A Framework for Continuous Authentication Based on Touch Dynamics Biometrics for Mobile Banking Applications
Abstract
:1. Introduction
1.1. Main Contributions of This Work
- Multiple-scope approach is uesd so that the authentication models are validated for different feature sets, with the best performing scopes added to the framework.
- Six different scopes were developed to improve the performance compared to the results previously presented in [11], which used only one scope.
- With the selected scopes, the efficiency metric of the models presents a minimum F1 score of 90%.
- Although the proposal validation uses templates of all users who participated in the data collection scenarios, only those models presenting a FAR below 10% were integrated into the new framework.
1.2. Organization of This Work
2. State-of-the-Art
2.1. Security and Mobile Banking Applications
2.2. Continuous Authentication for Mobile Banking Applications Based on Touch Dynamics Biometrics
2.3. Location and Continuous Authentication
2.4. Data Fusion
3. Proposed Model
3.1. The New Framework Description
- Moment 1: typing password, is classified as SV;
- Moment 2: interaction with the application to carry out a transaction is classified as DV.
- Step 1: Capture the pattern of location and password typing;
- Step 2: Calculate AC for the location pattern captured in Step 1 using the best model (which obtained AC ≥ 90% in the tests that are described hereafter), and calculate the F1 Score for the password-typing pattern captured in step 1 using the best model (which obtained F1 ≥ 90% and I_FAR ≤ 10% in the tests);
- Step 3: Fuse the AC for the location pattern with the F1 Score for the password-typing pattern using the simple arithmetic mean.
- Step 4: If the result of Step 3 is a score below 90%, an alert is generated, indicating a possible imposter;
- Step 5: Capture the location and interaction pattern with the application post-login activities;
- Step 6: Calculate the accuracy (AC) for the location pattern captured in Step 5 using the model that obtained AC ≥ 90%, and calculate F1 for the pattern of post-login interaction with the application in Step 5 using the best model that obtained F1 ≥ 90% and I_FAR ≤ 10%;
- Step 7: Fuse the AC, for the location pattern, with the F1 Score, for the pattern interaction with the application post-login activity, using the simple arithmetic mean;
- Step 8: If the result of Step 7 is a score below 90%, an alert is generated, indicating a possible imposter.
3.2. Data Collection
3.3. Selection of Features
3.4. Model Creation and Parameter Test
3.5. Evaluation Metrics
3.6. Fusion of Scores
4. Results and Discussion
4.1. Experimental Scenarios
4.2. Users Templates
4.3. Model Implementation
- All six supervised machine learning algorithms are trained and tested with balanced data. The same number of vectors, lines contained in the templates, is used for legitimate and illegitimate users based on the number of vectors contained in the legitimate user templates;
- The algorithms that obtained F1 from 90% are identified;
- Those models that obtain 100% accuracy are then discarded because this behavior may indicate overfitting or that the data is not yet sufficient to define the user pattern;
- If among the models with F1 at 90% there is NBB or NBG, they are preferred as they are simpler and faster algorithms for prediction. Otherwise, the model with the highest F1 value is selected;
- The best authentication model selected in the previous step is then confronted with data from at least 50 other users. The model is only considered good if it obtains a maximum I_FAR of 10%, which in this case may represent that, among the 50 other imposter users, 5 have a behavior pattern that is identified as similar to that of the evaluated user, based on features used in the experiment.
4.4. FeaturesRanking
4.5. Scopes
- a
- Scope A (SA): using all features captured in Moments 1 and 2 and generating one model per user;
- b
- Scope B (SB): excluding features related to sensor data and generating one model per user;
- c
- Scope C (SC): excluding the finger size and average finger size features because these features are identified with a high weight in features ranking and generating one model per user;
- d
- Scope D (SD): using all features captured in Moments 1 and 2 and generating only one model for all users;
- e
- Scope E (SE): excluding features related to the sensor data and generating only one model for all users;
- f
- Scope F (SF): excluding the finger size and average finger size features and generating only one model for all users.
4.6. Experimental Results for SV
Algorithm 1: The flow of the framework algorithm with scopes. |
|
4.6.1. Results for SV between Scenarios
4.6.2. Average Results for SV
4.7. Experimental Results for DV
4.7.1. Results for DV
4.7.2. Average Results for DV
4.8. Algorithm Frequency
4.9. Outlier Detection
4.10. Fused Results
4.11. Comparison with Previous Work
5. Conclusions and Future Work
Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Accuracy |
ALG | Algorithm |
ALG(S) | Algorithm(Scope) |
Cc | Application Account Screen |
Cc1 | Application Account Menu Screen |
Cc2 | Application Account Transaction Screen |
DV | Dynamic Verification |
EER | Equal Error Rate |
F1 | F1 Score |
FAR | False Acceptance Rate |
FN | False Negative |
FP | False Positive |
FRR | False Rejection Rate |
GB | Gradient Boosting |
GPS | Global Positioning System |
I_FAR | Impostors FAR |
L | Login screen |
MS | Menu Service screen |
NBB | Naive Bayes Bernoulli |
NBG | Naive Bayes Gaussian |
P | Application Payment Screen |
P1 | Application Payment Menu Screen |
P2 | Application Payment Transaction Screen |
PRC | Precision |
REC | Recall |
RF | Random Forest |
S1 | Scenario 1 |
S2 | Scenario 2 |
S3 | Scenario 3 |
SA | Scope A |
SB | Scope B |
SC | Scope C |
SD | Scope D |
SE | Scope E |
SF | Scope F |
SV | Statical Verification |
SVM | Support Vector Machine |
T | Application Transfer Screen |
T1 | Application Transfer Menu Screen |
T2 | Application Transfer Transaction Screen |
TN | True Negative |
TP | True Positive |
XGB | Extreme Gradient Boosting |
References
- GSMA. 2019 Mobile Industry Impact Report: Sustainable Development Goals Executive Summary. Available online: https://www.gsma.com/betterfuture/2019sdgimpactreport/wp-content/uploads/2019/09/SDG_Report_2019_ExecSummary_Web_Singles.pdf (accessed on 22 August 2020).
