Influence of Dispersed Oil on the Remote Sensing Reflectance—Field Experiment in the Baltic Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Tank
2.2. Optical Characteristics of the Background Natural Seawater
2.3. Preparation of Dispersed Oil Samples
- Crude oil Petrobaltic (PB), extracted offshore in the Southern Baltic in the Polish exclusive economic zone by LOTOS Petrobaltic S.A. (Gdańsk, Poland). PB is also known as Rozewie crude oil and it is extracted in majority from the B3 oil field located about 73 km north of Rozewie. It is characterized by about 73% of hydrocarbon content, an API gravity of 42–43, and a very low total sulfur content of 0.07–0.12 wt% [55]. PB belongs to light, very sweet crude oils.
- Crude oil Flotta Blend (FL), extracted offshore in the North Sea in the British exclusive economic zone. It is a mixture of paraffin–naphthene-based hydrocarbons, characterized by an API gravity of 35–37, total sulfur content of 0.6–1.12 wt%, and total wax content of 6.75 wt% [55,56]. FL is a medium-heavy crude oil, significantly heavier than PB. Its sulfur content places it on the border between sweet and sour crudes, although it is more often referred to as a sweet or medium crude oil.
- Cylinder lubricant oil Cyliten N460 (CL), produced by LOTOS Oil S.A (Gdańsk, Poland). Its formula is based on >80% deeply refined, dewaxed, and hydrorefined mineral oils characterized by low susceptibility to coking, and greased with <20% vegetable oil for improving of the lubrication properties [57]. Cyliten is applied for lubrication of high-pressure compressors as well as low-speed gears, used, among others, in marine engine systems. It is distinguished by extremely high dynamic viscosity.
- Biodiesel BIO-100 (BD), purchased from PKN Orlen S.A. (Płock, Poland). It is a biofuel made of over 96% of fatty acid methyl esters. BIO-100 is made from vegetable oils, usually rapeseed or sunflower oils. It is applicable for most diesel engines [58,59]. It is very bright to transparent by appearance and has extremely low viscosity.
- Marine gear lubricant Quicksilver Premium Gear Lube 80W-90 (QL), manufactured by Mercury Marine (Fond du Lac, WI, USA) for all kinds of outboards, recommended for use in marine gear cases with marine engines below 75 HP. It contains an emulsifier that improves protection of the gearbox against water ingress into the gear housing and additives improving the adhesion of the oil film.
- Marine gear lubricant Evinrude Johnson HPF–XR (EJ) manufactured by BRP US Inc. (Sturtevant, WI, USA). It is the fill gearcase lubricant for two-stroke outboards. It is described as a high-viscosity blend of enhanced friction reducers, anti-foam agents, and synthetic extreme pressure additives.
2.4. In Situ Measurements of the Remote Sensing Reflectance Rrs
3. Results and Discussion
3.1. Measurements of the Remote Sensing Reflectance
3.2. The Character of Rrs Changes Caused by Dispersed Oil Droplets
3.3. Influence of Dispersed Oil on Rrs Band Ratios and Band Differences
3.3.1. “Blue-to-Green” Rrs Ratios Typically Applied in Ocean Color Algorithms
3.3.2. “Blue-to-Red” Rrs Ratios
3.3.3. “Green-to-Red” Rrs Ratios
3.3.4. Rrs Band Differences
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oil Tanker Spill Statistics. International Tanker Owners Pollution Federation (ITOPF). 2020. Available online: https://www.itopf.org/knowledge-resources/documents-guides/document/oil-tanker-spill-statistics-2020/ (accessed on 23 May 2021).
- HELCOM Annual Report on Discharges Observed During Aerial Surveillance in the Baltic Sea. HELCOM 2018. Available online: https://helcom.fi/wp-content/uploads/2020/01/HELCOM-Aerial-Surveillance-Report-2018.pdf (accessed on 23 May 2021).
