Recognizing and Counting Freehand Exercises Using Ubiquitous Cellular Signals †
Abstract
:1. Introduction
- This work proposes and verifies the feasibility of applying cellular signals for passive freehand exercise tracking, which sheds light on a new kind of wireless signals for motion sensing, especially at the advent of 5G.
- We propose an analytic model to quantify the impact on the received cellular signals when humans conduct freehand exercise nearby. The analytical model provides two insights for other motion tracking research with cellular signals.
- We propose a real-time freehand exercise repetition segmentation scheme and several low-frequency features for type recognition, which may be further applied in motion repetition counting and recognition with cellular signals.
- We implemented the prototype of MobiFit and evaluated it with extensive experiments, both indoors and outdoors. The results confirm that MobiFit achieves high accuracy in counting and type recognition for freehand exercises.
2. Related Work
3. Experimental Study
3.1. GSM Background
3.2. Setup
3.3. Experiments on Different Positions
3.4. Experiments on Different Exercises
4. Analytic Model
5. System Design
5.1. Segmentation
Algorithm 1: Segmentation |
5.2. Feature Extraction
6. Evaluation
6.1. Setting and Process
6.2. Results
6.2.1. Repetition Counting
6.2.2. Recognition Classification
6.3. Parameter Evaluation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, A. (Ed.) Fitness on the Go: The Anytime Anywhere Holistic Workout for Busy People; Ebury Press: London, UK, 2012. [Google Scholar]
- Zhao, W.; Feng, H.; Lun, R.; Espy, D.D.; Reinthal, M.A. A Kinect-based rehabilitation exercise monitoring and guidance system. In Proceedings of the 2014 IEEE 5th International Conference on Software Engineering and Service Science, Beijing, China, 27–29 June 2014; pp. 762–765. [Google Scholar] [CrossRef]
- Hao, T.; Xing, G.; Zhou, G. RunBuddy: A Smartphone System for Running Rhythm Monitoring. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka, Japan, 7–11 September 2015; ACM: New York, NY, USA, 2015. UbiComp ’15. pp. 133–144. [Google Scholar] [CrossRef]
- Guo, X.; Liu, J.; Chen, Y. FitCoach: Virtual fitness coach empowered by wearable mobile devices. In Proceedings of the IEEE INFOCOM 2017—IEEE Conference on Computer Communications, Atlanta, GA, USA, 1–4 May 2017; pp. 1–9. [Google Scholar] [CrossRef]
- Bian, S.; Rey, V.F.; Hevesi, P.; Lukowicz, P. Passive Capacitive based Approach for Full Body Gym Workout Recognition and Counting. In Proceedings of the 2019 IEEE International Conference on Pervasive Computing and Communications (PerCom), Kyoto, Japan, 11–15 March 2019; pp. 1–10. [Google Scholar] [CrossRef]
- Lazar, A.; Koehler, C.; Tanenbaum, J.; Nguyen, D.H. Why We Use and Abandon Smart Devices. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Maui, HI, USA, 11–15 September 2015; ACM: New York, NY, USA, 2015. UbiComp ’15. pp. 635–646. [Google Scholar] [CrossRef]
- Ding, H.; Han, J.; Shangguan, L.; Xi, W.; Jiang, Z.; Yang, Z.; Zhou, Z.; Yang, P.; Zhao, J. A platform for free-weight exercise monitoring with passive tags. IEEE Trans. Mob. Comput. 2017, 16, 3279–3293. [Google Scholar] [CrossRef]
- Shukri, S.; Kamarudin, L.M. Device free localization technology for human detection and counting with RF sensor networks: A review. J. Netw. Comput. Appl. 2017, 97, 157–174. [Google Scholar] [CrossRef]
- Ma, Y.; Zhou, G.; Wang, S. WiFi Sensing with Channel State Information: A Survey. ACM Comput. Surv. 2019, 52. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Teng, G.; Hong, F. Human Activity Sensing with Wireless Signals: A Survey. Sensors 2020, 20, 1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hristov, H.D. Fresnel Zones in Wireless Links, Zone Plate Lenses and Antennas; Artech House: Norwood, MA, USA, 2000. [Google Scholar]