- Statista. Number of Smartphone Users Worldwide from 2016 to 2021. Available online: https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/ (accessed on 22 August 2020).
- Juniper. Digital Banking Users to Reach 2 Billion This Year, Representing Nearly 40% of Global Adult Populati. Available online: https://www.juniperresearch.com/press/press-releases/digital-banking-users-to-reach-2-billion (accessed on 22 August 2020).
- Karpersky. Mobile Malware Attacks Double in 2018. Available online: https://www.itproportal.com/news/mobile-mal\ware-attacks-double-in-2018/ (accessed on 22 August 2020).
- Ali, M.L.; John, V.M.; Charles, C.; Meikang, Q. Keystroke biometric systems for user authentication. J. Signal Process. Syst. Springer 2017, 86, 175–190. [Google Scholar] [CrossRef]
- Alpar, O. Biometric touchstroke authentication by fuzzy proximity of touch locations. Future Gener. Comput. Syst. Elsevier 2018, 86, 71–80. [Google Scholar] [CrossRef]
- Antal, M.; Szabó, L.Z.; László, I. Keystroke dynamics on android platform. Procedia Technol. Elsevier 2015, 19, 820–826. [Google Scholar] [CrossRef] [Green Version]
- Frank, M.; Biedert, R.; Ma, E.; Martinovic, I.; Song, D. Touchalytics: On the applicability of touchscreen input as a behavioral biometric for continuous authentication. IEEE Trans. Inf. Forensics Secur. 2012, 1, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.; Atwater, A.; Hengartner, U. A comparative evaluation of implicit authentication schemes. International Workshop on Recent Advances in Intrusion Detection. In Proceedings of the International Workshop on Recent Advances in Intrusion Detection, Gothenburg, Sweden, 17–19 September 2014; Springer: Cham, Germany, 2014; pp. 255–275, ISBN 978-3-319-11379-1. [Google Scholar]
- Shen, C.; Li, Y.; Chen, Y.; Guan, X.; Maxion, R.A. Performance analysis of multi-motion sensor behavior for active smartphone authentication. IEEE Trans. Inf. Forensics Secur. 2017, 13, 48–62. [Google Scholar] [CrossRef]
- Estrela, P.M.A.B.; Albuquerque, R.d.O.; Amaral, D.M.; Giozza, W.F.; Amvame-Nze, G.D.; Mendonça, F.L.L.d. Biotouch: A framework based on behavioral biometrics and location for continuous authentication on mobile banking applications. In Proceedings of the 2020 15th Iberian Conference on Information Systems and Technologies (CISTI), Sevilla, Spain, 24–27 June 2020; IEEE: Sevilla, Spain, 2020. ISBN 978-989-54659-0-3. [Google Scholar]
- Teh, P.S.; Zhang, N.; Teoh, A.B.J.; Chen, K. A survey on touch dynamics authentication in mobile devices. Elsevier Comput. Secur. Elsevier 2016, 59, 210–235. [Google Scholar] [CrossRef]
- Peotta, L.; Holtz, M.D.; David, B.M.; Deus, F.G.; de Sousa, R.T. A formal classification of internet banking attacks and vulnerabilities. Int. J. Comput. Sci. Inf. Technol. 2011, 3, 186–197. [Google Scholar] [CrossRef]
- Chaimaa, B.; Najib, E.; Rachid, H. E-banking Overview: Concepts, Challenges and Solutions. Wirel. Pers. Commun. 2021, 117, 1059–1078. [Google Scholar] [CrossRef]
- Shih, D.-H.; Lu, C.-M.; Shih, M.-H. A flick biometric authentication mechanism on mobile devices. In Proceedings of the 2015 International Conference on Informative and Cybernetics for Computational Social Systems (ICCSS), Chengdu, China, 13–15 August 2015; pp. 31–33. [Google Scholar]
- Fridman, L.; Weber, S.; Greenstadt, R.; Kam, M. Active authentication on mobile devices via stylometry, application usage, web browsing, and gps location. IEEE Syst. J. 2016, 11, 513–521. [Google Scholar] [CrossRef] [Green Version]
