Novel MRI-Based CAD System for Early Detection of Thyroid Cancer Using Multi-Input CNN
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants and Data Collection
2.2. ADC Map Calculation and Nodule Segmentation
2.3. Proposed Learning Model: Multi-Input CNN
2.4. Other Learning Models
2.5. Evaluation Criteria
2.6. Nodule Texture Visualization
3. Experimental Results
3.1. Significant Differences in T2 and ADC Local Intensity Variations between Malignant and Benign Groups
3.2. Comparison with ML Methods That Use Hand-Crafted Features
3.3. Comparison with State-of-the-Art CNNs
3.4. Texture Features of T2-Weighted Images Are Visually Different Compared to ADC Maps
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Society, A.C. Cancer Facts and Figures 2020; American Cancer Society: Atlanta, GA, USA, 2020. [Google Scholar]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [Green Version]
- Rojo, I.L.; Valdazo, A.G.; Ramirez, J.G. Current Use of Molecular Profiling for Indeterminate Thyroid Nodules. Cirugía Española (Engl. Ed.) 2018, 96, 395–400. [Google Scholar] [CrossRef]
- Pescatori, L.C.; Torcia, P.; Nicosia, L.; Mauri, G.; Rossi, U.G.; Cariati, M. Which needle in the treatment of thyroid nodules? Gland. Surg. 2018, 7, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, L.F.; Patel, N.J.; Caserta, M.P.; Robbin, M.L. Thyroid Ultrasound: Diffuse and Nodular Disease. Radiol. Clin. 2020, 58, 1041–1057. [Google Scholar] [CrossRef]
- Mistry, R.; Hillyar, C.; Nibber, A.; Sooriyamoorthy, T.; Kumar, N. Ultrasound Classification of Thyroid Nodules: A Systematic Review. Cureus 2020, 12, e7239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ardakani, A.A.; Gharbali, A.; Mohammadi, A. Classification of benign and malignant thyroid nodules using wavelet texture analysis of sonograms. J. Ultrasound Med. 2015, 34, 1983–1989. [Google Scholar] [CrossRef]
- Verburg, F.; Reiners, C. Sonographic diagnosis of thyroid cancer with support of AI. Nat. Rev. Endocrinol. 2019, 15, 319–321. [Google Scholar] [CrossRef]
- Ouyang, F.S.; Guo, B.L.; Ouyang, L.Z.; Liu, Z.W.; Lin, S.J.; Meng, W.; Huang, X.Y.; Chen, H.X.; Qiu-Gen, H.; Yang, S.M. Comparison between linear and nonlinear machine-learning algorithms for the classification of thyroid nodules. Eur. J. Radiol. 2019, 113, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Liu, Q.; Cui, H.; Wang, X.; Song, S.; Huang, G.; Feng, D. Thyroid classification via new multi-channel feature association and learning from multi-modality MRI images. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 277–280. [Google Scholar]
- Wokke, B.H.; Bos, C.; Reijnierse, M.; van Rijswijk, C.S.; Eggers, H.; Webb, A.; Verschuuren, J.J.; Kan, H.E. Comparison of dixon and T1-weighted MR methods to assess the degree of fat infiltration in duchenne muscular dystrophy patients. J. Magn. Reson. Imaging 2013, 38, 619–624. [Google Scholar] [CrossRef]
- Gupta, S.; Soellinger, M.; Boesiger, P.; Poulikakos, D.; Kurtcuoglu, V. Three-dimensional computational modeling of subject-specific cerebrospinal fluid flow in the subarachnoid space. J. Biomech. Eng. 2009, 131, 021010. [Google Scholar] [CrossRef]
- Seo, H.; Choi, J.; Oh, C.; Han, Y.; Park, H. Isotropic diffusion weighting for measurement of a high-resolution apparent diffusion coefficient map using a single radial scan in MRI. Phys. Med. Biol. 2014, 59, 6289. [Google Scholar] [CrossRef] [PubMed]
- Koh, D.M.; Collins, D.J. Diffusion-weighted MRI in the body: Applications and challenges in oncology. Am. J. Roentgenol. 2007, 188, 1622–1635. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; Pan, C.; Chen, W.; Li, T.; Zhu, W.; Qi, J. Differentiation between malignant and benign thyroid nodules and stratification of papillary thyroid cancer with aggressive histological features: Whole-lesion diffusion-weighted imaging histogram analysis. J. Magn. Reson. Imaging 2016, 44, 1546–1555. [Google Scholar] [CrossRef]
