An NB-IoT-Based Edge-of-Things Framework for Energy-Efficient Image Transfer
Abstract
:1. Introduction
- How should the overall NB-IoT architecture be organized for an efficient visual data transfer over the air? That is, how many hierarchical layers are needed and what could be their respective roles for collecting, processing, and transmitting data to the cloud?
- What are the suitable wireless communication technologies for transmitting visual data between the several layers of this architecture?
- What type of data processing is needed at what particular layer, taking into consideration the strength and limitation of each layer, and what could be the associated benefits in terms of the bandwidth utilization, channel flexibility and congestion alleviation?
- Lastly, what could be energy-latency trade-offs from the device and network perspective?
1.1. State-of-the-Art
1.2. Contributions
- We showcase a practical edge-of-things computing-based framework for dispatching optimized images over an NB-IoT test network wherein computations at the edge help reduce the number of NB-IoT radio transmissions over the core network.
- We practically show how the reductions in the communication budget of the radio can in turn contribute to relaxing the channel occupancy, minimizing the network load and reducing the transmission latency.
- We provide in-depth in-sensor analytics of the communication and computational cost of the gateway node along with mapping its energy-latency trade-offs.
2. Hardware Architecture of Our Proposed Three Layers Hierarchical Model
2.1. Detection and Vision Node (DVN) at Perception Layer
2.2. Smart Transmit Node (STN) at Gateway Layer
2.3. Server Node (SN) at Cloud Layer
3. Algorithmic Structure at Each Hierarchical Layer
- A—A Sense a Transmit algorithm running over DVN
- B—A Smart Transmit algorithm running over STN
- C—An MQTT broker, Image reconstruction and an Application running over the SN
3.1. Sense and Transmit Algorithm over the DVN
Algorithm 1: Sense and transmit algorithm: vehicle detection, image capture, and image transmission algorithm running inside the Detection and Vision Node (DVN). |
|
3.2. Smart Transmit Algorithm Running over the STN
3.3. MQTT Broker, Image Reconstruction and an Application Running over the SN
4. On-Field Experimental Trials with Energy/Time Consumption Evaluations
4.1. Computation Cost
4.2. Reducing the Communication Budget of an NB-IoT (BG96) Radio
Communication Cost
4.3. Trade-Offs in the Computation vs. Communication Costs
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, M.; Li, W.; Fortino, G.; Hao, Y.; Hu, L.; Humar, I. A dynamic service migration mechanism in edge cognitive computing. ACM Trans. Internet Technol. (TOIT) 2019, 19, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Pham, C. Low-cost, low-power and long-range image sensor for visual surveillance. In Proceedings of the 2nd Workshop on Experiences in the Design and Implementation of Smart Objects, New York, NY, USA, 3–7 October 2016; pp. 35–40. [Google Scholar]
- Jebril, A.H.; Sali, A.; Ismail, A.; Rasid, M.F.A. Overcoming limitations of LoRa physical layer in image transmission. Sensors 2018, 18, 3257. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Eager, D.; Makaroff, D. Efficient image transmission using lora technology in agricultural monitoring iot systems. In Proceedings of the 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Atlanta, GA, USA, 14–17 July 2019; pp. 937–944. [Google Scholar]
- Ji, M.; Yoon, J.; Choo, J.; Jang, M.; Smith, A. Lora-based visual monitoring scheme for agriculture iot. In Proceedings of the 2019 IEEE Sensors Applications Symposium (SAS), Sophia Antipolis, France, 11–13 March 2019; pp. 1–6. [Google Scholar]
- Wei, C.C.; Chen, S.T.; Su, P.Y. Image Transmission Using LoRa Technology with Various Spreading Factors. In Proceedings of the 2019 2nd World Symposium on Communication Engineering (WSCE), Nagoya, Japan, 20–23 December 2019; pp. 48–52. [Google Scholar]
- Kirichek, R.; Pham, V.D.; Kolechkin, A.; Al-Bahri, M.; Paramonov, A. Transfer of multimedia data via LoRa. In Internet of Things, Smart Spaces, and Next Generation Networks and Systems; Springer: Cham, Switzerland, 2017; pp. 708–720. [Google Scholar]
- Pham, C. Robust CSMA for long-range LoRa transmissions with image sensing devices. In Proceedings of the IEEE 2018 Wireless Days (WD), Dubai, United Arab Emirates, 3–5 April 2018; pp. 116–122. [Google Scholar]
