org/10.3390/s21113682