A Micron-Sized Laser Photothermal Effect Evaluation System and Method
Abstract
:1. Introduction
2. Methods
2.1. Fabrication of Thermocouple Device
2.2. Data Processing
2.2.1. ΔT-ΔV
2.2.2. The Relationship between the Physical Parameters of the Laser
3. Results
3.1. The Measurement Method for Evaluating Photothermal Effect of Micron-Sized Lasers
3.2. Evaluation of the Photothermal Effect in Micron-Sized Lasers Interacting with the Pd/Cr Thermocouple
4. Discussion
4.1. Relationship between the Photothermal Effect of Laser–Thermocouple Interactions and the Wavelength
4.2. Feasibility of Applying this System to Photothermal Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parrish, J.A.; Wilson, B.C. Current and future trends in laser medicine. Photochem. Photobiol. 1991, 53, 731–738. [Google Scholar] [CrossRef]
- Seifi, M.; Matini, N.-S. Laser Surgery of Soft Tissue in Orthodontics: Review of the Clinical Trials. J. Lasers Med. Sci. 2017, 8, S1–S6. [Google Scholar] [CrossRef] [Green Version]
- Carroll, L.; Humphreys, T.R. LASER-tissue interactions. Clin. Dermatol. 2006, 24, 2–7. [Google Scholar] [CrossRef]
- Arvanitaki, A.; Chalazonitis, N. Excitatory and Inhibitory Processes Initiated by Light and Infra-Red Radiations in Single Identifiable Nerve Cells. In Nervous Inhibition; Florey, E., Ed.; Pergamum Press: Oxford, UK, 1961; pp. 194–231. [Google Scholar]
- Fork, R.L. Laser Stimulation of Nerve Cells in Aplysia. Science 1971, 171, 907–908. [Google Scholar] [CrossRef]
- Hirase, H.; Nikolenko, V.; Goldberg, J.H.; Yuste, R. Multiphoton Stimulation of Neurons. J. Neurobiol. 2002, 51, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.; Kao, C.; Mariappan, K.; Albea, J.; Jansen, E.D.; Konrad, P.; Mahadevan-Jansen, A. Optical stimulation of neural tissue in vivo. Opt. Lett. 2005, 30, 504–506. [Google Scholar] [CrossRef]
- Izzo, A.D.; Richter, C.-P.; Jansen, E.D.; Walsh, J.T., Jr. Laser Stimulation of the Auditory Nerve. Lasers Surg. Med. 2006, 38, 745–753. [Google Scholar] [CrossRef]
- Izzo, A.D.; Walsh, J.T., Jr.; Ralph, H.; Webb, J.; Bendett, M.; Wells, J.; Richter, C.-P. Laser Stimulation of Auditory Neurons: Effect of Shorter Pulse Duration and Penetration Depth. Biophys. J. 2008, 94, 3159–3166. [Google Scholar] [CrossRef] [Green Version]
- Izzo, A.D.; Walsh, J.T., Jr.; Ralph, H.; Webb, J.; Wells, J.; Bendett, M.; Richter, C.-P. Laser stimulation of the auditory system at 1.94 µm and microsecond pulse durations. In Proceedings of the SPIE, Conference on Optical Interactions with Tissue and Cells XIX, San Jose, CA, USA, 21–23 January 2008; Jacques, S.L., Roach, W.P., Thomas, R.J., Eds.; SPIE-Int. Soc. Optical Engineering: Bellingham, WA, USA, 2008. [Google Scholar]