- Mahfouz, A.; Mahmoud, T.M.; Eldin, A.S. A survey on behavioral biometric authentication on smartphones. J. Inf. Secur. Appl. 2017, 37, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Buriro, A.; Gupta, S.; Crispo, B. Evaluation of Motion-based Touch-typing Biometrics for online Banking. In Proceedings of the 2017 International Conference of the Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, 20–22 September 2017. [Google Scholar]
- Temper, M.; Tjoa, S.; Kaiser, M. Touch to authenticate—Continuous biometric authentication on mobile devices. In Proceedings of the 2015 1st International Conference on Software Security and Assurance (ICSSA), Suwon, Korea, 27–27 July 2015. [Google Scholar]
- Shila, D.M.; Srivastava, K.; Oneill, P.; Reddy, K.; Sritapan, V. A multi-faceted approach to user authentication for mobile devices—using human movement, usage, and location patterns. In Proceedings of the 2016 IEEE Symposium on Technologies for Homeland Security (HST), Waltham, MA, USA, 10–11 May 2016. [Google Scholar]
- Leng, L.; Li, M.; Kim, C.; Bi, X. Dual-source discrimination power analysis for multi-instance contactless palmprint recognition. Multimed. Tools Appl. 2017, 76, 333–354. [Google Scholar] [CrossRef]
- Putri, A.N.; Asnar, Y.D.W.; Akbar, S. A continuous fusion authentication for Android based on keystroke dynamics and touch gesture. In Proceedings of the 2016 International Conference on Data and Software Engineering (ICoDSE), Denpasar, Indonesia, 26–27 October 2016. [Google Scholar]
- Google. FirebaseInstanceId. Available online: https://firebase.google.com/docs/reference/android/com/google/firebase/iid/FirebaseInstanceId (accessed on 30 September 2020).
- Estrela, P.M.A.B.; Amaral, D.M.; Albuquerque, R.d.O.; Giozza, W.F.; Amvame-Nze, G.D.; Nery, A.S. Estudo experimental da biometria comportamental para autenticação contínua de usuários em aplicações bancárias Mobile. In Proceedings of the 16th Iberoamerican Conference WWW/Internet 2019 (CIAWI), Lisbon, Portugal, 5–6 December 2019. [Google Scholar]
- Developer.android.com. Motion Sensors. Available online: https://developer.android.com/guide/topics/sensors/sensors_motion?hl=en (accessed on 19 September 2020).
- Developer.android.com. Sensors Overview. Available online: https://developer.android.com/guide/topics/sensors/sensors_overview (accessed on 19 September 2020).
- Developer.android.com. SensorEvent. Available online: https://developer.android.com/reference/android/hardware/SensorEvent#values (accessed on 19 September 2020).
- Meng, W.; Li, W.; Wong, D.S. Enhancing touch behavioral authentication via cost-based intelligent mechanism on smartphones. Multimed. Tools Appl. 2018, 77, 30167–30185. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Smith, C. Decision Trees and Random Forests: A Visual Introduction for Beginners, 1st ed.; Blue Windmill Media: Sheffield, UK, 2017. [Google Scholar]
- Harrison, M. Machine Learning Pocket Reference: Working with Structured Data in Python, 1st ed.; O’Reilly, Novatec: Sao Paulo, Brazil, 2020; ISBN 9788575228180. [Google Scholar]
- Blagus, R.; Lusa, L. Gradient boosting for high-dimensional prediction of rare events. Comput. Stat. Data Anal. 2017, 113, 19–37. [Google Scholar] [CrossRef]
- Natekin, A.; Knoll, A. Gradient boosting machines, a tutorial. Front. Neurorobotics 2013, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. KDD’16: 22nd acm sigkdd international conference on knowledge discovery and data mining. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Mitchell, T.M. Machine Learning, 1st ed.; McGraw-Hill: Singapore, 1997; ISBN 0-07-115467-1. [Google Scholar]