- Chilvers, B.L.; Morgan, K.J.; White, B.J. Sources and reporting of oil spills and impacts on wildlife 1970–2018. Environ. Sci. Pollut. Res. 2021, 28, 754–762. [Google Scholar] [CrossRef] [PubMed]
- King, M.D.; Elliott, J.E.; Williams, T.D. Effects of petroleum exposure on birds: A review. Sci. Total Environ. 2021, 755, 142834. [Google Scholar] [CrossRef]
- Langangen, O.; Olsen, E.; Stige, L.C.; Ohlberger, J.; Yaragina, N.A.; Vikebø, F.B.; Bogstad, B.; Stenseth, N.C.; Hjermann, D.O. The effects of oil spills on marine fish: Implications of spatial variation in natural mortality. Mar. Pollut. Bull. 2017, 119, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Keesing, J.K.; Gartner, A.; Westera, M.; Edgar, G.J.; Myers, J.; Hardman-Mountford, N.J.; Bailey, M. Impacts and environmental risks of oil spills on marine invertebrates, algae and seagrass: A global review from an Australian perspective. In Oceanography and Marine Biology, 1st ed.; Hawkins, S.J., Evans, A.J., Dale, A.C., Firth, L.B., Smith, I.P., Eds.; CRC Press: Boca Raton, FL, USA, 2018; Volume 56, pp. 311–370. [Google Scholar] [CrossRef]
- Aguilera, F.; Méndez, J.; Pásaroa, E.; Laffona, B. Review on the effects of exposure to spilled oils on human health. J. Appl. Toxicol. 2010, 30, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, S.J.; Evans, A.J.; Mieszkowska, N.; Adams, L.C.; Bray, S.; Burrows, M.T.; Firth, L.B.; Genner, M.J.; Leung, K.M.Y.; Moore, P.J.; et al. Distinguishing globally-driven changes from regional- and local-scale impacts: The case for long-term and broad-scale studies of recovery from pollution. Mar. Pollut. Bull. 2017, 124, 573–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owens, E.; Santner, R. Integration of a shoreline response program (SRP) and shoreline assessment surveys into an Incident Management System for oil spill response. J. Environ. Manag. 2021, 279, 111637. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.K.; Kumar, G.S. Weathering of Oil Spill: Modeling and Analysis. Aquat. Procedia 2015, 4, 435–442. [Google Scholar] [CrossRef]
- Kasimu, A.; Wu, D.D.; Bian, Y. System Dynamic-Based Oil Weathering Processes: Simulation and Analysis. IEEE Syst. J. 2020, 14, 1375–1383. [Google Scholar] [CrossRef]
- Boniewicz-Szmyt, K.; Pogorzelski, S.J. Influence of Surfactant Concentration and Temperature Gradients on Spreading of Crude-oil at Sea. Front. Mar. Sci. 2018, 5, 2296–7745. [Google Scholar] [CrossRef]
- Gong, Y.; Zhao, X.; Cai, Z.; O’Reilly, S.E.; Hao, X.; Zhao, D. A review of oil, dispersed oil and sediment interactions in the aquatic environment: Influence on the fate, transport and remediation of oil spills. Mar. Pollut. Bull. 2014, 79, 16–33. [Google Scholar] [CrossRef] [PubMed]
- Keramea, P.; Spanoudaki, K.; Zodiatis, G.; Gikas, G.; Sylaios, G. Oil spill modeling: A critical review on current trends, perspectives, and challenges. J. Mar. Sci. Eng. 2021, 9, 181. [Google Scholar] [CrossRef]
- Fingas, M.; Brown, C. A Review of oil spill remote sensing. Sensors 2017, 18, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alpers, W.; Holt, B.; Zeng, K. Oil spill detection by imaging radars: Challenges and pitfalls. Remote Sens. Environ. 2017, 201, 133–147. [Google Scholar] [CrossRef]
- Topouzelis, K.N. Oil spill detection by SAR images: Dark formation detection, feature extraction and classification algorithms. Sensors 2008, 8, 6642–6659. [Google Scholar] [CrossRef] [Green Version]
- Konik, M.; Bradtke, K. Object-oriented approach to oil spill detection using ENVISAT ASAR images. ISPRS J. Photogramm. Remote Sens. 2016, 118, 37–52. [Google Scholar] [CrossRef]
- Brekke, C.; Solberg, A.H.S. Oil spill detection by satellite remote sensing. Remote Sens. Environ. 2005, 95, 1–13. [Google Scholar] [CrossRef]
- Liu, S.; Chi, M.; Zou, Y.; Samat, A.; Benediktsson, J.A.; Plaza, A. Oil Spill Detection via Multitemporal Optical Remote Sensing Images: A Change Detection Perspective. IEEE Geosci. Remote Sens. Lett. 2017, 14, 324–328. [Google Scholar] [CrossRef]