- Fan, C.; Ding, Q. A novel wireless visual sensor network protocol based on LoRa modulation. Int. J. Distrib. Sens. Netw. 2018, 14, 1550147718765980. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Carmona, O.; Casado-Mansilla, D.; Kraemer, F.A.; López-de Ipiña, D.; García-Zubia, J. Exploring the computational cost of machine learning at the edge for human-centric Internet of Things. Future Gener. Comput. Syst. 2020, 112, 670–683. [Google Scholar] [CrossRef]
- Rioual, Y.; Laurent, J.; Senn, E.; Diguet, J.P. Reinforcement learning strategies for energy management in low power iot. In Proceedings of the IEEE 2017 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 14–16 December 2017; pp. 1377–1382. [Google Scholar]
- Lei, L.; Xu, H.; Xiong, X.; Zheng, K.; Xiang, W. Joint computation offloading and multiuser scheduling using approximate dynamic programming in NB-IoT edge computing system. IEEE Internet Things J. 2019, 6, 5345–5362. [Google Scholar] [CrossRef]
- Lyu, X.; Tian, H.; Jiang, L.; Vinel, A.; Maharjan, S.; Gjessing, S.; Zhang, Y. Selective offloading in mobile edge computing for the green internet of things. IEEE Netw. 2018, 32, 54–60. [Google Scholar] [CrossRef]
- Samie, F.; Tsoutsouras, V.; Bauer, L.; Xydis, S.; Soudris, D.; Henkel, J. Oops: Optimizing operation-mode selection for IoT edge devices. ACM Trans. Internet Technol. (TOIT) 2019, 19, 1–21. [Google Scholar] [CrossRef]
- Samie, F.; Bauer, L.; Henkel, J. From cloud down to things: An overview of machine learning in internet of things. IEEE Internet Things J. 2019, 6, 4921–4934. [Google Scholar] [CrossRef]
- Zualkernan, I.A.; Dhou, S.; Judas, J.; Sajun, A.R.; Gomez, B.R.; Hussain, L.A.; Sakhnini, D. Towards an IoT-based Deep Learning Architecture for Camera Trap Image Classification. In Proceedings of the 2020 IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIoT), Dubai, United Arab Emirates, 12–16 December 2020; pp. 1–6. [Google Scholar]
- Curtin, B.H.; Matthews, S.J. Deep Learning for Inexpensive Image Classification of Wildlife on the Raspberry Pi. In Proceedings of the 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY, USA, 10–12 October 2019; pp. 0082–0087. [Google Scholar]
- Monburinon, N.; Zabir, S.M.S.; Vechprasit, N.; Utsumi, S.; Shiratori, N. A Novel Hierarchical Edge Computing Solution Based on Deep Learning for Distributed Image Recognition in IoT Systems. In Proceedings of the IEEE 2019 4th International Conference on Information Technology (InCIT), Bangkok, Thailand, 24–25 October 2019; pp. 294–299. [Google Scholar]
- Popat, P.; Sheth, P.; Jain, S. Animal/object identification using deep learning on raspberry pi. In Information and Communication Technology for Intelligent Systems; Springer: Singapore, 2019; pp. 319–327. [Google Scholar]
- Samie, F.; Bauer, L.; Henkel, J. Hierarchical classification for constrained IoT devices: A case study on human activity recognition. IEEE Internet Things J. 2020, 7, 8287–8295. [Google Scholar] [CrossRef]
- Yin, H.; Wang, Z.; Jha, N.K. A hierarchical inference model for Internet-of-Things. IEEE Trans. Multi-Scale Comput. Syst. 2018, 4, 260–271. [Google Scholar] [CrossRef]
- Chatterjee, B.; Seo, D.H.; Chakraborty, S.; Avlani, S.; Jiang, X.; Zhang, H.; Abdallah, M.; Raghunathan, N.; Mousoulis, C.; Shakouri, A.; et al. Context-Aware Collaborative Intelligence with Spatio-Temporal In-Sensor-Analytics for Efficient Communication in a Large-Area IoT Testbed. IEEE Internet Things J. 2020, 8, 6800–6814. [Google Scholar] [CrossRef]
- Sandoval, R.M.; Garcia-Sanchez, A.J.; Garcia-Haro, J. Optimizing and updating lora communication parameters: A machine learning approach. IEEE Trans. Netw. Serv. Manag. 2019, 16, 884–895. [Google Scholar] [CrossRef]
- Azari, A.; Cavdar, C. Self-organized low-power iot networks: A distributed learning approach. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–7. [Google Scholar]
- Suresh, V.M.; Sidhu, R.; Karkare, P.; Patil, A.; Lei, Z.; Basu, A. Powering the IoT through embedded machine learning and LoRa. In Proceedings of the 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 5–8 February 2018; pp. 349–354. [Google Scholar]
- ESP32 DataSheet. Available online: https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf (accessed on 1 January 2020).