- Russell, S.J.; Norvig, P. Artificial Intelligence, 3rd ed.; Elsevier: Rio de Janeiro, Brazil, 2013; ISBN 978-8535237016. [Google Scholar]
- Awad, M.; Khanna, R. Efficient Learning Machines: Theories, Concepts, and Applications Forengineers and System Designers.; Springer Apress: Berkeley, CA, USA, 2015; ISBN 978-1-4302-5990-9. [Google Scholar]
- Zhang, D.; Wang, J.; Zhao, X. Estimating the uncertainty of average F1 scores. In 2015 International Conference on The Theory of Information Retrieval. In Proceedings of the 2015 International Conference on The Theory of Information Retrieval, Northampton, MA, USA, 27–30 September 2015; pp. 317–320. [Google Scholar] [CrossRef] [Green Version]
- Santos, H.D.d. Behavioral biometrics in mobile devices. UM Repository. Sensors 2020, 20, 3015. [Google Scholar]
- Grus, J. Machine Learning. In Data Science do Zero: Primeiras Regras com o Python; Alta books: Rio de Janeiro, Brazil, 2016; pp. 145–146. ISBN 978-8576089988. [Google Scholar]
- Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv 2011, arXiv:2010.16061. [Google Scholar]
- Saevanee, H.; Bhatarakosol, P. User authentication using combination of behavioral biometrics over the touchpad acting like touch screen of mobile device. In Proceedings of the 2008 International Conference on Computer and Electrical Engineering, Phuket, Thailand, 20–22 December 2008. [Google Scholar]
- Wu, J.; Chen, Z. An Implicit Identity Authentication System Considering Changes of Gesture Based on Keystroke Behaviors. Int. J. Distrib. Sens. Networks, Lean Libr. 2015, 11. [Google Scholar] [CrossRef]
- Roh, J.-H.; Lee, S.-H.; Kim, S. Keystroke dynamics for authentication in smartphone. In Proceedings of the 2016 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea, 19–21 October 2016. [Google Scholar]
- Smith-Creasey, M.; Albalooshi, F.A.; Rajarajan, M. Context Awareness for Improved Continuous Face Authentication on Mobile Devices. In Proceedings of the 4th International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress, Athens, Greece, 12–15 August 2018. [Google Scholar]
- Khan, H.; Hengartner, U.; Vogel, D. Mimicry Attacks on Smartphone Keystroke Authentication. ACM Trans. Priv. Secur. (Tops) 2020, 23, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Stanciu, V.-D.; Spolaor, R.; Conti, M.; Giuffrida, C. On the effectiveness of sensor-enhanced keystroke dynamics against statistical attacks. In Proceedings of the ACM Conference on Data and Application Security and Privacy, New Orleans, LA, USA, 9–11 March 2016. [Google Scholar]
Feature | Sensor |
---|---|
Down Down Time | Touchscreen |
Down Up Time | Touchscreen |
Up Down Time | Touchscreen |
Up Up Time | Touchscreen |
Average Down Up Time | Touchscreen |
Pressure | Touchscreen |
Average Pressure | Touchscreen |
Figer Size | Touchscreen |
Average Finger Size | Touchscreen |
Acceleration force along the X axis (including gravity) [25] | Accelerometer |
Acceleration force along the Y axis (including gravity) [25]. | Accelerometer |
Acceleration force along the Z axis (including gravity) [25]. | Accelerometer |
Rate of rotation around the X axis [25]. | Gyroscope |
Rate of rotation around the Y axis [25]. | Gyroscope |
Rate of rotation around the Z axis [25]. | Gyroscope |
Geomagnetic field of the environment for the physical X axis in T [26]. | Magnetometer |
Geomagnetic field of the environment for the physical Y axis in T [26] | Magnetometer |
Geomagnetic field of the environment for the physical Z axis in T [26] | Magnetometer |