- Jha, M.N.; Levy, J.; Gao, Y. Advances in remote sensing for oil spill disaster management: State-of-the-art sensors technology for oil spill surveillance. Sensors 2008, 8, 236–255. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Hu, C. The Challenges of Interpreting Oil-Water Spatial and Spectral Contrasts for the Estimation of Oil Thickness: Examples from Satellite and Airborne Measurements of the Deepwater Horizon Oil Spill. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2643–2658. [Google Scholar] [CrossRef]
- Gil, P.; Alacid, B. Oil spill detection in terma-side-looking airborne radar images using image features and region segmentation. Sensors 2018, 18, 151. [Google Scholar] [CrossRef] [Green Version]
- Leifer, I.; Lehr, W.J.; Simecek-Beatty, D.; Bradley, E.; Clark, R.; Dennison, P.; Hu, Y.; Matheson, S.; Jones, C.E.; Holt, B.; et al. State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill. Remote Sens. Environ. 2012, 124, 185–209. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Pineda, O.; Staples, G.; Jones, C.E.; Hu, C.; Holt, B.; Kourafalou, V.; Graettinger, G.; DiPinto, L.; Ramirez, E.; Streett, D.; et al. Classification of oil spill by thicknesses using multiple remote sensors. Remote Sens. Environ. 2020, 236, 111421. [Google Scholar] [CrossRef]
- Fingas, M. The challenges of remotely measuring oil slick thickness. Remote Sens. 2018, 10, 319. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Zhang, T.; Zhang, X.; Liu, G. Impact of emulsification of crude oil on normalized radar cross section. J. Oceanol. Limnol. 2020, 38, 42–54. [Google Scholar] [CrossRef]
- De Carolis, G.; Adamo, M.; Pasquariello, G. On the estimation of thickness of marine oil slicks from sun-glittered, near-infrared MERIS and MODIS imagery: The Lebanon oil spill case study. IEEE Trans. Geosci. Remote Sens. 2014, 52, 559–573. [Google Scholar] [CrossRef]
- He, S.; Dong, H. Simultaneous estimation of the refractive index and thickness of marine oil slick from the degree of linear polarization of the sun-glint reflection. Prog. Electromagn. Res. 2018, 163, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Suo, Z.; Lu, Y.; Liu, J.; Ding, J.; Yin, D.; Xu, F.; Jiao, J. Ultraviolet remote sensing of marine oil spills: A new approach of Haiyang-1C satellite. Opt. Express 2021, 29, 13486–13495. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhan, W.; Hu, C. Detecting and quantifying oil slick thickness by thermal remote sensing: A ground-based experiment. Remote Sens. Environ. 2016, 181, 207–217. [Google Scholar] [CrossRef]
- Brown, C.E.; Fingas, M.F.; Marois, R.; Fieldhouse, B.; Gamble, R.L. Remote sensing of water-in-oil emulsions: Initial laser fluorosensor studies. In Proceedings of the 27 Arctic and Marine Oilspill Program (AMOP) Technical Seminar (V1), Ottawa, ON, Canada, 1 July 2004; p. 1046. [Google Scholar]
- Baszanowska, E.; Otremba, Z. Fluorometric index for sensing oil in the sea environment. Sensors 2017, 17, 1276. [Google Scholar] [CrossRef] [Green Version]
- Baszanowska, E.; Otremba, Z. Detecting the presence of different types of oil in seawater using a fluorometric index. Sensors 2019, 19, 3774. [Google Scholar] [CrossRef] [Green Version]
- Bukin, O.; Proschenko, D.; Alexey, C.; Korovetskiy, D.; Bukin, I.; Yurchik, V.; Sokolova, I.; Nadezhkin, A. New Solutions of Laser-Induced Fluorescence for Oil Pollution Monitoring at Sea. Photonics 2020, 7, 36. [Google Scholar] [CrossRef]
- Conmy, R.N.; Coble, P.G.; Farr, J.; Wood, A.M.; Lee, K.; Pegau, W.S.; Walsh, I.D.; Koch, C.R.; Abercrombie, M.I.; Miles, M.S.; et al. Submersible optical sensors exposed to chemically dispersed crude oil: Wave tank simulations for improved oil spill monitoring. Environ. Sci. Technol. 2014, 48, 1803–1810. [Google Scholar] [CrossRef]
- Fingas, M.F.; Yetilmezsoy, K.; Bahramian, M. Development of an Algorithm for Chemically Dispersed Oil Spills. Front. Mar. Sci. 2020, 7, 982. [Google Scholar] [CrossRef]
- Haule, K.; Freda, W.; Darecki, M.; Toczek, H. Possibilities of optical remote sensing of dispersed oil in coastal waters. Estuar. Coast. Shelf Sci. 2017, 195, 76–87. [Google Scholar] [CrossRef]
- Haule, K.; Darecki, M.; Toczek, H. Light penetration in seawater polluted by dispersed oil: Results of radiative transfer modelling. J. Eur. Opt. Soc. Rapid Publ. 2015, 10, 15052. [Google Scholar] [CrossRef] [Green Version]
