Sea Fog Dissipation Prediction in Incheon Port and Haeundae Beach Using Machine Learning and Deep Learning
Abstract
:1. Introduction
2. Weather Data and Prediction Modelling
2.1. Data sources and Preprocessing
2.2. Dissipation as a Classification and Regression Task
2.3. Data Characteristics
3. Classification and Regression Algorithms
3.1. k-Nearest Neighbors (k-NN)
3.2. Decision Tree (DT)
3.3. Support Vector Machine (SVM)
3.4. Bagging and Boosting Ensemble Models
3.4.1. Random Forest (RF)
3.4.2. Extremely Randomized Trees (ET)
3.4.3. Bagging
3.4.4. AdaBoost (AB)
3.4.5. Gradient Boosting (GB)
3.4.6. Light GBM (LGBM)
3.5. Neural Network-Based Architectures
3.5.1. Feed-Forward Neural Network (FFNN)
3.5.2. Convolutional Neural Network (CNN)
3.5.3. Recurrent Neural Network (RNN)
3.6. Evaluation
4. Results
4.1. Classification Results
4.2. Regression Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Model Hyperparameters
Model Name | Incheon | Haeundae | ||||||
---|---|---|---|---|---|---|---|---|
Parameter | CLS 1H | CLS2H | CLS 3H | REG | CLS 1H | CLS 2H | CLS 3H | REG |
FFNN | ||||||||
num_layers | 3 | 3 | ||||||
units | [521,256] | [521,256] | ||||||
CNN | ||||||||
num_layers | 2 | 2 | ||||||
kernel_size | 2 | 2 | ||||||
units | [521,256] | [521,256] | ||||||
RNN | ||||||||
num_layers | 2 | 2 | ||||||
units | 64 | 64 | ||||||
KNN | ||||||||
n_neighbors | 7 | 6 | 5 | 6 | 8 | 8 | 8 | 6 |
weights | distance | uniform | uniform | uniform | distance | distance | distance | uniform |
SVM | ||||||||
C | 45 | 65 | 68 | 71 | 68 | 71 | 65 | 71 |
kernel | rbf | rbf | rbf | linear | rbf | linear | rbf | linear |
RF | ||||||||
max_depth | 65 | 13 | 86 | 29 | 19 | 59 | 29 | 54 |
max_features | 0.59 | 0.75 | 0.57 | 0.56 | 0.85 | 0.86 | 0.56 | 0.80 |
min_samples_split | 4 | 4 | 5 | 2 | 4 | 4 | 2 | 2 |
n_estimators | 178 | 219 | 139 | 365 | 451 | 460 | 365 | 423 |
ET | ||||||||
max_depth | 40 | 65 | 32 | 82 | 56 | 79 | 96 | 43 |
max_features | 0.75 | 0.59 | 0.91 | 0.83 | 0.62 | 1.00 | 0.85 | 0.66 |
min_samples_split | 3 | 13 | 4 | 8 | 3 | 3 | 9 | 13 |
n_estimators | 358 | 359 | 427 | 339 | 163 | 128 | 223 | 219 |
AdaBoost | ||||||||
algorithm | SAMME.R | SAMME.R | SAMME.R | SAMME.R | SAMME.R | SAMME.R | ||
learning_rate | 0.94 | 0.69 | 0.85 | 0.59 | 0.99 | 0.84 | 0.80 | 0.45 |
n_estimators | 412 | 470 | 370 | 59 | 499 | 150 | 102 | 75 |
GB | ||||||||
max_depth | 12 | 24 | 42 | 9 | 10 | 11 | 9 | 32 |
max_features | 0.53 | 0.73 | 0.71 | 0.53 | 0.52 | 0.72 | 0.53 | 0.89 |
min_samples_split | 26 | 9 | 6 | 14 | 26 | 6 | 14 | 16 |
n_estimators | 386 | 250 | 498 | 414 | 400 | 324 | 414 | 388 |
subsample | 0.60 | 0.93 | 0.81 | 0.74 | 0.76 | 0.82 | 0.74 | 0.79 |
Bagging | ||||||||
bootstrap | False | False | False | False | False | False | False | False |
bootstrap_features | True | False | True | True | False | True | False | True |
max_features | 0.69 | 0.52 | 0.63 | 0.52 | 0.81 | 0.86 | 0.62 | 0.53 |
max_samples | 0.80 | 0.85 | 0.85 | 0.80 | 0.62 | 0.97 | 0.83 | 0.98 |
DT | ||||||||
criterion | entropy | entropy | gini | friedman_mse | gini | gini | gini | mse |
max_depth | 246 | 67 | 475 | 434 | 351 | 494 | 354 | 117 |
max_features | 0.92 | 0.75 | 0.76 | 0.51 | 0.86 | 0.92 | 0.82 | 0.95 |
min_samples_split | 5 | 2 | 5 | 5 | 5 | 5 | 7 | 2 |
splitter | random | best | random | random | random | best | random | best |
LGMB | ||||||||