Rotation vector component along the X axis (X * sin(/2)) [25]. (software or hardware) | Rotation Sensors |
Rotation vector component along the Y axis (Y * sin(/2)) [25]. (software or hardware) | Rotation Sensor |
Rotation vector component along the Z axis (Z * sin(/2)) [25]. (software or hardware) | Rotation Sensor |
Scalar component of the rotation vector ((cos(/2)) [25]. (software or hardware) | Rotation Sensor |
Estimated heading Accuracy [27]. (software or hardware) | Rotation Sensor |
Acceleration force along the X axis (excluding gravity) [25]. (software or hardware) | Acceleration Sensors |
Acceleration force along the Y axis (excluding gravity) [25]. (software or hardware) | Acceleration Sensors |
Acceleration force along the Z axis (excluding gravity) [25]. (software or hardware) | Acceleration Sensors |
Force of gravity along the X axis [25]. (software or hardware) | Gravity Sensors |
Force of gravity along the Y axis [25]. (software or hardware) | Gravity Sensors |
Force of gravity along the Z axis [25]. (software or hardware) | Gravity Sensors |
Name | Value |
---|---|
n_estimators | 40 |
n_jobs | 2 |
random_state | 0 |
bootstrap | False |
criterion | entropy |
max_depth | 5 |
max_features | 9 |
min_samples_leaf | 3 |
Algorithm | Name | Value |
---|---|---|
SVM | kernel | rbf, linear, poly |
gamma | scale, auto, , , | |
C | 0.0000001, 0.000001, 0.00001, 0.0001, 0.001, 0.1 | |
class_weight | {0:1,1:2}, balanced | |
degree | 3, 5 | |
RF | random_state | 0 |
n_jobs | 2 | |
n_estimators | 20, 25, 30 | |
max_depth | 3, 5, None | |
max_features | 1, 3, 5, auto | |
min_samples_leaf | 0.3, 0.4, 0.5 | |
min_samples_split | 0.3, 0.4, 0.5, 6 | |
bootstrap | True, False | |
criterion | gini, entropy | |
class_weight | {0:1,1:2}, balanced | |
GB | n_estimators | 10, 20, 30, 75, 100 |
learning_rate | 0.001, 0.01, 0.1 | |
max_depth | 5, 6, 7 | |
min_samples_split | 0.3, 0.4, 0.45, 0.5 | |
min_samples_leaf | 0.20, 0.25, 0.3, 0.4 | |
max_features | 3, 7, 10, 20, None, balanced | |
XGB | n_estimators | 20, 30, 40, 100 |
colsample_bytree | 0.6, 0.7, 0.8 | |
max_depth | 15, 20, 25 | |
reg_alpha | 1.1, 1.2, 1.3 | |
reg_lambda | 1.1, 1.2, 1.3 | |
subsample | 0.7, 0.8, 0.9 |
Type | Number of Templates | Number of Templates for Train | Number of Templates for Test | Scenario |
---|---|---|---|---|
SV | From 10 | 5 | From 5 | 1 |
From 15 | 10 | From 5 | 2 | |
From 20 | 15 | From 5 | 3 | |
Type | Number of Templates | Number of Templates for Train | Number of Templates for Test | Scenario |
SV | From 10 | 5 | From 5 | 1 |
From 15 | 10 | From 5 | 2 | |
From 20 | 15 | From 5 | 3 | |
DV | From 30 | 15 | From 15 | 1 |
From 45 | 30 | From 15 | 2 | |
From 60 | 45 | From 15 | 3 |
User | Number of Templates per Screen | ||||||||
---|---|---|---|---|---|---|---|---|---|
Identification | L | MS | Cc1 | Cc2 | T1 | T2 | P1 | P2 | Total |
drds94uTXlk | 12 | 8 | 6 | 6 | 1 | 1 | 1 | 1 | 36 |
cwdNwCqtFAs | 11 | 10 | 3 | 3 | 4 | 4 | 3 | 3 | 41 |
eHC7qNMAdCI | 10 | 11 | 3 | 3 | 5 | 5 | 2 | 2 | 41 |
dUbEbDq40fM | 12 | 12 | 5 | 5 | 3 | 3 | 4 | 4 | 48 |
fUB30EtiU0Q | 12 | 12 | 4 | 4 | 5 | 5 | 3 | 3 | 48 |
cWN_XjnNRDw | 14 | 14 | 5 | 5 | 3 | 3 | 6 | 6 | 56 |
ffdzWINClJ4 | 14 | 16 | 6 | 4 | 6 | 6 | 4 | 4 | 60 |
dFOtPe4f8Xc | 18 | 22 | 8 | 7 | 7 | 7 | 7 | 7 | 65 |
cBc3b9Cv4X0 | 17 | 17 | 5 | 5 | 5 | 5 | 7 | 7 | 68 |
ev9fChXnR3I | 17 | 18 | 11 | 11 | 2 | 2 | 5 | 5 | 69 |
fRA_pBm0ks4 | 18 | 18 | 6 | 6 | 6 | 6 | 6 | 6 | 72 |
dyRTk2BUAeo | 21 | 19 | 6 | 6 | 6 | 6 | 5 | 5 | 74 |