- Wang, W.; Liu, A.X.; Shahzad, M.; Ling, K.; Lu, S. Understanding and Modeling of WiFi Signal Based Human Activity Recognition. In Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, Paris, France, 7–11 September 2015. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, D.; Wang, Y.; Ma, J.; Wang, Y.; Li, S. RT-Fall: A Real-time and Contactless Fall Detection System with Commodity WiFi Devices. IEEE Trans. Mob. Comput. 2016, 16, 511–526. [Google Scholar] [CrossRef]
- Guo, X.; Liu, J.; Shi, C.; Liu, H.; Chen, Y.; Chuah, M.C. Device-free Personalized Fitness Assistant Using WiFi. ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 2, 165:1–165:23. [Google Scholar] [CrossRef]
- Teng, G.; Xu, Y.; Hong, F.; Qi, J.; Jiang, R.; Liu, C.; Guo, Z. MobiFit: Contactless Fitness Assistant for Freehand Exercises Using Just One Cellular Signal Receiver. In Proceedings of the 16th International Conference on Mobility, Sensing and Networking, Tokyo, Japan, 17–19 December 2020. [Google Scholar]
- Sohn, T.; Varshavsky, A.; LaMarca, A.; Chen, M.Y.; Choudhury, T.; Smith, I.; Consolvo, S.; Hightower, J.; Griswold, W.G.; de Lara, E. Mobility Detection Using Everyday GSM Traces. In UbiComp 2006: Ubiquitous Computing; Dourish, P., Friday, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 212–224. [Google Scholar]
- Anderson, I.; Maitland, J.; Sherwood, S.; Barkhuus, L.; Chalmers, M.; Hall, M.; Brown, B.; Muller, H. Shakra: Tracking and Sharing Daily Activity Levels with Unaugmented Mobile Phones. Mob. Netw. Appl. 2007, 12, 185–199. [Google Scholar] [CrossRef]
- Anderson, I.; Muller, H. Practical Activity Recognition using GSM Data; Technical Report CSTR-06-016; University of Bristol: Bristol, UK, 2006. [Google Scholar]
- Abdullah, R.S.A.R.; Salah, A.; Rashid, N. Moving target detection by using new LTE-based passive radar. Prog. Electromagn. Res. B 2015, 63, 145–160. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Niu, K.; Zhao, D.; Zheng, R.; Wu, D.; Wang, W.; Wang, L.; Zhang, D. Robust Dynamic Hand Gesture Interaction using LTE Terminals. In Proceedings of the 2020 19th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), Sydney, Australia, 21–24 April 2020; pp. 109–120. [Google Scholar]
- Ling, K.; Liu, Y.; Sun, K.; Wang, W.; Xie, L.; Gu, Q. SpiderMon: Towards Using Cell Towers as Illuminating Sources for Keystroke Monitoring. In Proceedings of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications, Toronto, ON, Canada, 6–9 July 2020; pp. 666–675. [Google Scholar] [CrossRef]
- Gholampooryazdi, B.; Singh, I.; Sigg, S. 5G Ubiquitous Sensing: Passive Environmental Perception in Cellular Systems. In Proceedings of the 2017 IEEE Vehicular Technology Conference (VTC-Fall), Toronto, ON, Canada, 24 September–27 October 2017. [Google Scholar] [CrossRef] [Green Version]
- Adib, F.; Hsu, C.Y.; Mao, H.; Katabi, D.; Durand, F. Capturing the human figure through a wall. ACM Trans. Graph. (TOG) 2015, 34, 219. [Google Scholar] [CrossRef]
- Zhao, M.; Li, T.; Abu Alsheikh, M.; Tian, Y.; Zhao, H.; Torralba, A.; Katabi, D. Through-wall human pose estimation using radio signals. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7356–7365. [Google Scholar]
- Sigg, S.; Scholz, M.; Shi, S.; Ji, Y.; Beigl, M. RF-Sensing of Activities from Non-Cooperative Subjects in Device-Free Recognition Systems Using Ambient and Local Signals. IEEE Trans. Mob. Comput. 2014, 13, 907–920. [Google Scholar] [CrossRef]
- Xiao, N.; Yang, P.; Yan, Y.; Zhou, H.; Li, X.Y. Motion-Fi: Recognizing and Counting Repetitive Motions with Passive Wireless Backscattering. In Proceedings of the IEEE INFOCOM 2018-IEEE Conference on Computer Communications, Honolulu, HI, USA, 15–19 April 2018; pp. 2024–2032. [Google Scholar]