bagging_fraction | 0.96 | 0.85 | 0.83 | 0.73 | 0.96 | 0.95 | 0.80 | 0.95 |
feature_fraction | 0.62 | 0.68 | 0.85 | 0.66 | 0.96 | 0.86 | 0.63 | 0.72 |
learning_rate | 0.20 | 0.20 | 0.20 | 0.05 | 0.20 | 0.20 | 0.05 | 0.10 |
num_leaves | 24 | 30 | 24 | 20 | 21 | 23 | 30 | 26 |
References
- Zheng, G.; Yang, L. Solutions of fog and haze weather from the perspective of economic development. Ecol. Econ. 2015, 31, 34–38. [Google Scholar]
- Ahmed, M.M.; Abdel-Aty, M.; Lee, J.; Yu, R. Real-time assessment of fog-related crashes using airport weather data: A feasibility analysis. Accid. Anal. Prev. 2014, 72, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.-P.; Xie, S.-P.; Liu, Q.-Y.; Yang, Y.-Q.; Wang, X.-G.; Ren, Z.-P. Seasonal Variations of Yellow Sea Fog: Observations and Mechanisms. J. Clim. 2009, 22, 6758–6772. [Google Scholar] [CrossRef]
- Koračin, D.; Businger, J.A.; Dorman, C.; Lewis, J.M. Formation, Evolution, and Dissipation of Coastal Sea Fog. Boundary-Layer Meteorol. 2005, 117, 447–478. [Google Scholar] [CrossRef]
- Cho, Y.-K.; Kim, M.-O.; Kim, B.-C. Sea Fog around the Korean Peninsula. J. Appl. Meteorol. 2000, 39, 2473–2479. [Google Scholar] [CrossRef]
- Zhou, B.; Du, J. Fog Prediction from a Multimodel Mesoscale Ensemble Prediction System. Weather. Forecast. 2010, 25, 303–322. [Google Scholar] [CrossRef]
- Bartok, J.; Babič, F.; Bednár, P.; Paralič, J.; Kováč, J.; Bartokova, I.; Hluchý, L.; Gera, M. Data mining for fog prediction and low clouds detection. Comput. Inform. 2013, 31, 1441–1464. [Google Scholar]
- Kipfer, K. Fog Prediction with Deep Neural Networks. Master’s Thesis, ETH Zurich, Zurich, Switzerland, 2017. [Google Scholar] [CrossRef]
- Colabone, R.D.O.; Ferrari, A.L.; Tech, A.R.B.; Vecchia, F.A.D.S. Application of Artificial Neural Networks for Fog Forecast. J. Aerosp. Technol. Manag. 2015, 7, 240–246. [Google Scholar] [CrossRef]
- Liu, Y.; Racah, E.; Prabhat; Correa, J.; Khosrowshahi, A.; Lavers, D.; Kunkel, K.; Wehner, M.; Collins, W. Application of deep convolutional neural networks for detecting extreme weather in climate datasets. arXiv 2016, arXiv:1605.01156. [Google Scholar]
- Shrivastava, G.; Karmakar, S.; Kowar, M.K.; Guhathakurta, P. Application of Artificial Neural Networks in Weather Forecasting: A Comprehensive Literature Review. Int. J. Comput. Appl. 2012, 51, 17–29. [Google Scholar] [CrossRef]
- Dupont, J.-C.; Haeffelin, M.; Protat, A.; Bouniol, D.; Boyouk, N.; Morille, Y. Stratus–Fog Formation and Dissipation: A 6-Day Case Study. Boundary-Layer Meteorol. 2012, 143, 207–225. [Google Scholar] [CrossRef] [Green Version]
- Dietz, S.J.; Kneringer, P.; Mayr, G.J.; Zeileis, A. Low-visibility forecasts for different flight planninghorizons using tree-based boosting models. Adv. Stat. Clim. Meteorol. Oceanogr. 2019, 5, 101–114. [Google Scholar] [CrossRef]
- Kim, D.-H.; Song, J.-Y.; Kang, I.-Y.; Lee, A.-H. Development and Evaluation of Prototype System for Harbor Container Delivery & Cargo Work Automation. Int. J. Precis. Eng. Manuf. 2010, 11, 865–871. [Google Scholar]
- Korea Hydrographic and Oceanographic Agency. Improvement and Expansion of Sea Fog Forecasting Services for Navigation Safety. 2018; pp. 4–47 (In Korean). Available online: https://librarian.nl.go.kr/LI/contents/L20101000000.do?viewKey=555556287&viewType=AH1&typeName=%EC%9D%BC%EB%B0%98%EB%8F%84%EC%84%9C (accessed on 1 August 2021).