- Baszanowska, E.; Otremba, Z.; Piskozub, J. Modelling remote sensing reflectance to detect dispersed oil at sea. Sensors 2020, 20, 863. [Google Scholar] [CrossRef] [Green Version]
- Freda, W. Comparison of the spectral-angular properties of light scattered in the Baltic Sea and oil emulsions. J. Eur. Opt. Soc.-Rapid Publ. 2014, 9, 14017. [Google Scholar] [CrossRef] [Green Version]
- Boniewicz-Szmyt, K.; Pogorzelski, S.; Mazurek, A. Hydrocarbons on sea water: Steady-state spreading signatures determined by an optical method. Oceanologia 2007, 49, 413–437. [Google Scholar]
- Boniewicz-Szmyt, K.; Pogorzelski, S.J. Crude oil derivatives on sea water: Signatures of spreading dynamics. J. Mar. Syst. 2008, 74, S41–S51. [Google Scholar] [CrossRef]
- Haule, K. Modelling the Influence of Dispersed oil Droplets on the Upwelling Light Flux in Seawater in Application to Satellite Remote Sensing. Ph.D. Thesis, Institute of Oceanology of Polish Academy of Sciences, Sopot, Poland, 2019. Available online: www.kamilahaule.com (accessed on 24 May 2021).
- State of the Baltic Sea—Second HELCOM Holistic Assessment 2011–2016. Baltic Sea Environment Proceedings 155, HELCOM 2018. Available online: www.helcom.fi/baltic-sea-trends/holistic-assessments/state-of-the-baltic-sea-2018/reports-and-materials/ (accessed on 24 May 2021).
- Maksymowska, D.; Richard, P.; Piekarek-Jankowska, H.; Riera, P. Chemical and Isotopic Composition of the Organic Matter Sources in the Gulf of Gdansk (Southern Baltic Sea). Estuar. Coast. Shelf Sci. 2000, 51, 585–598. [Google Scholar] [CrossRef]
- Śliwińska-Wilczewska, S.; Cieszyńska, A.; Konik, M.; Maculewicz, J.; Latała, A. Environmental drivers of bloom-forming cyanobacteria in the Baltic Sea: Effects of salinity, temperature, and irradiance. Estuar. Coast. Shelf Sci. 2019, 219, 139–150. [Google Scholar] [CrossRef]
- Woźniak, S.B.; Sagan, S.; Zabłocka, M.; Stoń-Egiert, J.; Borzycka, K. Light scattering and backscattering by particles suspended In the Baltic Sea In relation to the mass concentration of particles and the proportions of their organic and inorganic fractions. J. Mar. Syst. 2018, 182, 79–96. [Google Scholar] [CrossRef]
- Freda, W. Spectral dependence of the correlation between the backscattering coefficient and the volume scattering function measured in the southern Baltic Sea. Oceanologia 2012, 54, 355–367. [Google Scholar] [CrossRef] [Green Version]
- Woźniak, S.B.; Darecki, M.; Sagan, S. Empirical Formulas for Estimating Backscattering and Absorption Coefficients in Complex Waters from Remote-Sensing Reflectance Spectra and Examples of Their Application. Sensors 2019, 19, 4043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woźniak, B.; Bradtke, K.; Darecki, M.; Dera, J.; Dzierzbicka-Głowacka, L.; Ficek, D.; Furmańczyk, K.; Kowalewski, M.; Krężel, A.; Majchrowski, R.; et al. SatBałtyk—A Baltic environmental satellite remote sensing system—An ongoing project in Poland. Part 1: Assumptions, scope and operating range. Oceanologia 2011, 53, 897–924. [Google Scholar] [CrossRef] [Green Version]
- Woźniak, B.; Bradtke, K.; Darecki, M.; Dera, J.; Dudzińska-Nowak, J.; Dzierzbicka-Głowacka, L.; Ficek, D.; Furmańczyk, K.; Kowalewski, M.; Krężel, A.; et al. SatBałtyk—A Baltic Environmental Satellite Remote Sensing System—An Ongoing Project in Poland Part 2: Practical applicability and preliminary results. Oceanologia 2011, 53, 925–958. [Google Scholar] [CrossRef] [Green Version]
- Twardowski, M.S.; Sullivan, J.M.; Donaghay, P.L.; Zaneveld, J.R.V. Microscale quantification of the absorption by dissolved and particulate material in coastal waters with an ac-9. J. Atmos. Ocean. Technol. 1999, 16, 691–707. [Google Scholar] [CrossRef]
- Zaneveld, J.R.V.; Kitchen, J.C.; Moore, C.M. The scattering error correction of reflecting-tube absorption meters. Proc. SPIE 1994, 2258, 44–55. [Google Scholar] [CrossRef]
- Crude Oil Terminal & Custody Transfer Data, SGS Oil, Gas & Chemicals Services, Geneva 2011. Available online: Sgs.com/ogc (accessed on 24 May 2021).