- Han, C.; Wu, K.; Wang, Y.; Ni, L.M. WiFall: Device-Free Fall Detection by Wireless Networks. In Proceedings of the IEEE INFOCOM 2014—IEEE Conference on Computer Communications, Toronto, ON, Canada, 27 April–2 2014. [Google Scholar]
- Zheng, X.; Wang, J.; Shangguan, L.; Zhou, Z.; Liu, Y. Smokey: Ubiquitous smoking detection with commercial wifi infrastructures. In Proceedings of the IEEE INFOCOM 2016—The 35th Annual IEEE International Conference on Computer Communications, San Francisco, CA, USA, 10–14 April 2016; pp. 1–9. [Google Scholar]
- Arshad, S.; Feng, C.; Liu, Y.; Hu, Y.; Yu, R.; Zhou, S.; Li, H. Wi-chase: A WiFi based human activity recognition system for sensorless environments. In Proceedings of the 2017 IEEE 18th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), Macau, China, 12–15 June 2017; pp. 1–6. [Google Scholar]
- Wang, Y.; Liu, J.; Chen, Y.; Gruteser, M.; Yang, J.; Liu, H. E-eyes: device-free location-oriented activity identification using fine-grained wifi signatures. In Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, Maui, HI, USA, 7–11 September 2014; pp. 617–628. [Google Scholar]
- Dong, Z.; Li, F.; Ying, J.; Pahlavan, K. Indoor Motion Detection Using Wi-Fi Channel State Information in Flat Floor Environments Versus in Staircase Environments. Sensors 2018, 18, 2177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, W.; Wu, K.; Zou, Y.; Ming, Z. Wig: Wifi-based gesture recognition system. In Proceedings of the 2015 24th International Conference on Computer Communication and Networks (ICCCN), Las Vegas, NV, USA, 3–6 August 2015; pp. 1–7. [Google Scholar]
- Zhou, Q.; Xing, J.; Li, J.; Yang, Q. A device-free number gesture recognition approach based on deep learning. In Proceedings of the 2016 12th International Conference on Computational Intelligence and Security (CIS), Wuxi, China, 16–19 December 2016; pp. 57–63. [Google Scholar]
- Venkatnarayan, R.H.; Page, G.; Shahzad, M. Multi-user gesture recognition using WiFi. In Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services, Munich, Germany, 10–15 June 2018; pp. 401–413. [Google Scholar]
- Aly, H.; Youssef, M. New insights into wifi-based device-free localization. In Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication, Zurich, Switzerland, 8–12 September 2013; pp. 541–548. [Google Scholar]
- Joshi, K.; Bharadia, D.; Kotaru, M.; Katti, S. WiDeo: Fine-grained Device-free Motion Tracing using RF Backscatter. In Proceedings of the 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI 15), Oakland, CA, USA, 4–6 May 2015; pp. 189–204. [Google Scholar]
- Scheuner, J.; Mazlami, G.; Schöni, D.; Stephan, S.; De Carli, A.; Bocek, T.; Stiller, B. Probr-a generic and passive WiFi tracking system. In Proceedings of the 2016 IEEE 41st Conference on Local Computer Networks (LCN), Dubai, UAE, 7–10 November 2016; pp. 495–502. [Google Scholar]
- Berruet, B.; Baala, O.; Caminada, A.; Guillet, V. An evaluation method of channel state information fingerprinting for single gateway indoor localization. J. Netw. Comput. Appl. 2020, 159, 102591. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, T.; Tagami, A.; Jin, J. When RSSI encounters deep learning: An area localization scheme for pervasive sensing systems. J. Netw. Comput. Appl. 2021, 173, 102852. [Google Scholar] [CrossRef]
- Dang, X.; Cao, Y.; Hao, Z.; Liu, Y. WiGId: Indoor Group Identification with CSI-Based Random Forest. Sensors 2020, 20, 4607. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, X.; Lv, Q.; Tian, G.; Zhang, D. WiFit: Ubiquitous Bodyweight Exercise Monitoring with Commodity Wi-Fi Devices. In Proceedings of the 2018 Ubiquitous Intelligence &Computing, Guangzhou, China, 8–12 October 2018; pp. 530–537. [Google Scholar]