- Lawrence, M.G. The Relationship between Relative Humidity and the Dew Point Temperature in Moist Air: A Simple Conversion and Applications. Bull. Am. Meteorol. Soc. 2005, 86, 225–233. [Google Scholar] [CrossRef]
- K-Nearest Neighbors Algorithm. Available online: https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm (accessed on 1 May 2021).
- Breiman, L.; Freidman, H.; Olshen, A.; Stone, C.J. Classification and Regression Trees; Wadsworth & Brooks/Cole Advanced Books & Software: Monterey, CA, USA, 1984. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector network. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2011, 2, 27. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Schapire, R.; Freund, Y. A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar]
- A Gentle Introduction to Gradient Boosting. Available online: http://en.wikipedia.org/wiki/Gradient_boosting (accessed on 1 May 2021).
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Light GBM: A Highly Efficient Gradient Boosting Decision Tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3149–3157. [Google Scholar]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Networks. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Time Series Forecasting. Available online: https://www.tensorflow.org/tutorials/structured_data/time_series (accessed on 1 May 2021).
- Supervised Learning. Available online: https://scikit-learn.org/stable/supervised_learning.html#supervised-learning (accessed on 1 May 2021).
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4 December 2017; pp. 6000–6010. [Google Scholar]
- Bontempi, G.; Ben Taieb, S.; Le Borgne, Y.-A. Machine Learning Strategies for Time Series Forecasting. In Business Intelligence; Aufaure, M.A., Zimányi, E., Eds.; Springer: Berlin, Heidelberg, 2013; Available online: https://doi.org/10.1007/978-3-642-36318-4_3 (accessed on 1 May 2021).
Item | Variable Name | Unite of Measurement | Note | Observation Frequency |
---|---|---|---|---|
Time | Date | timestamp | n/a | n/a |
Air temperature | air_temp | °C | feature 1 | 1 min |
Sea surface pressure | sea_air_pre | hPa | feature 2 | 1 min |
Relative humidity | Humidity | % | feature 3 | 1 min |
Sea surface temperature | sea_temp | °C | feature 4 | 1 h |
Visibility | Vis | m | feature 5 | 1 min |
U wind (10 m) | U | m/s | feature 6 | 1 min |
V wind (10 m) | V | m/s | feature 7 | 1 min |
Air and sea Temperature difference | ASTD | °C | feature 8 | 1 min |
Dew point temperature | DT | °C | feature 9 | 1 min |
Air and dew point temperature difference | T_DT | °C | feature 10 | 1 min |
Sea surface temperature and dew point temperature difference | sst_DT | °C | feature 11 | 1 min |
Dissipation | L | [0,1] | label | n/a |
Time to dissipation | ttd | minutes | continuous target | 10 min |
Variables | (a) Incheon (1 January 2012–31 May 2019) | (b) Haeundae (1 Janury 2014–31 July 2019) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Average | Median | Std | Min | Max | Average | Median | Std | Min | Max | |