- Brown, A.M.; Nagala, S.; McLean, M.A.; Lu, Y.; Scoffings, D.; Apte, A.; Gonen, M.; Stambuk, H.E.; Shaha, A.R.; Tuttle, R.M.; et al. Multi-institutional validation of a novel textural analysis tool for preoperative stratification of suspected thyroid tumors on diffusion-weighted MRI. Magn. Reson. Med. 2016, 75, 1708–1716. [Google Scholar] [CrossRef] [Green Version]
- Schob, S.; Meyer, H.J.; Dieckow, J.; Pervinder, B.; Pazaitis, N.; Höhn, A.K.; Garnov, N.; Horvath-Rizea, D.; Hoffmann, K.T.; Surov, A. Histogram analysis of diffusion weighted imaging at 3T is useful for prediction of lymphatic metastatic spread, proliferative activity, and cellularity in thyroid cancer. Int. J. Mol. Sci. 2017, 18, 821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naglah, A.; Khalifa, F.; Khaled, R.; El-Baz, A.; Abdel Khalek Abdel Razek, A. Thyroid cancer computer-aided diagnosis system using MRI-based multi-input CNN model. In Proceedings of the 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI 2021), Nice, France, 13–16 April 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1691–1694. [Google Scholar]
- Surov, A.; Garnov, N. Proving of a mathematical model of cell calculation based on apparent diffusion coefficient. Transl. Oncol. 2017, 10, 828–830. [Google Scholar] [CrossRef]
- Wang, H.; Song, B.; Ye, N.; Ren, J.; Sun, X.; Dai, Z.; Zhang, Y.; Chen, B.T. Machine learning-based multiparametric MRI radiomics for predicting the aggressiveness of papillary thyroid carcinoma. Eur. J. Radiol. 2020, 122, 108755. [Google Scholar] [CrossRef] [Green Version]
- Stejskal, E.O.; Tanner, J.E. Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 1965, 42, 288–292. [Google Scholar] [CrossRef] [Green Version]
- Agarap, A.F. Deep learning using rectified linear units (relu). arXiv 2018, arXiv:1803.08375. [Google Scholar]
- Finney, D.J. Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve; Cambridge University Press: Cambridge, UK, 1952. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Müller, C. Spherical Harmonics; Springer: Berlin/Heidelberg, Germany, 2006; Volume 17. [Google Scholar]
- Friedl, M.A.; Brodley, C.E. Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ. 1997, 61, 399–409. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- McCallum, A.; Nigam, K. A comparison of event models for naive bayes text classification. In AAAI-98 Workshop on Learning for Text Categorization; Association for the Advancement of Artificial Intelligence (AAAI): Palo Alto, CA, USA, 1998; Volume 752, pp. 41–48. [Google Scholar]
- Suykens, J.A.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. (IJCV) 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Dodge, S.; Karam, L. A study and comparison of human and deep learning recognition performance under visual distortions. In Proceedings of the 2017 26th International Conference on Computer Communication and Networks (ICCCN), Vancouver, BC, Canada, 31 July–3 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–7. [Google Scholar]
- Negi, S.S.; Bhandari, Y.S. A hybrid approach to image enhancement using contrast stretching on image sharpening and the analysis of various cases arising using histogram. In Proceedings of the International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014), Jaipur, India, 9–11 May 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–6. [Google Scholar]
- Murtagh, F.; Legendre, P. Ward’s hierarchical agglomerative clustering method: Which algorithms implement Ward’s criterion? J. Classif. 2014, 31, 274–295. [Google Scholar] [CrossRef] [Green Version]
- Murtagh, F.; Legendre, P. The clustering validity with silhouette and sum of squared errors? Learning 2015, 3, 274–295. [Google Scholar]
- Thinsungnoena, T.; Kaoungkub, N.; Durongdumronchaib, P.; Kerdprasopb, K.; Kerdprasopb, N. The clustering validity with silhouette and sum of squared errors. In Proceedings of the 3rd International Conference on Industrial Application Engineering 2015, Kitakyushu, Japan, 28–31 March 2015; Volume 3. Available online: https://pdfs.semanticscholar.org/8785/b45c92622ebbbffee055aec198190c621b00.pdf (accessed on 1 May 2021).