- Wang, H.; Zhang, D.; Ma, J.; Wang, Y.; Wang, Y.; Wu, D.; Gu, T.; Xie, B. Human Respiration Detection with Commodity Wifi Devices: Do User Location and Body Orientation Matter? In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Germany, 12–16 September 2016; pp. 25–36. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, D.; Xu, C.; Wang, H.; Li, X. Device-Free WiFi Human Sensing: From Pattern-Based to Model-Based Approaches. IEEE Commun. Mag. 2017, 55, 91–97. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, H.; Wu, D. Toward Centimeter-Scale Human Activity Sensing with Wi-Fi Signals. Computer 2017, 50, 48–57. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, D.; Xiong, J.; Wang, H.; Niu, K.; Jin, B.; Wang, Y. From Fresnel Diffraction Model to Fine-grained Human Respiration Sensing with Commodity Wi-Fi Devices. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 2, 53:1–53:23. [Google Scholar] [CrossRef]
- Mouly, M.; Pautet, M.B.; Foreword By-Haug, T. The GSM System for Mobile Communications; Telecom Publishing: Palaiseau, France, 1992. [Google Scholar]
- Niu, K.; Zhang, F.; Xiong, J.; Li, X.; Yi, E.; Zhang, D. Boosting Fine-Grained Activity Sensing by Embracing Wireless Multipath Effects. In Proceedings of the 14th International Conference on Emerging Networking EXperiments and Technologies, Heraklion/Crete, Greece, 4–7 December 2018; pp. 139–151. [Google Scholar] [CrossRef]
Volunteer | Gender | Height | Weight | BMI | Age | Session | Repetition |
---|---|---|---|---|---|---|---|
male | 184 | 72 | 21.3 | 24 | 249 | 2670 | |
male | 180 | 75 | 23.1 | 23 | 224 | 2307 | |
male | 177 | 70 | 22.3 | 22 | 216 | 2246 | |
male | 175 | 67 | 21.9 | 23 | 222 | 2375 | |
famale | 166 | 55 | 20.0 | 24 | 192 | 1971 | |
famale | 165 | 50 | 18.4 | 22 | 195 | 1988 | |
male | 170 | 65 | 22.5 | 26 | 222 | 2298 | |
male | 173 | 70 | 23.4 | 25 | 219 | 2276 | |
male | 176 | 78 | 25.2 | 23 | 230 | 2532 | |
male | 178 | 85 | 26.8 | 24 | 217 | 2297 |
Features Volunteer | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|
Motion-Fi | 83.5% | 80.2% | 81.4% | 84.2% | 82.9% | 82.1% | 82.6% | 80.7% | 81.3% | 83.6% | 82.3% |
Wavelt | 92.4% | 91.3% | 87.3% | 91.7% | 91.4% | 90.7% | 91.4% | 90.6% | 91.5% | 91.8% | 91% |
Wavelt+FFT | 94.3% | 93.4% | 95.2% | 94.6% | 94.2% | 95.2% | 95.3% | 92.7% | 93.6% | 92.4% | 94.1% |
Method | Tree | Ensemble | KNN | SVM:Cubic | Linear | Quadratic | Gaussian |
---|---|---|---|---|---|---|---|
Accuracy | 80.6% | 89.7% | 82.4% | 94.1% | 88.6% | 91.4% | 90.2% |
Day | Day 1 | Day 2 | Day 3 | Day 4 | Day 5 | Day 6 | Day 7 | After 3 Months |
---|---|---|---|---|---|---|---|---|
MobiFit(%) | 96.5 | 95.9 | 95.2 | 94.7 | 93.6 | 93.4 | 92.7 | 81 |
Motion-Fi(%) | 93.4 | 90.3 | 87.2 | 85.4 | 80.6 | 82.4 | 80.2 | 43.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teng, G.; Xu, Y.; Hong, F.; Qi, J.; Jiang, R.; Liu, C.; Guo, Z. Recognizing and Counting Freehand Exercises Using Ubiquitous Cellular Signals. Sensors 2021, 21, 4581. https://doi.org/10.3390/s21134581
Teng G, Xu Y, Hong F, Qi J, Jiang R, Liu C, Guo Z. Recognizing and Counting Freehand Exercises Using Ubiquitous Cellular Signals. Sensors. 2021; 21(13):4581. https://doi.org/10.3390/s21134581
Chicago/Turabian StyleTeng, Guanlong, Yue Xu, Feng Hong, Jianbo Qi, Ruobing Jiang, Chao Liu, and Zhongwen Guo. 2021. "Recognizing and Counting Freehand Exercises Using Ubiquitous Cellular Signals" Sensors 21, no. 13: 4581. https://doi.org/10.3390/s21134581
APA StyleTeng, G., Xu, Y., Hong, F., Qi, J., Jiang, R., Liu, C., & Guo, Z. (2021). Recognizing and Counting Freehand Exercises Using Ubiquitous Cellular Signals. Sensors, 21(13), 4581. https://doi.org/10.3390/s21134581