- Flotta Terminal. Available online: https://www.repsolsinopecuk.com/operations/infrastructure-code-of-practice/provision-of-information#Flotta (accessed on 24 May 2021).
- Cyliten 460N. Available online: https://www.lotos.pl/en/859/p,790,c,567/for_business/industrial_lubes/compressor_oils/cyliten_460n (accessed on 24 May 2021).
- Alleman, T.L.; McCormick, R.L.; Christensen, E.D.; Fioroni, G.; Moriarty, K.; Yanowitz, J. Biodiesel Handling and Use Guide, 4th ed.; DOE/GO-102016-4875; U.S. Department of Energy: Washington, DC, USA, 2016. Available online: https://afdc.energy.gov/fuels/biodiesel_basics.html (accessed on 24 May 2021).
- Biodiesel BIO-100. Available online: https://www.orlen.pl/EN/ForBusiness/Fuel/Diesel/Pages/Biodiesel.aspx (accessed on 24 May 2021).
- Haule, K.; Toczek, H. Fluorescence properties of mechanically dispersed crude oil. J. KONES Powertrain Transp. 2014, 21, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Haule, K.; Freda, W. Remote Sensing of Dispersed Oil Pollution in the Ocean—The Role of Chlorophyll Concentration. Sensors 2021, 21, 3387. [Google Scholar] [CrossRef] [PubMed]
- Haule, K.; Freda, W. The effect of dispersed Petrobaltic oil droplet size on photosynthetically active radiation in marine environment. Environ. Sci. Pollut. Res. 2016, 23, 6506–6516. [Google Scholar] [CrossRef]
- Król, T.; Stelmaszewski, A.; Freda, W. Variability in the optical properties of a crude oil—Seawater emulsion. Oceanologia 2006, 48, 203–211. [Google Scholar]
- Zibordi, G.; Darecki, M. Immersion factor for the RAMSES series of hyperspectral underwater radiometers. J. Opt. Pure Appl. Opt. 2005, 8, 252–258. [Google Scholar] [CrossRef]
- Rudź, K.; Darecki, M.; Toczek, H. Modelling the influence of oil content on optical properties of seawater in the Baltic Sea. J. Eur. Opt. Soc.-Rapid Publ. 2013, 8, 13063. [Google Scholar] [CrossRef] [Green Version]
- Baszanowska, E.; Otremba, Z.; Piskozub, J. Modelling a Spectral Index to Detect Dispersed Oil in a Seawater Column Depending on the Viewing Angle: Gulf of Gdansk Case Study. Sensors 2020, 20, 5352. [Google Scholar] [CrossRef] [PubMed]
- Soja-Woźniak, M.; Darecki, M.; Wojtasiewicz, B.; Bradtke, K. Laboratory measurements of remote sensing reflectance of selected phytoplankton species from the Baltic Sea. Oceanologia 2018, 60, 86–96. [Google Scholar] [CrossRef]
- Wolf, P.; Rößler, S.; Schneider, T.; Melzer, A. Collecting in situ remote sensing reflectances of submersed macrophytes to build up a spectral library for lake monitoring. Eur. J. Remote Sens. 2013, 46, 401–416. [Google Scholar] [CrossRef] [Green Version]
- Woźniak, M.; Bradtke, K.M.; Krężel, A. Comparison of satellite chlorophyll a algorithms for the Baltic Sea. J. Appl. Remote Sens. 2014, 8, 083605. [Google Scholar] [CrossRef] [Green Version]
- Darecki, M.; Kaczmarek, S.; Olszewski, J. SeaWiFS ocean colour chlorophyll algorithms for the southern Baltic Sea. Int. J. Remote Sens. 2005, 26, 247–260. [Google Scholar] [CrossRef]
- Woźniak, S.B.; Darecki, M.; Zabłocka, M.; Burska, D.; Dera, J. New simple statistical formulas for estimating surface concentrations of suspended particulate matter (SPM) and particulate organic carbon (POC) from remote-sensing reflectance in the southern Baltic Sea. Oceanologia 2016, 58, 161–175. [Google Scholar] [CrossRef] [Green Version]