air_temp | 11.28 | 10.40 | 7.84 | −6.60 | 27.50 | 18.38 | 19.10 | 4.60 | 0.50 | 29.30 |
sea_air_pre | 1012.21 | 1012.30 | 7.16 | 987.70 | 1035.50 | 1009.13 | 1029.10 | 5.83 | 992.50 | 1029.10 |
humidity | 96.91 | 98.80 | 4.55 | 46.20 | 99.90 | 92.15 | 100.00 | 9.52 | 20.40 | 100.00 |
sea_temp | 10.80 | 8.30 | 6.61 | 1.10 | 25.90 | 17.26 | 28.7 | 3.71 | 11.30 | 28.70 |
vis | 683.91 | 541.00 | 642.66 | 28.40 | 3000.00 | 1048.64 | 750.00 | 923.27 | 10.00 | 3000.00 |
u | −0.81 | −0.79 | 1.57 | −7.99 | 6.04 | −0.20 | −0.08 | 3.26 | −11.61 | 11.98 |
v | −0.35 | −0.46 | 1.82 | −7.73 | 9.87 | 0.07 | −0.04 | 3.36 | −14.02 | 12.76 |
ASTD | 0.49 | 1.00 | 3.37 | −14.70 | 9.60 | 1.12 | 1.20 | 2.84 | −12.60 | 8.80 |
DT | 10.79 | 10.04 | 8.00 | −12.79 | 27.33 | 16.97 | 17.66 | 5.14 | −9.38 | 26.55 |
T_DT | 0.50 | 0.18 | 0.83 | 0.01 | 12.15 | 1.41 | 0.78 | 2.20 | −0.00 | 20.85 |
sst_DT | 0.02 | −9.14 | 3.51 | −9.14 | 21.69 | 0.28 | −0.17 | 3.54 | −8.31 | 1.36 |
ttd | 231.27 | 0.00 | 278.53 | 0.00 | 2310.00 | 484.40 | 320.00 | 521.32 | 0.00 | 3220.00 |
Predicting Fog Dissipation Within | |||||||||
---|---|---|---|---|---|---|---|---|---|
1 h | 2 h | 3 h | |||||||
n/diss | Diss | Total | n/diss | Diss | Total | n/diss | Diss | Total | |
(a) Incheon | |||||||||
base features | 4598 | 1975 | 6573 | 3891 | 3024 | 6915 | 3247 | 3962 | 7209 |
(69%) | (31%) | (57%) | (43%) | (45%) | (55%) | ||||
1-h features | 4332 | 1850 | 6182 | 3641 | 2872 | 6513 | 3007 | 3768 | 6775 |
(70%) | (30%) | (55%) | (45%) | (44%) | (54%) | ||||
3-h features | 3755 | 1630 | 5385 | 3123 | 2540 | 5663 | 2575 | 3331 | 5906 |
(70%) | (30%) | (55%) | (45%) | (43%) | (57%) | ||||
(b) Haeundae | |||||||||
base features | 6848 | 2204 | 9052 | 7320 | 2918 | 10,238 | 7294 | 3658 | 10,952 |
(75%) | (25%) | (71%) | (29%) | (66%) | (34%) | ||||
1-h features | 6474 | 2080 | 8554 | 6908 | 2765 | 9673 | 6830 | 3492 | 10,322 |
(75%) | (25%) | (71%) | (29%) | (66%) | (34%) | ||||
3-h features | 5886 | 1876 | 7762 | 6228 | 2566 | 8794 | 6119 | 3222 | 9341 |
(76%) | (24%) | (71%) | (29%) | (65%) | (35%) |
Model Name | Incheon | Haeundae | |||||||
---|---|---|---|---|---|---|---|---|---|
Features | CSI | PAG | POD | F1 | CSI | PAG | POD | F1 | |
FFNN | base | 63.58 | 75.85 | 80.51 | 77.74 | 55.5 | 69.39 | 74.38 | 71.38 |
1H | 65.76 | 80.05 | 78.65 | 79.35 | 58.12 | 72.95 | 73.08 | 73.51 | |
3H | 73.89 | 84.5 | 85.28 | 84.98 | 70.29 | 83.06 | 83.2 | 82.56 | |
CNN | base | 53.04 | 64.35 | 78.99 | 69.32 | 44.69 | 53.78 | 69.61 | 61.78 |
1H | 61.23 | 73.91 | 78.11 | 75.95 | 51.56 | 68.54 | 68.51 | 68.04 | |
3H | 72.09 | 82.06 | 85.58 | 83.78 | 62.78 | 75.98 | 77.87 | 77.13 | |
RNN | base | 60.72 | 73.2 | 77.47 | 75.56 | 51.15 | 63.45 | 73.02 | 67.68 |
1H | 72.55 | 85.52 | 83.51 | 84.09 | 65.56 | 77.91 | 80.53 | 79.2 | |
3H | 81.36 | 87.61 | 89.26 | 89.73 | 79.67 | 87.53 | 89.87 | 88.68 | |