Parameter | Value |
---|---|
Kernel Size | 3 × 3 × 3 |
Number of Convolution Kernels | 32 |
Number of 1 × 1 Kernels | 16 |
Fully Connected Layers | 2 |
Convolutional Layers | 2 |
Activation | ReLU |
Pooling Size | 2 × 2 × 2 |
Pooling | MaxPooling |
Number of Epochs | 100 |
Input Shape | 48 × 48 × 20 |
Welch Two-Sample t-Test | |||
---|---|---|---|
MRI Parameter | CI mean | ||
T2 | −4% to −1% | −2.28 | 0.023 |
ADC500 | 5% to 9% | 7.87 | <0.001 |
ADC1000 | 26% to 34% | 14.87 | <0.001 |
ADC1500 | 4% to 8% | 6.12 | <0.001 |
Evaluation Metrics | ||||
---|---|---|---|---|
Method | Accuracy | Sensitivity | Specificity | Dice Coefficient |
DT classifier | 0.70 | 0.66 | 0.70 | 0.57 |
NB classifier | 0.76 | 0.73 | 0.77 | 0.63 |
RF classifier | 0.77 | 0.67 | 0.77 | 0.53 |
SVM classifier | 0.56 | 0.40 | 0.73 | 0.48 |
Proposed Multi-Input CNN | 0.87 | 0.69 | 0.97 | 0.79 |
Evaluation Metrics | ||||
---|---|---|---|---|
Method | Accuracy | Sensitivity | Specificity | Dice Coefficient |
AlexNet | 0.61 | 0.53 | 0.66 | 0.49 |
ResNet18 | 0.49 | 1.00 | 0.22 | 0.58 |
Proposed Multi-Input CNN | 0.87 | 0.69 | 0.97 | 0.79 |
Evaluation Metrics | ||||
---|---|---|---|---|
Method | Accuracy | Sensitivity | Specificity | Dice Coefficient |
Single-Input CNN (T2-Weighted only) | 0.76 | 0.56 | 0.87 | 0.62 |
Single-Input CNN (ADC only) | 0.72 | 0.63 | 0.77 | 0.61 |
Two-CNN voting (base-images + ADC) | 0.83 | 0.63 | 0.93 | 0.71 |
Multi-Input CNN (Proposed Method) | 0.87 | 0.69 | 0.97 | 0.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naglah, A.; Khalifa, F.; Khaled, R.; Abdel Razek, A.A.K.; Ghazal, M.; Giridharan, G.; El-Baz, A. Novel MRI-Based CAD System for Early Detection of Thyroid Cancer Using Multi-Input CNN. Sensors 2021, 21, 3878. https://doi.org/10.3390/s21113878
Naglah A, Khalifa F, Khaled R, Abdel Razek AAK, Ghazal M, Giridharan G, El-Baz A. Novel MRI-Based CAD System for Early Detection of Thyroid Cancer Using Multi-Input CNN. Sensors. 2021; 21(11):3878. https://doi.org/10.3390/s21113878
Chicago/Turabian StyleNaglah, Ahmed, Fahmi Khalifa, Reem Khaled, Ahmed Abdel Khalek Abdel Razek, Mohammad Ghazal, Guruprasad Giridharan, and Ayman El-Baz. 2021. "Novel MRI-Based CAD System for Early Detection of Thyroid Cancer Using Multi-Input CNN" Sensors 21, no. 11: 3878. https://doi.org/10.3390/s21113878
APA StyleNaglah, A., Khalifa, F., Khaled, R., Abdel Razek, A. A. K., Ghazal, M., Giridharan, G., & El-Baz, A. (2021). Novel MRI-Based CAD System for Early Detection of Thyroid Cancer Using Multi-Input CNN. Sensors, 21(11), 3878. https://doi.org/10.3390/s21113878