Real-Time High Resolution THz Imaging with a Fiber-Coupled Photo Conductive Antenna and an Uncooled Microbolometer Camera
Abstract
:1. Introduction
2. Setups and Methods
2.1. Camera and Lens Properties
2.2. Setups
2.3. Image Analysis and (Post-)Processing Routines
3. Results
3.1. THz-TDS Beam Profiling
3.2. Siemens Star
3.3. Key in an Envelope
3.4. Leaves with Different Moisture Contents
3.5. Thin Wood Sample
4. Discussion
4.1. Limitations and Potential Improvements of the Current Setup
4.2. Potential Applications
4.3. Outlook: Possible Modifications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADC | Analog to Digital Converter |
cw | Continuous wave |
FIR | Far Infrared |
FoV | Field Of View |
fps | Frames per second |
fs | Femto second |
HRFZ-Si | High Resistivity Float Zone Silicon |
NA | Numerical Aperture |
NEP | Noise Equivalent Power |
NIR | Near-infrared |
OAPM | Off-Axis Parabolic Mirror |
PCA | Photo Conductive Antenna |
PE | Polyethylene |
ps | Pico second |
QCL | Quantum Cascade Laser |
RX | Receiver |
Si | Silicon |
TDS | Time Domain Spectroscopy/Spectrometer |
THz | Terahertz |
TX | Transmitter |
VIS | Visible spectrum |
References
- Wietzke, S.; Rutz, F.; Jördens, C.; Krumbholz, N.; Vieweg, N.; Jansen, C.; Wilk, R.; Koch, M. Applications of Terahertz Spectroscopy in the Plastics Industry. In Proceedings of the Photonics Asia, Beijing, China, 11–15 November 2007; p. 68400V. [Google Scholar] [CrossRef]
- Wietzke, S.; Jansen, C.; Krumbholz, N.; Peters, O.; Vieweg, N.; Jordens, C.; Scheller, M.; Romeike, D.; Jung, T.; Reuter, M.; et al. Terahertz Spectroscopy: A Powerful Tool for the Characterization of Plastic Materials. In Proceedings of the 2010 10th IEEE International Conference on Solid Dielectrics, Potsdam, Germany, 4–9 July 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Küter, A.; Reible, S.; Geibig, T.; Nüßler, D.; Pohl, N. THz Imaging for Recycling of Black Plastics. Tm Tech. Mess. 2018, 85, 191–201. [Google Scholar] [CrossRef]
- Naftaly, M.; Vieweg, N.; Deninger, A. Industrial Applications of Terahertz Sensing: State of Play. Sensors 2019, 19, 4203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niijima, S.; Shoyama, M.; Murakami, K.; Kawase, K. Evaluation of the Sintering Properties of Pottery Bodies Using Terahertz Time-Domain Spectroscopy. J. Asian Ceram. Soc. 2018, 6, 37–42. [Google Scholar] [CrossRef]
- Mikerov, M.; Shrestha, R.; van Dommelen, P.; Mittleman, D.M.; Koch, M. Analysis of Ancient Ceramics Using Terahertz Imaging and Photogrammetry. Opt. Express 2020, 28, 22255. [Google Scholar] [CrossRef] [PubMed]
- Kawase, K.; Dobroiu, A.; Yamashita, M.; Sasaki, Y.; Otani, C. Terahertz Rays to Detect Drugs of Abuse. In Terahertz Frequency Detection and Identification of Materials and Objects; Miles, R.E., Zhang, X.C., Eisele, H., Krotkus, A., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 241–250. [Google Scholar] [CrossRef]
- Davies, A.G.; Burnett, A.D.; Fan, W.; Linfield, E.H.; Cunningham, J.E. Terahertz Spectroscopy of Explosives and Drugs. Mater. Today 2008, 11, 18–26. [Google Scholar] [CrossRef]
- Liu, W.T.; Li, J.W.; Yang, W. Detection and Identification of Explosives and Illicit Drugs by Terahertz Spectroscopy Technology. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 3576–3579. [Google Scholar] [CrossRef]
- Meilhan, J.; Dupont, B.; Goudon, V.; Lasfargues, G.; Lalanne Dera, J.; Nguyen, D.T.; Ouvrier-Buffet, J.L.; Pocas, S.; Maillou, T.; Cathabard, O.; et al. Active THz Imaging and Explosive Detection with Uncooled Antenna-Coupled Microbolometer Arrays. In Proceedings of the SPIE Defense, Security, and Sensing, Orlando, FL, USA, 25–29 April 2011; p. 80230E. [Google Scholar] [CrossRef]