- Richter, C.-P.; Bayon, R.; Izzo, A.D.; Otting, M.; Suh, E.; Goyal, S.; Hotaling, J.; Walsh, J.T., Jr. Optical stimulation of auditory neurons: Effects of acute and chronic deafening. Hear. Res. 2008, 242, 42–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matic, A.I.; Walsh, J.T., Jr.; Richter, C.-P. Spatial extent of cochlear infrared neural stimulation determined by tone-on-light masking. J. Biomed. Opt. 2011, 16, 118002. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Magnuson, M.; Agarwal, A.; Tan, X.; Richter, C.-P. Infrared neural stimulation at different wavelengths and pulse shapes. Prog. Biophys. Mol. Biol. 2021, 162, 89–100. [Google Scholar] [CrossRef]
- Guan, T.; Wu, M.; Zhu, K.; Wang, J. 980 nm pulsed laser-induced auditory nerve impulses. J. Tsinghua Univ. 2015, 55, 700–704. [Google Scholar] [CrossRef]
- Jiang, B.; Hou, W.; Xia, N.; Peng, F.; Wang, X.; Chen, C.; Zhou, Y.; Zheng, X.; Wu, X. Inhibitory effect of 980-nm laser on neural activity of the rat’s cochlear nucleus. Neurophotonics 2019, 6, 035009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Tian, L.; Lu, J.; Xia, M.; Wei, Y. Effect of shorter pulse duration in cochlear neural activation with an 810-nm near-infrared laser. Lasers Med. Sci. 2017, 32, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Sorg, K.; Stahn, P.; Pillong, L.; Hinsberger, M.P.; Heimann, L.; Foth, H.-J.; Schick, B.; Wenzel, G.I. First biocompatibility margins for optical stimulation at the eardrum via 532-nm laser pulses in a mouse model. J. Biomed. Opt. 2019, 24, 085003. [Google Scholar] [CrossRef]
- Zeng, M.; Xu, J.; Liu, C.; Shu, M.; Tian, L. Detection of photosensitivity effect of non-transgenic auditory nerve cells based on adjustable parameters photo-stimulation. 2021; Article under review. [Google Scholar]
- Wells, J.; Kao, C.; Konrad, P.; Mahadevan-Jansen, A.; Jansen, E.D. Biophysical mechanisms responsible for pulsed low-level laser excitation of neural tissue. In Proceedings of the SPIE, Conference on Optical Interactions with Tissue and Cells XVII, San Jose, CA, USA, 23–25 January 2006; Jacques, S.L., Roach, W.P., Eds.; SPIE-Int. Soc. Optical Engineering: Bellingham, WA, USA, 2006. [Google Scholar]
- Zhang, K.Y.; Wenzel, G.I.; Balster, S.; Lim, H.H.; Lubatschowski, H.; Lenarz, T.; Ertmer, W.; Reuter, G. Optoacoustic induced vibrations within the inner ear. Opt. Express 2009, 17, 23037–23043. [Google Scholar] [CrossRef]
- Guan, T.; Yang, M.; Wei, Z.; Jiang, Y.; Wang, J. Simulation of the optical stimulation mechanism of cochlear nerves. J. Tsinghua Univ. 2017, 57, 1102–1105. [Google Scholar]
- Teudt, I.U.; Maier, H.; Richter, C.-P.; Kral, A. Acoustic Events and “Optophonic” Cochlear Responses Induced by Pulsed Near-Infrared LASER. IEEE Trans. Biomed. Eng. 2011, 58, 1648–1655. [Google Scholar] [CrossRef] [Green Version]
- Schultz, M.; Baumhoff, P.; Maier, H.; Teudt, I.U.; Krueger, A.; Lenarz, T.; Kral, A. Nanosecond laser pulse stimulation of the inner ear—A wavelength study. Biomed. Opt. Express 2012, 3, 3332–3345. [Google Scholar] [CrossRef] [Green Version]
- Izzo, A.D.; Suh, E.; Pathria, J.; Walsh, J.T., Jr.; Whitlon, D.S.; Richter, C.-P. Selectivity of neural stimulation in the auditory system: A comparison of optic and electric stimuli. J. Biomed. Opt. 2007, 12, 021008. [Google Scholar] [CrossRef]