- HC SR501 Passive Infrared Sensor. Available online: https://www.componentsinfo.com/hc-sr501-modulepinout-datasheet/ (accessed on 1 January 2020).
- Espressif ESP32. Available online: http://esp32.net/ (accessed on 1 January 2020).
- OV2640 DataSheet. Available online: https://www.arducam.com/ov2640/ (accessed on 1 January 2020).
- HC SR501 Range: Adjustable Sensitivity. Available online: https://www.epitran.it/ebayDrive/datasheet/44.pdf/ (accessed on 1 January 2020).
- Raspberry Pi 3 Model B. Available online: https://www.raspberrypi.org/products/raspberry-pi-3-model-b// (accessed on 1 January 2020).
- Raspberry Pi LTE Cellular Modem Kit. Available online: https://sixfab.com/ (accessed on 1 January 2020).
- Current/Power Comparisons of the Various RPi Models. Available online: https://www.raspberrypi.org/documentation/hardware/raspberrypi/power/README.md// (accessed on 1 January 2020).
- Raspberry Pi Connects with Sixfab. Available online: https://docs.sixfab.com/docs/raspberry-pi-cellular-iot-application-shield-technical-details (accessed on 1 January 2020).
- Huang, A.S.; Rudolph, L. Bluetooth Essentials for Programmers; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- YOLO: Real-Time Object Detection. Available online: https://pjreddie.com/darknet/yolo/ (accessed on 1 January 2020).
- YOLOv3 Github. Available online: https://github.com/pythonlessons/TensorFlow-2.x-YOLOv3 (accessed on 1 January 2020).
- Paek, J.; Ko, J. K-Means clustering-based data compression scheme for wireless imaging sensor networks. IEEE Syst. J. 2015, 11, 2652–2662. [Google Scholar] [CrossRef]
- Kanungo, T.; Mount, D.M.; Netanyahu, N.S.; Piatko, C.D.; Silverman, R.; Wu, A.Y. An efficient k-means clustering algorithm: Analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 881–892. [Google Scholar] [CrossRef]
- Dehariya, V.K.; Shrivastava, S.K.; Jain, R. Clustering of image data set using k-means and fuzzy k-means algorithms. In Proceedings of the IEEE 2010 International Conference on Computational Intelligence and Communication Networks, Bhopal, India, 26–28 November 2010; pp. 386–391. [Google Scholar]
- Hu, Y.; Su, B. Accelerated k-means clustering algorithm for colour image quantization. Imaging Sci. J. 2008, 56, 29–40. [Google Scholar] [CrossRef]
- Binary Encoding Schemes. Available online: https://docs.python.org/3/library/base64.html (accessed on 1 January 2020).
- Wessels, A.; Purvis, M.; Jackson, J.; Rahman, S. Remote data visualization through websockets. In Proceedings of the IEEE 2011 Eighth International Conference on Information Technology: New Generations, Las Vegas, NV, USA, 11–13 April 2011; pp. 1050–1051. [Google Scholar]
- MQTT_Application_Note_Quectel_BG96. Available online: https://sixfab.com/wp-content/uploads/2018/09/Quectel_BG96_MQTT_Application_Note_V1.0.pdf (accessed on 1 January 2020).
- Wen, S.; Dang, W. Research on Base64 Encoding Algorithm and PHP Implementation. In Proceedings of the IEEE 2018 26th International Conference on Geoinformatics, Kunming, China, 28–30 June 2018; pp. 1–5. [Google Scholar]
- MQTT Architecture. Available online: https://mqtt.org/ (accessed on 1 January 2020).
- Hillar, G.C. MQTT Essentials—A Lightweight IoT Protocol; Packt Publishing Ltd.: Birmingham, UK, 2017. [Google Scholar]
- Poddar, N.; Khan, S.Z.; Mass, J.; Srirama, S.N. Coverage Analysis of NB-IoT and Sigfox: Two Estonian University Campuses as a Case Study. In Proceedings of the IEEE 2020 International Wireless Communications and Mobile Computing (IWCMC), Limassol, Cyprus, 15–19 June 2020; pp. 1491–1497. [Google Scholar]
- MQTT Broker. Available online: https://github.com/beerfactory/hbmqtt (accessed on 1 January 2020).