k-NN | base | 43.49 | 71.74 | 52.03 | 60.62 | 33.96 | 65.85 | 41.27 | 50.7 |
1H | 43.41 | 73.18 | 51.62 | 60.54 | 38.24 | 69.66 | 46.63 | 55.32 | |
3H | 53.39 | 77.95 | 62.88 | 69.61 | 47.61 | 74.92 | 55.73 | 64.51 | |
DT | base | 48.13 | 65.02 | 64.94 | 64.98 | 44.41 | 61.78 | 61.22 | 61.5 |
1H | 42.69 | 61.21 | 60 | 59.84 | 34.8 | 52.67 | 51.2 | 51.64 | |
3H | 47.45 | 64.31 | 64.72 | 64.36 | 35.88 | 53.1 | 52.53 | 52.82 | |
SVM | base | 18.99 | 70.53 | 20.76 | 31.92 | 10.4 | 82.54 | 10.66 | 18.84 |
1H | 18.18 | 75.61 | 18.92 | 30.77 | 11.19 | 75.71 | 11.54 | 20.13 | |
3H | 25.21 | 77.5 | 27.3 | 40.27 | 14.84 | 79.71 | 15.2 | 25.85 | |
AB | base | 45.42 | 66.45 | 59.37 | 62.46 | 30.97 | 58.05 | 39.23 | 47.29 |
1H | 50.43 | 70.66 | 63.78 | 67.05 | 36.49 | 58.81 | 48.8 | 53.47 | |
3H | 61.07 | 79.52 | 72.09 | 75.83 | 48.25 | 70.29 | 58.67 | 65.09 | |
Bagging | base | 62.61 | 83.24 | 71.65 | 77.01 | 51.12 | 82.89 | 57.14 | 67.65 |
1H | 58.25 | 82.52 | 66.76 | 73.62 | 41.7 | 85.12 | 44.71 | 58.86 | |
3H | 66.76 | 90.8 | 71.47 | 80.07 | 45.36 | 89.19 | 46.93 | 62.41 | |
RF | base | 69.3 | 87.92 | 76.46 | 81.87 | 51.46 | 86.93 | 55.78 | 67.96 |
1H | 69.15 | 90.73 | 75.14 | 81.76 | 46.35 | 88.74 | 48.8 | 63.34 | |
3H | 74.93 | 95.45 | 78.83 | 85.67 | 52.59 | 91.52 | 54.67 | 68.93 | |
ET | base | 76.04 | 88.91 | 83.67 | 86.39 | 61.38 | 88.55 | 66.67 | 76.07 |
1H | 81.16 | 92.02 | 86.49 | 89.6 | 62.81 | 91.84 | 66.11 | 77.16 | |
3H | 82.61 | 93.57 | 87.42 | 90.48 | 68.91 | 93.38 | 73.87 | 81.59 | |
GB | base | 32.05 | 72.29 | 36.58 | 48.51 | 16.67 | 72.55 | 17.91 | 28.57 |
1H | 33.49 | 72.91 | 37.84 | 50.18 | 20.09 | 68.67 | 21.63 | 33.46 | |
3H | 39.17 | 78.04 | 44.48 | 56.29 | 24.11 | 71.33 | 25.87 | 38.85 | |
LGBM | base | 57.41 | 81.4 | 65.7 | 72.94 | 41.8 | 81.27 | 46.26 | 58.96 |
1H | 60.05 | 85.02 | 68.65 | 75.04 | 40.95 | 81.3 | 45.67 | 58.1 | |
3H | 72.16 | 90.71 | 77.91 | 83.83 | 49.27 | 84.58 | 54.13 | 66.02 | |
Median ofModels | base | 55.38 | 73.37 | 69.62 | 71.28 | 44.94 | 70.93 | 55.44 | 62.01 |
1H | 58.92 | 79.13 | 67.3 | 74.15 | 41.71 | 74.18 | 48.8 | 58.87 | |
3H | 68.11 | 83.06 | 75.31 | 81.03 | 49.33 | 82.46 | 57.87 | 66.06 |
Model Name | Incheon | Haeundae | |||||||
---|---|---|---|---|---|---|---|---|---|
Features | CSI | PAG | POD | F1 | CSI | PAG | POD | F1 | |
FFNN | base | 78.40 | 87.88 | 87.60 | 87.89 | 73.68 | 83.12 | 86.30 | 84.85 |
1H | 81.05 | 89.48 | 90.61 | 89.53 | 71.49 | 79.80 | 86.62 | 83.38 | |
3H | 86.74 | 93.08 | 91.93 | 92.90 | 83.90 | 91.07 | 91.42 | 91.25 | |
CNN | base | 67.99 | 77.64 | 84.13 | 80.94 | 57.18 | 63.95 | 83.05 | 72.75 |
1H | 77.66 | 88.19 | 85.74 | 87.43 | 70.66 | 80.87 | 84.09 | 82.81 | |
3H | 85.30 | 91.62 | 91.93 | 92.07 | 77.34 | 90.51 | 87.13 | 87.22 | |
RNN | base | 75.15 | 86.17 | 84.79 | 85.81 | 70.51 | 82.78 | 83.39 | 82.71 |
1H | 83.60 | 92.10 | 90.61 | 91.07 | 81.32 | 88.77 | 88.97 | 89.70 | |
3H | 89.98 | 95.03 | 94.09 | 94.73 | 87.82 | 92.88 | 94.35 | 93.51 | |