- Gonzalez-Perez, A.; Budvytyte, R.; Mosgaard, L.D.; Nissen, S.; Heimburg, T. Penetration of Action Potentials During Collision in the Median and Lateral Giant Axons of Invertebrates. Phys. Rev. X 2014, 4, 031047. [Google Scholar] [CrossRef] [Green Version]
- Heimburg, T.; Jackson, A.D. On soliton propagation in biomembranes and nerves. Proc. Natl. Acad. Sci. USA 2005, 102, 9790–9795. [Google Scholar] [CrossRef] [Green Version]
- Heimburg, T.; Jackson, A.D. On the action potential as a propagating density pulse and the role of anesthetics. Biophys. Rev. Lett. 2007, 2, 57–78. [Google Scholar] [CrossRef] [Green Version]
- Staikou, C.; Kokotis, P.; Kyrozis, A.; Rallis, D.; Makrydakis, G.; Manoli, D.; Karandreas, N.; Stamboulis, E.; Moschovos, C.; Fassoulaki, A. Differences in Pain Perception Between Men and Women of Reproductive Age: A Laser-Evoked Potentials Study. Pain Med. 2017, 18, 316–321. [Google Scholar] [CrossRef] [Green Version]
- Han, D.; Xu, J.; Wang, Z.; Yang, N.; Li, X.; Qian, Y.; Li, G.; Dai, R.; Xu, S. Penetrating effect of high-intensity infrared laser pulses through body tissue. RSC Adv. 2018, 8, 32344–32357. [Google Scholar] [CrossRef] [Green Version]
- Baffou, G.; Rigneault, H.; Marguet, D.; Jullien, L. “Validating subcellular thermal changes revealed by fluorescent thermosensors” and “The 10 (5) gap issue between calculation and measurement in single-cell thermometry” Reply. Nat. Methods 2015, 12, 803. [Google Scholar] [CrossRef]
- Kiyonaka, S.; Sakaguchi, R.; Hamachi, I.; Morii, T.; Yoshizaki, T.; Mori, Y. Validating subcellular thermal changes revealed by fluorescent thermosensors. Nat. Methods 2015, 12, 801–802. [Google Scholar] [CrossRef]
- Meng, L.; Deschaume, O.; Larbanoix, L.; Fron, E.; Bartic, C.; Laurent, S.; Van der Auweraer, M.; Glorieux, C. Photoacoustic temperature imaging based on multi-wavelength excitation. Photoacoustics 2019, 13, 33–45. [Google Scholar] [CrossRef]
- Xu, S.Y.; Xu, J.; Tian, M.L. A low cost platform for linking transport properties to the structure of nanomaterials. Nanotechnology 2006, 17, 1470–1475. [Google Scholar] [CrossRef]
- Xu, J.; Lei, Z.; Guo, J.; Huang, J.; Wang, W.; Reibetanz, U.; Xu, S. Trapping and Driving Individual Charged Micro-particles in Fluid with an Electrostatic Device. Nano-Micro Lett. 2016, 8, 270–281. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Yang, F.; Han, D.; Li, G.; Xu, J.; Xu, S. Alternative method to fabricate microdevices on a freestanding Si3N4 window. J. Vac. Sci. Technol. B 2017, 35, 041601. [Google Scholar] [CrossRef]
- Li, G.; Wang, Z.; Mao, X.; Zhang, Y.; Huo, X.; Liu, H.; Xu, S. Real-Time Two-Dimensional Mapping of Relative Local Surface Temperatures with a Thin-Film Sensor Array. Sensors 2016, 16, 977. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Li, G.; Yang, J.; Wang, Z.; Han, D.; Zheng, F.; Xu, S. Measurement of local temperature increments induced by cultured HepG2 cells with micro-thermocouples in a thermally stabilized system. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bak, J.; Pyo, H.J.; Choi, J.M.; Jeong, S.; Kang, H.W. Dependence of Photothermal Responses on Wavelengths. J. Korean Phys. Soc. 2019, 74, 224–230. [Google Scholar] [CrossRef]