- Liu, M.; Wang, X.; Zhou, A.; Fu, X.; Ma, Y.; Piao, C. UAV-YOLO: Small Object Detection on Unmanned Aerial Vehicle Perspective. Sensors 2020, 20, 2238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzia, V.; Khaliq, A.; Salvetti, F.; Chiaberge, M. Real-time apple detection system using embedded systems with hardware accelerators: An edge AI application. IEEE Access 2020, 8, 9102–9114. [Google Scholar] [CrossRef]
- Khan, S.Z.; Alam, M.M.; Le Moullec, Y.; Kuusik, A.; Pärand, S.; Verikoukis, C. An Empirical Modelling for the Baseline Energy Consumption of an NB-IoT Radio Transceiver. IEEE Internet Things J. 2021. [Google Scholar] [CrossRef]
- Keysight Technologies. N6705C DC Power Analyzer; Keysight Technologies: Santa Rosa, CA, USA, 2014. [Google Scholar]
Resolution Type | Resolution (W × H) | Aspect Ratio | Max. No of Pixels (Max. 2MP) | Total Size (kB) |
---|---|---|---|---|
UXGA | 1600 × 1200 | 4:3 | 1920,000 | 357.17 |
SVGA | 800 × 600 | 4:3 | 480,000 | 118.89 |
VGA | 640 × 480 | 4:3 | 307,200 | 87.18 |
QVGA | 320 × 240 | 4:3 | 76,800 | 44.79 |
Input Image (JPG) Resolution | Detected Vehicle (JPG) Resolution | Input Image Size (kB) | Extracted Image Size (kB) | Percent Reduction in Size Thanks to Cropping |
---|---|---|---|---|
1600 × 1200 | 513 × 355 | 357.17 | 66.97 | 81% |
800 × 600 | 260 × 175 | 118.89 | 20.51 | 82% |
640 × 480 | 206 × 138 | 87.18 | 14.35 | 83% |
320 × 240 | 105 × 67 | 44.79 | 4.60 | 89% |
Images from T-YOLOv3 | Resolution 1 (513 × 355) | Resolution 2 (260 × 175) | Resolution3 (206 × 138) | Resolution 4 (105 × 67) | ||||
---|---|---|---|---|---|---|---|---|
K Clusters | Color | Size | Color | Size | Color | Size | Color | Size |
K = all colors | 25,512 | 66.97 | 14,503 | 20.51 | 11,340 | 14.35 | 4830 | 4.60 |
K = 20 | 20 | 34.1 | 20 | 11.1 | 20 | 8.0 | 20 | 3.1 |
K = 12 | 12 | 32.0 | 12 | 10.2 | 12 | 7.2 | 12 | 2.5 |
K = 10 | 10 | 31.6 | 10 | 10.1 | 10 | 7.0 | 10 | 2.3 |
K = 5 | 5 | 27.1 | 5 | 8.2 | 5 | 5.8 | 5 | 2.1 |
Per Image Energy Consumption of Raspberry Pi 3B | |||
---|---|---|---|
Resolution | Computing Power (W) | Execution Time (s) | Energy Consumed (Wh) |
1600× 1200 | 1.75 | 22 | 0.0107 |
800 × 600 | 1.75 | 18 | 0.0072 |
640 × 480 | 1.75 | 13 | 0.0063 |
320 × 240 | 1.75 | 6 | 0.0029 |
Original Image (Full Resolution, and All Colors) | Optimized Image (Cropped and K = 12 Colors) | Red_Tr (%) | ||||
---|---|---|---|---|---|---|
Resolution | Size | ReqT | Resolution | Size | ReqT | |
1600 × 1200 | 357.17 | 239 | 513 × 355 | 32.0 | 22 | −90 |
800 × 600 | 118.90 | 80 | 260 × 175 | 10.2 | 7 | −91 |
640 × 480 | 87.18 | 58 | 206 × 138 | 7.2 | 5 | −91.3 |
320 × 240 | 44.7 | 30 | 105 × 67 | 2.5 | 2 | −93.3 |
BG96 Power Consumption Parameters | ||||||
---|---|---|---|---|---|---|
PTAU | PATTACH | PTX | PRX | PCDRX | PeDRX | PPSM |
0.18 W | 0.18 W | 0.17 W | 0.16 W | 0.083 W | 0.070 W | 0.0002 W |
Minimum and Maximum Values for the Timing Parameters | ||||
---|---|---|---|---|