- IOCCG. Synergy between Ocean Colour and Biogeochemical/Ecosystem Models; IOCCG Report Series; Dutkiewicz, S., Ed.; International Ocean Colour Coordinating Group: Dartmouth, NS, Canada, 2020. [Google Scholar]
- Tran, T.K.; Duforêt-Gaurier, L.; Vantrepotte, V.; Jorge, D.S.F.; Mériaux, X.; Cauvin, A.; Fanton d’Andon, O.; Loisel, H. Deriving Particulate Organic Carbon in Coastal Waters from Remote Sensing: Inter-Comparison Exercise and Development of a Maximum Band-Ratio Approach. Remote Sens. 2019, 11, 2849. [Google Scholar] [CrossRef] [Green Version]
Station | JA1 | Tank | Mech1 |
---|---|---|---|
Date | 13 April 2016 | 16 April 2016 | 17 April 2016 |
Position | N 54.65, E 18.68 | N 54.81, E 18.40 | N 54.60, E 18.58 |
Measured oils | PB, CL | BD, EJ, QL | FL |
Sky | Full overcast, diffusive conditions, drizzle | Clear sky (BD), single clouds (EJ), overcast (QL) | Full overcast, diffusive conditions, rain |
Sea surface | Gentle to medium waves, thickly rough | Gentle waves, slightly rough | Gentle waves, slightly rough |
Secchi depth | ‒ | 5.5 m | 4.5 m |
Sea depth | 78 m | 11 m | 12 m |
Sea surface temperature | 6.1 °C | 5.7 °C | 7.7 °C |
Salinity | 7.31–7.44 PSU | 7.53–7.55 PSU | 7.28 PSU |
Chlorophyll concentration | 8.91 mg/m3 | 2.36 mg/m3 | 11.49 mg/m3 |
Mark | PB | FL | CL | BD | EJ | QL |
---|---|---|---|---|---|---|
Full Name | Petrobaltic | Flotta | Cyliten 460N | Biodiesel BIO-100 | Evinrude Johnson HPF–XR | Quicksilver Premium Gear Lube |
Type of oil | Light, very sweet crude oil | light, Sweet-sour crude oil | Mineral oil, cylinder lubricant | Biofuel | Mineral oil, marine gear lubricant | Mineral oil, marine gear lubricant |
Main application | Energy industry | Energy industry | High-pressure compressors, low speed gears | Diesel engines | Motorboats, two-stroke outboards | Motorboats, all outboards |
Dynamic viscosity in 20 °C, mPa·s | 19.91 | 22.77 | 2140 | 4.86 | 183.5 | 164.2 |
Refractive index at 20 °C (400–700 nm) | 1.4878–1.4649 | 1.5233–1.4909 | 1.5148–1.4918 | 1.4721–1.4523 | 1.4998–1.4797 | 1.5011–1.4805 |
Dispersion effectiveness * | 30% | 80% | 86% | ~100% | ~100% | 91% |
Color | Dark brown with golden shade | Deep dark brown | Golden yellow | Yellow–green | Dark green | Dark red |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haule, K.; Toczek, H.; Borzycka, K.; Darecki, M. Influence of Dispersed Oil on the Remote Sensing Reflectance—Field Experiment in the Baltic Sea. Sensors 2021, 21, 5733. https://doi.org/10.3390/s21175733
Haule K, Toczek H, Borzycka K, Darecki M. Influence of Dispersed Oil on the Remote Sensing Reflectance—Field Experiment in the Baltic Sea. Sensors. 2021; 21(17):5733. https://doi.org/10.3390/s21175733
Chicago/Turabian StyleHaule, Kamila, Henryk Toczek, Karolina Borzycka, and Mirosław Darecki. 2021. "Influence of Dispersed Oil on the Remote Sensing Reflectance—Field Experiment in the Baltic Sea" Sensors 21, no. 17: 5733. https://doi.org/10.3390/s21175733
APA StyleHaule, K., Toczek, H., Borzycka, K., & Darecki, M. (2021). Influence of Dispersed Oil on the Remote Sensing Reflectance—Field Experiment in the Baltic Sea. Sensors, 21(17), 5733. https://doi.org/10.3390/s21175733