- Ives, A.K.; Chen, W.R.; Jassemnejad, B.; Bartels, K.E.; Liu, H.; Nordquist, J.A.; Nordquist, R.E. Laser-tissue photothermal interaction and tissue temperature change. In Proceedings of the SPIE, Conference on Laser-Tissue Interaction XI: Photochemical, Photothermal, and Photomechanical, San Jose, CA, USA, 22–27 January 2000; Duncan, D.D., Hollinger, J.O., Jacques, S.L., Eds.; SPIE-Int. Soc. Optical Engineering: Bellingham, WA, USA, 2000. [Google Scholar]
- Boyden, S.B.; Zhang, Y.W. Temperature and wavelength-dependent spectral absorptivities of metallic materials in the infrared. J. Thermophys. Heat Transf. 2006, 20, 9–15. [Google Scholar] [CrossRef]
- Ye, J.; Khairallah, S.A.; Rubenchik, A.M.; Crumb, M.F.; Guss, G.; Belak, J.; Matthews, M.J. Energy Coupling Mechanisms and Scaling Behavior Associated with Laser Powder Bed Fusion Additive Manufacturing. Adv. Eng. Mater. 2019, 21, 1900185. [Google Scholar] [CrossRef]
- Manns, F.; Milne, P.J.; Gonzalez-Cirre, X.; Denham, D.B.; Parel, J.M.; Robinson, D.S. In Situ Temperature Measurements with Thermocouple Probes During Laser Interstitial Thermotherapy (LITT): Quantification and Correction of a Measurement Artifact. Lasers Surg. Med. 1998, 23, 94–103. [Google Scholar] [CrossRef]
Peak Power Required for a Temperature Increase of 15 °C | Peak Power Required for a Temperature Increase of 20 °C | |||||
---|---|---|---|---|---|---|
Wavelength (nm) | Peak Power (mW) | Peak Power (mW) | ||||
300 Hz | 500 Hz | 1000 Hz | 300 Hz | 500 Hz | 1000 Hz | |
450 | 126.1 | 84.6 | 45.3 | 150.3 | 104. 9 | 59.6 |
525 | 169.4 | 116.6 | 175.9 | 209.3 | 143.4 | 206.9 |
638 | 578.2 | 389.5 | 234.1 | 714.5 | 475.1 | 283.2 |
810 | 1370.9 | 981.5 | 607.3 | 1717.8 | 1144.9 | 717.8 |
980 | 1479.5 | 855.2 | 686.5 | 1637.0 | 939.1 | 726.0 |
1064 | 118.2 | 222.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Zeng, M.; Xu, X.; Liu, J.; Huo, X.; Han, D.; Wang, Z.; Tian, L. A Micron-Sized Laser Photothermal Effect Evaluation System and Method. Sensors 2021, 21, 5133. https://doi.org/10.3390/s21155133
Xu J, Zeng M, Xu X, Liu J, Huo X, Han D, Wang Z, Tian L. A Micron-Sized Laser Photothermal Effect Evaluation System and Method. Sensors. 2021; 21(15):5133. https://doi.org/10.3390/s21155133
Chicago/Turabian StyleXu, Jingjing, Ming Zeng, Xin Xu, Junhui Liu, Xinyu Huo, Danhong Han, Zhenhai Wang, and Lan Tian. 2021. "A Micron-Sized Laser Photothermal Effect Evaluation System and Method" Sensors 21, no. 15: 5133. https://doi.org/10.3390/s21155133
APA StyleXu, J., Zeng, M., Xu, X., Liu, J., Huo, X., Han, D., Wang, Z., & Tian, L. (2021). A Micron-Sized Laser Photothermal Effect Evaluation System and Method. Sensors, 21(15), 5133. https://doi.org/10.3390/s21155133