k-NN | base | 66.38 | 82.32 | 76.69 | 79.79 | 54.64 | 79.79 | 63.18 | 70.67 |
1H | 66.97 | 82.46 | 77.91 | 80.21 | 57.23 | 81.17 | 65.82 | 72.80 | |
3H | 75.66 | 88.84 | 83.46 | 86.14 | 69.82 | 87.55 | 78.17 | 82.23 | |
DT | base | 68.45 | 82.23 | 80.33 | 81.27 | 55.51 | 71.28 | 73.97 | 71.39 |
1H | 65.61 | 79.17 | 79.30 | 79.24 | 50.34 | 65.68 | 66.18 | 66.97 | |
3H | 66.78 | 81.47 | 78.74 | 80.08 | 55.37 | 70.41 | 70.57 | 71.28 | |
SVM | base | 51.36 | 66.99 | 68.60 | 67.86 | 17.79 | 80.87 | 18.49 | 30.21 |
1H | 47.59 | 70.33 | 58.96 | 64.49 | 19.43 | 76.87 | 20.98 | 32.54 | |
3H | 55.63 | 75.46 | 68.11 | 71.49 | 24.58 | 84.31 | 25.93 | 39.47 | |
AB | base | 58.08 | 75.13 | 70.58 | 73.48 | 39.04 | 65.81 | 49.32 | 56.15 |
1H | 65.17 | 79.86 | 77.91 | 78.91 | 44.79 | 66.14 | 57.14 | 61.87 | |
3H | 75.26 | 86.60 | 84.84 | 85.88 | 58.37 | 77.87 | 69.98 | 73.72 | |
Bagging | base | 82.34 | 90.95 | 89.75 | 90.32 | 73.08 | 93.01 | 78.08 | 84.44 |
1H | 81.59 | 90.00 | 89.39 | 89.86 | 65.64 | 92.94 | 69.08 | 79.25 | |
3H | 85.82 | 92.52 | 91.73 | 92.37 | 70.92 | 94.97 | 73.68 | 82.99 | |
RF | base | 85.14 | 92.82 | 91.90 | 91.97 | 72.26 | 92.95 | 76.71 | 83.90 |
1H | 87.87 | 94.16 | 93.22 | 93.54 | 73.06 | 96.44 | 75.05 | 84.44 | |
3H | 91.38 | 95.98 | 95.47 | 95.50 | 79.81 | 96.18 | 81.87 | 88.77 | |
ET | base | 88.75 | 94.20 | 93.88 | 94.04 | 78.48 | 93.45 | 83.05 | 87.94 |
1H | 91.50 | 95.64 | 95.65 | 95.56 | 84.06 | 96.39 | 86.80 | 91.34 | |
3H | 93.73 | 96.48 | 96.26 | 96.76 | 86.42 | 96.43 | 88.89 | 92.72 | |
GB | base | 56.32 | 73.79 | 70.41 | 72.06 | 27.81 | 82.84 | 29.62 | 43.52 |
1H | 56.21 | 73.94 | 70.09 | 71.96 | 29.12 | 77.45 | 32.01 | 45.11 | |
3H | 62.38 | 79.38 | 74.41 | 76.83 | 34.06 | 81.53 | 36.65 | 50.81 | |
LGBM | base | 77.79 | 88.33 | 87.11 | 87.51 | 58.77 | 89.15 | 63.70 | 74.03 |
1H | 80.16 | 89.46 | 88.70 | 88.99 | 60.70 | 89.08 | 66.18 | 75.54 | |
3H | 87.39 | 93.37 | 93.50 | 93.27 | 71.35 | 93.64 | 75.24 | 83.28 | |
Median ofModels | base | 72.14 | 84.12 | 84.46 | 83.81 | 58.70 | 82.27 | 74.14 | 73.97 |
1H | 78.92 | 88.07 | 88.43 | 88.22 | 63.13 | 81.30 | 69.35 | 77.40 | |
3H | 84.87 | 91.56 | 91.34 | 91.82 | 71.39 | 90.30 | 77.29 | 83.31 |
Model Name | Incheon | Haeundae | |||||||
---|---|---|---|---|---|---|---|---|---|
Features | CSI | PAG | POD | F1 | CSI | PAG | POD | F1 | |
FFNN | base | 84.21 | 92.45 | 90.79 | 91.43 | 78.65 | 85.48 | 90.57 | 88.05 |
1H | 86.67 | 92.86 | 92.31 | 92.86 | 79.54 | 87.76 | 88.70 | 88.60 | |
3H | 93.01 | 96.55 | 96.10 | 96.38 | 90.55 | 95.39 | 95.04 | 95.04 | |
CNN | base | 75.06 | 86.29 | 85.75 | 85.75 | 64.42 | 71.70 | 86.07 | 78.36 |
1H | 84.45 | 93.14 | 90.05 | 91.57 | 76.90 | 84.11 | 89.99 | 86.94 | |
3H | 90.32 | 95.37 | 95.05 | 94.92 | 85.86 | 93.09 | 92.71 | 92.39 | |
RNN | base | 81.79 | 90.09 | 90.04 | 89.98 | 74.55 | 83.00 | 89.34 | 85.42 |
1H | 90.11 | 95.09 | 94.69 | 94.80 | 87.33 | 94.06 | 92.70 | 93.24 | |