- Todoruk, T.M.; Hartley, I.D.; Reid, M.E. Origin of Birefringence in Wood at Terahertz Frequencies. IEEE Trans. Terahertz Sci. Technol. 2012, 2, 123–130. [Google Scholar] [CrossRef]
- Tanaka, S.; Shiraga, K.; Ogawa, Y.; Fujii, Y.; Okumura, S. Applicability of Effective Medium Theory to Wood Density Measurements Using Terahertz Time-Domain Spectroscopy. J. Wood Sci. 2014, 60, 111–116. [Google Scholar] [CrossRef]
- Zolliker, P.; Rüggeberg, M.; Valzania, L.; Hack, E. Extracting Wood Properties From Structured THz Spectra: Birefringence and Water Content. IEEE Trans. Terahertz Sci. Technol. 2017, 7, 722–731. [Google Scholar] [CrossRef]
- Banerjee, D.; von Spiegel, W.; Thomson, M.D.; Schabel, S.; Roskos, H.G. Diagnosing Water Content in Paper by Terahertz Radiation. Opt. Express 2008, 16, 9060. [Google Scholar] [CrossRef] [Green Version]
- Federici, J.F. Review of Moisture and Liquid Detection and Mapping Using Terahertz Imaging. J. Infrared Millimeter Terahertz Waves 2012, 33, 97–126. [Google Scholar] [CrossRef]
- Gente, R.; Koch, M. Monitoring Leaf Water Content with THz and Sub-THz Waves. Plant Methods 2015, 11, 15. [Google Scholar] [CrossRef] [Green Version]
- Jeong, K.; Huh, Y.M.; Kim, S.H.; Park, Y.; Son, J.H.; Oh, S.J.; Suh, J.S. Characterization of Blood Using Terahertz Waves. J. Biomed. Opt. 2013, 18, 107008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulya, M.S.; Odlyanitskiy, E.L.; Cassar, Q.; Mustafin, I.A.; Trukhin, V.N.; Gavrilova, P.G.; Korolev, D.V.; Kononova, Y.A.; Balbekin, N.S.; Mounaix, P.; et al. Fast Terahertz Spectroscopic Holographic Assessment of Optical Properties of Diabetic Blood Plasma. J. Infrared Millimeter Terahertz Waves 2020, 41, 1041–1056. [Google Scholar] [CrossRef]
- Tzydynzhapov, G.; Gusikhin, P.; Muravev, V.; Dremin, A.; Nefyodov, Y.; Kukushkin, I. New Real-Time Sub-Terahertz Security Body Scanner. Int. J. Infrared Millim. Waves 2020, 41, 10. [Google Scholar] [CrossRef]
- Hack, E.; Valzania, L.; Gäumann, G.; Shalaby, M.; Hauri, C.; Zolliker, P. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging. Sensors 2016, 16, 221. [Google Scholar] [CrossRef] [Green Version]
- Valzania, L.; Zhao, Y.; Rong, L.; Wang, D.; Georges, M.; Hack, E.; Zolliker, P. THz Coherent Lensless Imaging. Appl. Opt. 2019, 58, G256–G275. [Google Scholar] [CrossRef] [Green Version]
- Crocker, A.; Gebbie, H.A.; Kimmitt, M.F.; Mathias, L.E.S. Stimulated Emission in the Far Infra-Red. Nature 1964, 201, 250–251. [Google Scholar] [CrossRef]
- Bosco, L.; Franckié, M.; Scalari, G.; Beck, M.; Wacker, A.; Faist, J. Thermoelectrically Cooled THz Quantum Cascade Laser Operating up to 210 K. Appl. Phys. Lett. 2019, 115, 010601. [Google Scholar] [CrossRef]
- Khalatpour, A.; Paulsen, A.K.; Deimert, C.; Wasilewski, Z.R.; Hu, Q. High-Power Portable Terahertz Laser Systems. Nat. Photon. 2021, 15, 16–20. [Google Scholar] [CrossRef]
- Rösch, M.; Scalari, G.; Beck, M.; Faist, J. Octave-Spanning Semiconductor Laser. Nat. Photon. 2015, 9, 42–47. [Google Scholar] [CrossRef] [Green Version]
- Fujita, K.; Jung, S.; Jiang, Y.; Kim, J.H.; Nakanishi, A.; Ito, A.; Hitaka, M.; Edamura, T.; Belkin, M.A. Recent Progress in Terahertz Difference-Frequency Quantum Cascade Laser Sources. Nanophotonics 2018, 7, 1795–1817. [Google Scholar] [CrossRef]
- Jin, Y.; Reno, J.L.; Kumar, S. Phase-Locked Terahertz Plasmonic Laser Array with 2 W Output Power in a Single Spectral Mode. Optica 2020, 7, 708–715. [Google Scholar] [CrossRef]
- Dietz, R.J.; Globisch, B.; Roehle, H.; Stanze, D.; Göbel, T.; Schell, M. Influence and Adjustment of Carrier Lifetimes in InGaAs/InAlAs Photoconductive Pulsed Terahertz Detectors: 6 THz Bandwidth and 90dB Dynamic Range. Opt. Express 2014, 22, 19411. [Google Scholar] [CrossRef]