cFxPtyX-07w | 18 | 20 | 8 | 7 | 7 | 7 | 4 | 4 | 75 |
dVGmimRO7bE | 20 | 19 | 5 | 5 | 9 | 9 | 5 | 5 | 77 |
fGTU-LDm8uM | 20 | 20 | 7 | 7 | 6 | 6 | 7 | 7 | 80 |
fmVXDwdw20Q | 25 | 21 | 7 | 7 | 7 | 7 | 7 | 7 | 88 |
eqmPzjjzrHk | 23 | 25 | 5 | 4 | 11 | 10 | 9 | 9 | 96 |
enJGMKaiFiI | 27 | 26 | 7 | 7 | 13 | 13 | 6 | 6 | 107 |
fIewI06H8u8 | 31 | 30 | 10 | 10 | 10 | 10 | 10 | 10 | 121 |
eerZKZFi2kY | 40 | 40 | 12 | 12 | 15 | 15 | 13 | 13 | 160 |
dlj7Igoq3HQ | 53 | 54 | 18 | 17 | 17 | 17 | 19 | 19 | 214 |
fDAVsmA3HUY | 69 | 70 | 22 | 22 | 24 | 24 | 24 | 24 | 279 |
f0ttzpoZyeA | 75 | 75 | 13 | 13 | 52 | 52 | 10 | 10 | 300 |
eoWIhgawcZ0 | 84 | 85 | 35 | 35 | 26 | 26 | 23 | 23 | 337 |
fhw9jzhvkGs | 90 | 90 | 38 | 38 | 49 | 49 | 3 | 3 | 360 |
Participants SV e DV | |||
---|---|---|---|
S1 | S2 | S3 | |
SV | 25 of 25 | 18 of 25 | 13 of 25 |
DV | 23 of 23 | 18 of 23 | 11 of 23 |
Feature | Importance Value Moment 1 |
---|---|
Característica | Importance Value Moment 1 |
Figer Size | 0.240485 |
Average Finger Size | 0.236985 |
Pressure | 0.065277 |
Average Pressure | 0.060130 |
Geomagnetic field on Y | 0.058717 |
Geomagnetic field on X | 0.053064 |
Geomagnetic field on Z | 0.044218 |
Average Down Up Time | 0.042234 |
Scalar component of the rotation vector | 0.036942 |
Acceleration force along the Y axis (including gravity) | 0.031548 |
Feature | Importance Value Moment 2 |
---|---|
Average Finger Size | 0.268114 |
Finger Size | 0.138374 |
Scalar component of the rotation vector | 0.090839 |
Pressure | 0.090122 |
Average Pressure | 0.087559 |
Geomagnetic field on Y | 0.056308 |
Geomagnetic field on X | 0.051553 |
Rotation vector component along of X | 0.034605 |
Acceleration force along the Y axis (including gravity) | 0.030806 |
Geomagnetic field on Z | 0.025307 |
User | SV Framework Final Result | ||||||||
---|---|---|---|---|---|---|---|---|---|
Identification | ALG (S) S1 | F1 S1 | I_FAR S1 | ALG (S) S2 | F1 S2 | I_FAR S2 | ALG (S) S3 | F1 S3 | I_FAR S3 |
drds94uTXlk | RF (SD) | 94.23 | 0 | — | — | — | — | — | — |
cwdNwCqtFAs | NBG (SA) | 99.32 | 0 | — | — | — | — | — | — |
eHC7qNMAdCI | RF (SD) | 100 | 0.6 | — | — | — | — | — | — |
dUbEbDq40fM | NBB (SA) | 94.33 | 6.08 | — | — | — | — | — | — |
fUB30EtiU0Q | GB (SA) | 98.51 | 44.41 | — | — | — | — | — | — |
cWN_XjnNRDw | RF (SD) | 100 | 13.93 | — | — | — | — | — | — |
ffdzWINClJ4 | RF (SD) | 95.84 | 0 | — | — | — | — | — | — |
dFOtPe4f8Xc | NBG (SB) | 93.24 | 11.15 | — | — | — | — | — | — |
cBc3b9Cv4X0 | NBG (SA) | 98.75 | 4.1 | NBG (SA) | 97.54 | 0 | — | — | — |
ev9fChXnR3I | — | — | — | RF (SD) | 95 | 1.08 | — | — | — |
fRA_pBm0ks4 | RF (SD) | 100 | 1.51 | RF (SD) | 100 | 3.72 | — | — | — |
dyRTk2BUAeo | RF (SD) | 98.84 | 0.14 | RF (SD) | 94.88 | 0.37 | RF (SD) | 100 | 0.03 |
cFxPtyX-07w | RF (SD) | 99.27 | 0.09 | RF (SD) | 100 | 0.4 | — | — | — |
dVGmimRO7bE | RF GB XGB (SA) | 90.64 | 77.75 | RF (SD) | 99.78 | 0.06 | RF (SD) | 100 | 0.03 |
fGTU-LDm8uM | RF (SD) | 91.34 | 0.09 | RF (SD) | 93.89 | 0.05 | RF (SD) | 99.71 | 0.03 |
fmVXDwdw20Q | NBB (SA) | 95.47 | 6.66 | RF (SD) | 100 | 0.01 | RF (SD) | 99.08 | 0.02 |
eqmPzjjzrHk | RF (SD) | 100 | 1.62 | RF (SD) | 100 | 1.69 | RF (SD) | 100 | 1.42 |
enJGMKaiFiI | RF (SD) | 97.85 | 0.2 | RF (SD) | 95.29 | 0.29 | RF (SD) | 99.77 | 0.64 |
fIewI06H8u8 | RF (SD) | 99.11 | 2.35 | RF (SD) | 99.49 | 0.29 | RF (SD) | 100 | 1.32 |
eerZKZFi2kY | — | — | — | — | — | — | — | — | — |
dlj7Igoq3HQ | @c@NBB (SA) | 99.91 | 9.06 | NBB (SA) | 99.54 | 10.35 | RF (SD) | 95.72 | 0.58 |
fDAVsmA3HUY | @c@NBG (SA) | 96.87 | 0 | NBG (SA) | 96.64 | 8.69 | NBG (SA) | 96.26 | 8.85 |