3H | 94.23 | 97.46 | 97.45 | 97.03 | 92.73 | 95.57 | 96.90 | 96.23 | |
k-NN | base | 75.60 | 85.90 | 86.76 | 86.11 | 63.08 | 81.82 | 73.09 | 77.36 |
1H | 76.48 | 88.40 | 85.28 | 86.67 | 65.40 | 84.78 | 74.11 | 79.08 | |
3H | 85.21 | 92.78 | 91.90 | 92.01 | 80.95 | 92.61 | 85.74 | 89.47 | |
DT | base | 79.38 | 88.97 | 88.90 | 88.51 | 67.63 | 81.77 | 79.78 | 80.69 |
1H | 75.57 | 84.44 | 86.21 | 86.09 | 57.70 | 73.85 | 73.96 | 73.18 | |
3H | 77.32 | 86.90 | 87.41 | 87.21 | 59.60 | 76.24 | 73.49 | 74.68 | |
SVM | base | 58.64 | 71.00 | 74.91 | 73.93 | 23.36 | 75.52 | 25.27 | 37.87 |
1H | 61.23 | 71.26 | 81.17 | 75.96 | 28.76 | 78.80 | 31.19 | 44.67 | |
3H | 67.69 | 75.89 | 86.66 | 80.73 | 42.54 | 82.83 | 47.29 | 59.69 | |
AB | base | 68.72 | 80.15 | 82.60 | 81.46 | 42.96 | 66.72 | 54.78 | 60.10 |
1H | 73.97 | 84.81 | 85.54 | 85.04 | 51.22 | 71.61 | 63.52 | 67.74 | |
3H | 84.20 | 91.67 | 91.90 | 91.42 | 65.18 | 81.80 | 75.97 | 78.92 | |
Bagging | base | 88.95 | 92.71 | 95.08 | 94.15 | 80.77 | 93.24 | 86.61 | 89.36 |
1H | 89.47 | 92.33 | 96.02 | 94.44 | 77.11 | 95.07 | 80.97 | 87.08 | |
3H | 91.31 | 94.82 | 96.40 | 95.46 | 80.09 | 96.47 | 81.71 | 88.94 | |
RF | base | 89.89 | 93.77 | 96.47 | 94.68 | 81.22 | 94.00 | 85.66 | 89.64 |
1H | 93.04 | 95.67 | 97.48 | 96.39 | 85.16 | 96.42 | 87.41 | 91.99 | |
3H | 94.68 | 96.03 | 98.20 | 97.27 | 87.21 | 97.64 | 89.92 | 93.17 | |
ET | base | 92.64 | 95.42 | 97.10 | 96.18 | 83.77 | 94.44 | 88.11 | 91.17 |
1H | 95.12 | 96.86 | 98.14 | 97.50 | 90.79 | 97.31 | 92.13 | 95.18 | |
3H | 95.64 | 97.32 | 98.35 | 97.77 | 91.98 | 98.03 | 94.26 | 95.82 | |
GB | base | 65.57 | 75.42 | 85.88 | 79.20 | 33.62 | 76.18 | 37.70 | 50.32 |
1H | 68.45 | 75.45 | 88.06 | 81.27 | 37.79 | 78.78 | 42.49 | 54.85 | |
3H | 72.87 | 79.17 | 89.06 | 84.31 | 44.23 | 85.07 | 48.06 | 61.34 | |
LGBM | base | 84.13 | 89.81 | 93.44 | 91.38 | 68.06 | 89.37 | 73.63 | 80.99 |
1H | 88.67 | 91.57 | 95.89 | 94.00 | 72.36 | 92.47 | 76.39 | 83.96 | |
3H | 91.85 | 94.73 | 97.00 | 95.75 | 82.79 | 95.06 | 85.89 | 90.58 | |
Median ofModels | base | 80.66 | 89.18 | 89.03 | 89.30 | 67.84 | 83.21 | 81.28 | 80.84 |
1H | 85.72 | 92.03 | 91.71 | 92.31 | 74.36 | 86.15 | 78.83 | 85.29 | |
3H | 90.70 | 94.64 | 95.65 | 95.12 | 82.03 | 94.33 | 85.81 | 90.13 |
Model Name | Incheon | Haeundae | |||||||
---|---|---|---|---|---|---|---|---|---|
Features | MSE | RMSE | MAE | R2 | MSE | RMSE | MAE | R2 | |
FFNN | base | 5402 | 74 | 47 | 0.93 | 19,149 | 138 | 91 | 0.93 |
1H | 3071 | 55 | 36 | 0.96 | 17,787 | 133 | 80 | 0.93 | |
3H | 1135 | 34 | 18 | 0.99 | 7130 | 84 | 35 | 0.97 | |
CNN | base | 37,894 | 195 | 148 | 0.51 | 184,169 | 429 | 314 | 0.31 |
1H | 29,236 | 171 | 133 | 0.61 | 166,720 | 408 | 290 | 0.36 | |
3H | 18,213 | 135 | 100 | 0.80 | 91,632 | 303 | 218 | 0.66 | |
RNN | base | 62,590 | 250 | 168 | 0.19 | 255,395 | 505 | 375 | 0.04 |
1H | 38,000 | 195 | 137 | 0.50 | 128,844 | 359 | 259 | 0.51 | |
3H | 23,045 | 152 | 118 | 0.75 | 33,467 | 183 | 131 | 0.88 | |