- Van Exter, M.; Fattinger, C.; Grischkowsky, D. Terahertz Time-Domain Spectroscopy of Water Vapor. Opt. Lett. 1989, 14, 1128–1130. [Google Scholar] [CrossRef] [PubMed]
- Krügener, K.; Busch, S.; Soltani, A.; Schwerdtfeger, M.; Castro-Camus, E.; Koch, M.; Viol, W. THz Time Domain Spectroscopy—Non-Destructive Evaluation of Material Detachments from Exposed Natural Stone and Ceramic Objects. In Proceedings of the 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Cancun, Mexico, 27 August–1 September 2017; pp. 1–2. [Google Scholar] [CrossRef]
- Krügener, K.; Ornik, J.; Schneider, M.; Jackel, A.; Castro-Camus, E.; Koch, M.; Viol, W. On-Site Inspection of Conservation Works Using THz TDS. In Proceedings of the 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 1–6 September 2019; pp. 1–2. [Google Scholar] [CrossRef]
- Krügener, K.; Ornik, J.; Schneider, L.M.; Jäckel, A.; Koch-Dandolo, C.L.; Castro-Camus, E.; Riedl-Siedow, N.; Koch, M.; Viöl, W. Terahertz Inspection of Buildings and Architectural Art. Appl. Sci. 2020, 10, 5166. [Google Scholar] [CrossRef]
- Fukunaga, K.; Hosako, I.; Kohdzuma, Y.; Koezuka, T.; Kim, M.-J.; Ikari, T.; Du, X. Terahertz Analysis of an East Asian Historical Mural Painting. J. Eur. Opt. Soc. Rapid Publ. 2010, 5, 4. [Google Scholar] [CrossRef]
- Jackson, J.B.; Labaune, J.; Bailleul-Lesuer, R.; D’Alessandro, L.; Whyte, A.; Bowen, J.W.; Menu, M.; Mourou, G. Terahertz Pulse Imaging in Archaeology. Front. Optoelectron. 2015, 8, 81–92. [Google Scholar] [CrossRef]
- Li, X.; Jarrahi, M. A 63-Pixel Plasmonic Photoconductive Terahertz Focal-Plane Array. In Proceedings of the 2020 IEEE/MTT-S International Microwave Symposium (IMS), Los Angeles, CA, USA, 4–6 August 2020; pp. 91–94. [Google Scholar] [CrossRef]
- Helmut Fischer GmbH. Non-Destructive Measurements with Terahertz Radiation. IST Int. Surf. Technol. 2018, 11, 58–59. [Google Scholar] [CrossRef]
- Stantchev, R.I.; Yu, X.; Blu, T.; Pickwell-MacPherson, E. Real-Time Terahertz Imaging with a Single-Pixel Detector. Nat. Commun. 2020, 11, 2535. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Niedrig, H. (Ed.) Optik, Bergmann-Schäfer: Lehrbuch Der Experimentalphysik, 10th ed.; Walter de Gruyter: Berlin, Germany, 2004; Volume 3. [Google Scholar]
Camera | Swiss Terahertz RIGI S2x |
---|---|
Type | uncooled THz microbolometer |
Operation range | 16–3000 –18 ) |
Pixel size () | 25 |
Number of pixels | |
Detector size (L H, ) | |
NEP | < @ |
ADC (bit) | 14 |
Frame transfer rate (fps) | 9 |
Data transfer + power | USB |
Lens | Swiss Terahertz Objective Lens |
---|---|
Focal length () | 44 |
f number | 0.7 |
Lens material | HRFZ-Si |
FoV (lateralvertical) | |
Operation range | –– |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zolliker, P.; Shalaby, M.; Söllinger, E.; Mavrona, E.; Hack, E. Real-Time High Resolution THz Imaging with a Fiber-Coupled Photo Conductive Antenna and an Uncooled Microbolometer Camera. Sensors 2021, 21, 3757. https://doi.org/10.3390/s21113757
Zolliker P, Shalaby M, Söllinger E, Mavrona E, Hack E. Real-Time High Resolution THz Imaging with a Fiber-Coupled Photo Conductive Antenna and an Uncooled Microbolometer Camera. Sensors. 2021; 21(11):3757. https://doi.org/10.3390/s21113757
Chicago/Turabian StyleZolliker, Peter, Mostafa Shalaby, Elisa Söllinger, Elena Mavrona, and Erwin Hack. 2021. "Real-Time High Resolution THz Imaging with a Fiber-Coupled Photo Conductive Antenna and an Uncooled Microbolometer Camera" Sensors 21, no. 11: 3757. https://doi.org/10.3390/s21113757
APA StyleZolliker, P., Shalaby, M., Söllinger, E., Mavrona, E., & Hack, E. (2021). Real-Time High Resolution THz Imaging with a Fiber-Coupled Photo Conductive Antenna and an Uncooled Microbolometer Camera. Sensors, 21(11), 3757. https://doi.org/10.3390/s21113757