f0ttzpoZyeA | RF (SD) | 97.03 | 0.78 | RF (SD) | 98.2 | 1.9 | RF (SD) | 97.92 | 2.05 |
eoWIhgawcZ0 | RF (SD) | 99.16 | 2.29 | RF (SD) | 100 | 0.62 | RF (SD) | 100 | 2.14 |
fhw9jzhvkGs | — | — | — | — | — | — | — | — | — |
Average Accuracy Per Scenario SV | |||||||
---|---|---|---|---|---|---|---|
Scenario | SA | SB | SC | SD | SE | SF | Framework |
Cenário | SA | SB | SC | SD | SE | SF | Framework |
S1 | 89.44 | 87.12 | 86.64 | 98.85 | 96.82 | 97.61 | 95.81 |
S2 | 91.02 | 88.35 | 84.7 | 98.13 | 95.87 | 97.05 | 97.38 |
S3 | 90.77 | 87.29 | 87.55 | 98.33 | 96.06 | 97.96 | 98.25 |
Average EER per scenario SV | |||||||
---|---|---|---|---|---|---|---|
Scenario | SA | SB | SC | SD | SE | SF | Framework |
Average EER per scenario SV | |||||||
Cenário | EA | EB | EC | ED | EE | EF | Framework |
S1 | 10.14 | 11.45 | 13.51 | 7.3 | 19.18 | 11.95 | 4.57 |
S2 | 8.97 | 11.62 | 15.23 | 5.87 | 18.47 | 11.47 | 2.87 |
S3 | 9.21 | 12.63 | 12.49 | 4.59 | 13.23 | 6.46 | 1.88 |
Average F1 per scenario SV | |||||||
---|---|---|---|---|---|---|---|
Scenario | SA | SB | SC | SD | SE | SF | Framework |
S1 | 90.4 | 88.24 | 87.91 | 83.79 | 59.59 | 70.58 | 95.32 |
S2 | 91.68 | 87.32 | 86.9 | 85.34 | 60.53 | 73.91 | 96.34 |
S3 | 91.44 | 83.7 | 87.55 | 87.9 | 71.62 | 84.58 | 97.05 |
User | DV Framework Final Result | ||||||||
---|---|---|---|---|---|---|---|---|---|
Identification | ALG (S) S1 | F1 S1 | I_FAR S1 | ALG (S) S2 | F1 S2 | I_FAR S2 | ALG (S) S3 | F1 S3 | I_FAR S3 |
cwdNwCqtFAs | NBG (SB) | 96.6 | 0 | — | — | — | — | — | — |
dUbEbDq40fM | RF (SD) | 94.25 | 0.01 | — | — | — | — | — | — |
fUB30EtiU0Q | XGB (SA) | 99.5 | 53.64 | — | — | — | — | — | — |
cWN_XjnNRDw | — | — | — | — | — | — | — | — | — |
ffdzWINClJ4 | — | — | — | — | — | — | — | — | — |
dFOtPe4f8Xc | NBG (SB) | 99.1 | 0 | RF (SB) | 98.23 | 11.01 | — | — | — |
cBc3b9Cv4X0 | XGB (SB) | 99.92 | 11.16 | NBG (SB) | 99.84 | 15.16 | — | — | — |
ev9fChXnR3I | — | — | — | — | — | — | — | — | — |
fRA_pBm0ks4 | RF (SD) | 98.77 | 10.13 | RF (SD) | 100 | 5.11 | — | — | — |
dyRTk2BUAeo | — | — | — | SVM (SA) | 99.85 | 14.87 | — | — | — |
cFxPtyX-07w | RF (SD) | 96.54 | 0.2 | RF (SD) | 100 | 0.14 | — | — | — |
dVGmimRO7bE | NBG (SB) | 91.87 | 0 | RF (SD) | 100 | 0.5 | — | — | — |
fGTU-LDm8uM | — | — | — | — | — | — | NBG (SD) | 99.37 | 0 |
fmVXDwdw20Q | NBG (SB) | 95.37 | 8.71 | SVM (SA) | 98.97 | 25.38 | SVM (SA) | 99.48 | 23.41 |
eqmPzjjzrHk | NBB (SA) | 99.92 | 32.13 | RF (SD) | 100 | 0.75 | NBG (SD) | 99.46 | 100 |
enJGMKaiFiI | — | — | — | XGB (SA) | 90.4 | 52.6 | NBG (SD) | 90.2 | 0 |
fIewI06H8u8 | — | — | — | — | — | — | NBG (SD) | 92.07 | 0 |
eerZKZFi2kY | — | — | — | — | — | — | — | — | — |
dlj7Igoq3HQ | NBG (SB) | 98.29 | 8.27 | GB (SA) | 92.28 | 65.9 | NBG (SD) | 96.72 | 0 |
fDAVsmA3HUY | NBG (SB) | 99.94 | 0 | NBG (SA) | 97.19 | 0 | NBG (SD) | 91.68 | 0 |
f0ttzpoZyeA | NBG (SA) | 91.51 | 59.03 | NBG (SA) | 90.23 | 0 | NBG (SD) | 100 | 0 |
eoWIhgawcZ0 | RF (SD) | 98.72 | 0.17 | RF (SD) | 98.42 | 1.22 | NBG (SD) | 99.97 | 0 |
fhw9jzhvkGs | — | — | — | RF (SA) | 90.79 | 72.04 | NBG (SD) | 98.36 | 0 |
Average Accuracy Per Scenario DV | |||||||
---|---|---|---|---|---|---|---|
Scenario | SA | SB | SC | SD | SE | SF | Framework |
S1 | 80.29 | 85.72 | 80.27 | 96.89 | 96.5 | 96.32 | 90.1 |
S2 | 84.38 | 85.22 | 81.84 | 95.49 | 95.22 | 97.01 | 93.34 |
S3 | 84.86 | 90.88 | 80.76 | 99.21 | 95.77 | 97.22 | 98 |
Average EER Per Scenario DV | |||||||
---|---|---|---|---|---|---|---|
Scenario | SA | SB | SC | SD | SE | SF | Framework |