k-NN | base | 14,719 | 121 | 78 | 0.81 | 86,397 | 294 | 176 | 0.68 |
1H | 12,426 | 111 | 74 | 0.84 | 118,534 | 344 | 210 | 0.55 | |
3H | 12,382 | 111 | 64 | 0.86 | 94,441 | 307 | 173 | 0.65 | |
DT | base | 11,040 | 105 | 51 | 0.86 | 41,457 | 204 | 80 | 0.84 |
1H | 19,704 | 140 | 61 | 0.74 | 58,394 | 242 | 90 | 0.78 | |
3H | 16,206 | 127 | 56 | 0.82 | 74,997 | 274 | 99 | 0.72 | |
SVM | base | 54,080 | 233 | 171 | 0.30 | 191,451 | 438 | 309 | 0.28 |
1H | 45,071 | 212 | 157 | 0.41 | 179,937 | 424 | 306 | 0.31 | |
3H | 40,680 | 202 | 152 | 0.55 | 163,382 | 404 | 292 | 0.40 | |
AB | base | 34,946 | 187 | 152 | 0.55 | 212,144 | 461 | 360 | 0.20 |
1H | 31,870 | 179 | 145 | 0.58 | 202,946 | 450 | 352 | 0.22 | |
3H | 35,420 | 188 | 150 | 0.61 | 188,680 | 434 | 333 | 0.30 | |
Bagging | base | 5653 | 75 | 48 | 0.93 | 18,885 | 137 | 79 | 0.93 |
1H | 7048 | 84 | 57 | 0.91 | 25,154 | 159 | 91 | 0.90 | |
3H | 6103 | 78 | 54 | 0.93 | 25,020 | 158 | 93 | 0.91 | |
RF | base | 5738 | 76 | 48 | 0.93 | 19,064 | 138 | 80 | 0.93 |
1H | 7126 | 84 | 58 | 0.91 | 24,644 | 157 | 91 | 0.91 | |
3H | 6137 | 78 | 54 | 0.93 | 25,054 | 158 | 92 | 0.91 | |
ET | base | 3478 | 59 | 34 | 0.96 | 14,605 | 121 | 68 | 0.95 |
1H | 2681 | 52 | 31 | 0.96 | 9427 | 97 | 53 | 0.96 | |
3H | 2311 | 48 | 29 | 0.97 | 8016 | 90 | 45 | 0.97 | |
GB | base | 24,558 | 157 | 122 | 0.68 | 113,195 | 336 | 245 | 0.58 |
1H | 18,605 | 136 | 106 | 0.75 | 114,988 | 339 | 248 | 0.56 | |
3H | 17,593 | 133 | 105 | 0.81 | 94,924 | 308 | 222 | 0.65 | |
LGBM | base | 9135 | 96 | 72 | 0.88 | 37,383 | 193 | 141 | 0.86 |
1H | 7722 | 88 | 64 | 0.90 | 34,972 | 187 | 131 | 0.87 | |
3H | 5942 | 77 | 53 | 0.93 | 33,502 | 183 | 118 | 0.88 | |
Median ofModels | base | 13,118 | 114 | 75 | 0.83 | 64,784 | 251 | 159 | 0.76 |
1H | 15,176 | 123 | 69 | 0.80 | 89,510 | 296 | 171 | 0.66 | |
3H | 12,382 | 111 | 63 | 0.86 | 64,554 | 254 | 118 | 0.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.H.; Kim, K.J.; Joo, H.S.; Han, Y.H.; Kim, Y.T.; Kwon, S.J. Sea Fog Dissipation Prediction in Incheon Port and Haeundae Beach Using Machine Learning and Deep Learning. Sensors 2021, 21, 5232. https://doi.org/10.3390/s21155232
Han JH, Kim KJ, Joo HS, Han YH, Kim YT, Kwon SJ. Sea Fog Dissipation Prediction in Incheon Port and Haeundae Beach Using Machine Learning and Deep Learning. Sensors. 2021; 21(15):5232. https://doi.org/10.3390/s21155232
Chicago/Turabian StyleHan, Jin Hyun, Kuk Jin Kim, Hyun Seok Joo, Young Hyun Han, Young Taeg Kim, and Seok Jae Kwon. 2021. "Sea Fog Dissipation Prediction in Incheon Port and Haeundae Beach Using Machine Learning and Deep Learning" Sensors 21, no. 15: 5232. https://doi.org/10.3390/s21155232
APA StyleHan, J. H., Kim, K. J., Joo, H. S., Han, Y. H., Kim, Y. T., & Kwon, S. J. (2021). Sea Fog Dissipation Prediction in Incheon Port and Haeundae Beach Using Machine Learning and Deep Learning. Sensors, 21(15), 5232. https://doi.org/10.3390/s21155232