TTAU/TATTACH | TTX/TRX | TCDRX | TeDRX | TPSM |
18.6 s (on avg.) | 0 s–# of transmissions | 10 s–60 s | 0 s–186 m | 0 s–413 d |
Reduction in the Transmission Period of NB-IoT Radio | ||||||
---|---|---|---|---|---|---|
Original Image (All Colors) |
Optimized Image (K= 12 Colors) |
Red_TrTime (%) | ||||
Resolution | Size | TrTime | Resolution | Size | TrTime | |
1600 × 1200 | 357.17 | 12.60 m | 513 × 355 | 32.0 | 1.20 m | −90 |
800 × 600 | 118.90 | 4.05 m | 260 × 175 | 10.2 | 34.20 s | −82 |
640 × 480 | 87.18 | 3.0 m | 206 × 138 | 7.2 | 32.4 s | −82 |
320 × 240 | 44.7 | 1.6 m | 105 × 67 | 2.5 | 18.0 s | −81 |
Reduction in the Energy Consumption of the NB-IoT Radio | |||||
---|---|---|---|---|---|
Original Image (in All Colors) |
Optimized Image (in K = 12 Colors) | ERed (Wh) |
ERed (%) | ||
Resolution | Econ (Wh) * | Resolution | Econ (Wh) | ||
1600 × 1200 | 0.0357 | 513 × 355 | 0.0034 | −0.0323 | −90.5 |
800 × 600 | 0.0102 | 260 × 175 | 0.0016 | −0.0086 | −84.3 |
640 × 480 | 0.0085 | 206 × 138 | 0.0015 | −0.0070 | −82.3 |
320 × 240 | 0.0034 | 105 × 67 | 0.0008 | −0.0026 | −76.5 |
Energy Consumption per Original Image vs. Energy Consumption per Optimized Image | |||||
---|---|---|---|---|---|
Original Image | Optimized Image | E_Savings (Wh) (a–b) | ES (%) | ||
Resolution | ECOMM (Wh) (a) | Resolution | ECOMP + ECOMM (Wh) (b) | ||
1600 × 1200 | 0.0357 | 513 × 355 | 0.0107 + 0.0034 | 0.0216 | −60.50 |
800 × 600 | 0.0102 | 260 × 175 | 0.0072 + 0.0016 | 0.0014 | −13.72 |
640 × 480 | 0.0085 | 206 × 138 | 0.0063 + 0.0015 | 0.007 | −8.23 |
320 × 240 | 0.0034 | 105 × 67 | 0.0029 + 0.0008 | 0.002 | −5.88 |
Transmission Time per Original Image vs. Transmission Time per Optimized Image | |||||
---|---|---|---|---|---|
Original Image | Optimized Image | T_Savings (a–b) | TS (%) | ||
Resolution | TCOMM (a) | Resolution | TCOMP + TCOMM (b) | ||
1600 × 1200 | 12.6 min | 513 × 355 | 22 s + 1.20 min | 11.3 min | −89.68 |
800 × 600 | 4.05 min | 260 × 175 | 18 s + 34.2 s | 3.18 min | −78.51 |
640 × 480 | 3.0 min | 206 × 138 | 13 s + 32.4 s | 2.28 min | −76.00 |
320 × 240 | 1.6 min | 105 × 67 | 6 s + 18 s | 1.20 min | −75.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, S.Z.; Le Moullec, Y.; Alam, M.M. An NB-IoT-Based Edge-of-Things Framework for Energy-Efficient Image Transfer. Sensors 2021, 21, 5929. https://doi.org/10.3390/s21175929
Khan SZ, Le Moullec Y, Alam MM. An NB-IoT-Based Edge-of-Things Framework for Energy-Efficient Image Transfer. Sensors. 2021; 21(17):5929. https://doi.org/10.3390/s21175929
Chicago/Turabian StyleKhan, Sikandar Zulqarnain, Yannick Le Moullec, and Muhammad Mahtab Alam. 2021. "An NB-IoT-Based Edge-of-Things Framework for Energy-Efficient Image Transfer" Sensors 21, no. 17: 5929. https://doi.org/10.3390/s21175929
APA StyleKhan, S. Z., Le Moullec, Y., & Alam, M. M. (2021). An NB-IoT-Based Edge-of-Things Framework for Energy-Efficient Image Transfer. Sensors, 21(17), 5929. https://doi.org/10.3390/s21175929