S1 | 21.15 | 14.31 | 19.71 | 21.63 | 25.9 | 26.55 | 9.85 |
S2 | 15.82 | 14.73 | 18.12 | 11.51 | 25.24 | 19.14 | 6.61 |
S3 | 15.15 | 9.09 | 19.24 | 2.69 | 21.1 | 11.84 | 3.07 |
Average F1 Per Scenario DV | |||||||
---|---|---|---|---|---|---|---|
Scenario | SA | SB | SC | SD | SE | SF | Framework |
S1 | 81.71 | 87.09 | 81.95 | 55.18 | 47.92 | 50.17 | 90.68 |
S2 | 87.32 | 88.43 | 85.43 | 75.78 | 48.21 | 60.14 | 93.73 |
S3 | 88.07 | 90.35 | 85.13 | 93.61 | 60.19 | 73.89 | 95.72 |
SV | DV | |||||
---|---|---|---|---|---|---|
S1 | S2 | S3 | S1 | S2 | S3 | |
NBB | 3 | 1 | — | — | — | — |
NBG | 3 | 2 | 1 | 6 | 2 | 8 |
SVM | — | — | — | — | — | — |
RF | 12 | 12 | 10 | 3 | 5 | — |
GB | — | — | — | — | — | — |
XGB | — | — | — | — | — | — |
User | Fusion of Scores Per User | |||||
---|---|---|---|---|---|---|
Identification | SV Scenario | SV F1 | DV Scenario | DV F1 | Location AC | Fusion Result |
cwdNwCqtFAs | 1 | 99.32 | 1 | 96.6 | 90.62 | 95.51 |
dUbEbDq40fM | 1 | 94.33 | 1 | 94.25 | 92.3 | 93.62 |
fRA_pBm0ks4r | 1 | 100 | 2 | 100 | 92.82 | 97.6 |
cFxPtyX-07w | 1 | 100 | 2 | 100 | 92.82 | 97.6 |
dVGmimRO7bE | 2 | 99.78 | 1 | 96.54 | 95.83 | 97.21 |
fGTU-LDm8uM | 1 | 91.34 | 3 | 99.37 | 92.76 | 94.49 |
fmVXDwdw20Q | 1 | 95.47 | 1 | 95.37 | 92.61 | 94.48 |
eqmPzjjzrHk | 1 | 100 | 2 | 100 | 93.19 | 97.73 |
enJGMKaiFiI | 1 | 97.85 | 3 | 90.2 | 89.47 | 92.5 |
fIewI06H8u8 | 1 | 99.11 | 3 | 92.07 | 92.5 | 94.56 |
dlj7Igoq3HQ | 1 | 99.91 | 1 | 98.29 | 92.18 | 96.79 |
fDAVsmA3HUY | 1 | 96.87 | 1 | 99.94 | 92.62 | 96.47 |
f0ttzpoZyeA | 1 | 97.03 | 2 | 90.23 | 92.63 | 93.29 |
eoWIhgawcZ0 | 1 | 99.16 | 1 | 98.72 | 92.95 | 96.94 |
Work | [7] | [8] | [18] | [19] | This Proposed Framework |
---|---|---|---|---|---|
Statical Verification | x | — | x | x | x |
Dynamic Verification | — | x | — | x | x |
Sensors | Touchscreen | Touchscreen | Touchscreen, Accelerometer, Orientation, Gravity, Magnetometer, Gyroscope | Touchscreen, Accelerometer | Touchscreen, Accelerometer, Orientation, Gravity, Magnetometer, Gyroscope, Rotation, Acceleration |
Undetermined Devices | — | — | x | — | x |
Number of Users | 42 | 41 | 95 | 22 | 25 |
Number of Algorithms | 7 | 2 | 3 | 1 | 7 |
Best Result | 93.04% accuracy | 0% to 4% EER inter-week | 96% accuracy | 11.5% EER | 97.05% F1 Score, 1.88% EER, 98.25% accuracy |
Algorithm with best Result | RF | SVM | RF | Fuzzy | RF, NBG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estrela, P.M.A.B.; Albuquerque, R.d.O.; Amaral, D.M.; Giozza, W.F.; Júnior, R.T.d.S. A Framework for Continuous Authentication Based on Touch Dynamics Biometrics for Mobile Banking Applications. Sensors 2021, 21, 4212. https://doi.org/10.3390/s21124212
Estrela PMAB, Albuquerque RdO, Amaral DM, Giozza WF, Júnior RTdS. A Framework for Continuous Authentication Based on Touch Dynamics Biometrics for Mobile Banking Applications. Sensors. 2021; 21(12):4212. https://doi.org/10.3390/s21124212
Chicago/Turabian StyleEstrela, Priscila Morais Argôlo Bonfim, Robson de Oliveira Albuquerque, Dino Macedo Amaral, William Ferreira Giozza, and Rafael Timóteo de Sousa Júnior. 2021. "A Framework for Continuous Authentication Based on Touch Dynamics Biometrics for Mobile Banking Applications" Sensors 21, no. 12: 4212. https://doi.org/10.3390/s21124212
APA StyleEstrela, P. M. A. B., Albuquerque, R. d. O., Amaral, D. M., Giozza, W. F., & Júnior, R. T. d. S. (2021). A Framework for Continuous Authentication Based on Touch Dynamics Biometrics for Mobile Banking Applications. Sensors, 21(12), 4212. https://doi.org/10.3390/s21124212