Energy Harvesting Materials and Structures for Smart Textile Applications: Recent Progress and Path Forward
Abstract
:1. Introduction
2. Photovoltaic Energy Harvesting
2.1. High Efficiency Flexible Inorganic Photovoltaic Films
2.2. Organic Photovoltaic Films
2.3. Dye-Sensitized Solar Cells
2.4. Photovoltaic Fibers/Filaments
3. Piezoelectric Energy Harvesting
3.1. Polymers
3.2. Composites/Nanocomposites
3.3. Piezoelectric Nanogenerators
4. Triboelectric Energy Harvesting
4.1. Films/Coatings
4.2. Fibers/Textiles
4.3. Textile Triboelectric Nanogenerators
5. Thermoelectric Energy Harvesting
5.1. Flexible Inorganic Thermoelectric Modules
5.2. Organic Materials/Textiles
6. Current Challenges and Perspectives on Promising Avenues of Further Development
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dolez, P.I.; Decaens, J.; Buns, T.; Lachapelle, D.; Vermeersch, O. Applications of smart textiles in occupational health and safety. IOP Conf. Ser. Mater. Sci. Eng. 2020, 827, 012014. [Google Scholar] [CrossRef]
- Cochrane, C.; Michailidis, E.T.; Potirakis, S.M.; Vassiliadis, S. Communication protocols for vital signs sensors used for the monitoring of athletes. In Smart Textiles and Their Applications; Koncar, V., Ed.; Elsevier: Duxford, UK, 2016; pp. 127–143. [Google Scholar] [CrossRef]
- Cochrane, C.; Hertleer, C.; Schwarz-Pfeiffer, A. Smart textiles in health. In Smart Textiles and their Applications; Koncar, V., Ed.; Elsevier: Duxford, UK, 2016; pp. 9–32. [Google Scholar] [CrossRef]
- Majumder, S.; Mondal, T.; Deen, M.J. Wearable Sensors for Remote Health Monitoring. Sensors 2017, 17, 130. [Google Scholar] [CrossRef]
- Voirin, G. Working Garment Integrating Sensor Applications Developed Within the PROeTEX Project for Firefighters. Adv. Intell. Syst. Comput. 2015, 333, 25–33. [Google Scholar] [CrossRef]
- HexoSkin Smart Shirts. Available online: www.hexoskin.com (accessed on 24 July 2021).
- Schwarz, A.; van Langenhove, L.; Guermonprez, P.; Deguillemont, D. A roadmap on smart textiles. Text. Prog. 2010, 42, 99–180. [Google Scholar] [CrossRef]
- Fan, T.; Liu, Z.; Luo, Z.; Li, J.; Tian, X.; Chen, Y.; Feng, Y.; Wang, C.; Bi, H.; Li, X.; et al. Analog Sensing and Computing Systems with Low Power Consumption for Gesture Recognition. Adv. Intell. Syst. 2021, 3. [Google Scholar] [CrossRef]
- Xue, D.; Cai, R.; Liu, Y. Design of Amplifier for Wearable Human ECG Sensor with Low Power and Low Noise. J. Phys. Conf. Ser. 2021, 1907, 012058. [Google Scholar] [CrossRef]
- Zheng, K.; Sun, Y.; Zhang, Y. An ultra low-power ECG amplifier for wearable devices using classical 2-stage OTA. J. Phys. Conf. Ser. 2021, 1907, 012008. [Google Scholar] [CrossRef]
- Han, L.; Su, Y.; Zheng, W.; Liu, T. Wearable Low-power Bio-signals Wireless Sensing Node Design. J. Phys. Conf. Ser. 2021, 1846, 012087. [Google Scholar] [CrossRef]
- Hambling, D. The Overloaded Soldier: Why U.S. Infantry Now Carry More Weight than Ever. Hearst Magazine Media. 26 December 2018. Available online: https://www.popularmechanics.com/military/research/a25644619/soldier-weight/ (accessed on 24 July 2021).
- Zhang, Y.; Bai, W.; Cheng, X.; Ren, J.; Weng, W.; Chen, P.; Fang, X.; Zhang, Z.; Peng, H. Flexible and Stretchable Lithium-Ion Batteries and Supercapacitors Based on Electrically Conducting Carbon Nanotube Fiber Springs. Angew. Chem. Int. Ed. 2014, 53, 14564–14568. [Google Scholar] [CrossRef]
- Chen, G.; Li, Y.; Bick, M.; Chen, J. Smart Textiles for Electricity Generation. Chem. Rev. 2020, 120, 3668–3720. [Google Scholar] [CrossRef] [PubMed]
- Selvarathinam, J.; Anpalagan, A. Energy Harvesting from the Human Body for Biomedical Applications. IEEE Potentials 2016, 35, 6–12. [Google Scholar] [CrossRef]
- Kakitsuba, N. Investigation into Clothing Area Factors for Tight and Loose Fitting Clothing in Three Different Body Positions. J. Hum. Environ. Syst. 2004, 7, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Mosteller, R.D. Simplified Calculation of Body-Surface Area. N. Engl. J. Med. 1987, 317, 1098. [Google Scholar] [CrossRef] [PubMed]
- Fonash, S.J. Solar Cell Device Physics, 2nd ed.; Academic Press: Tokyo, Japan, 2010. [Google Scholar]
- Tang, S.L.P.; Stylios, G.K. An overview of smart technologies for clothing design and engineering. Int. J. Cloth. Sci. Technol. 2006, 18, 108–128. [Google Scholar] [CrossRef]
- Powalla, M.; Paetel, S.; Hariskos, D.; Wuerz, R.; Kessler, F.; Lechner, P.; Wischmann, W.; Friedlmeier, T.M. Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2. Engineering 2017, 3, 445–451. [Google Scholar] [CrossRef]
- Hall, M.; Bellini, E. International Consortium Claims 25% Efficiency for Flexible CIGS Solar Cell. pv Magazine. Available online: www.pv-magazine-australia.com (accessed on 28 February 2020).
- Thilmany, J. Solar Parking. Mech. Eng. 2016, 138, 12–18. [Google Scholar]
- Mather, R.R.; Wilson, J.I.B. Fabrication of Photovoltaic Textiles. Coatings 2017, 7, 63. [Google Scholar] [CrossRef] [Green Version]
- Nocito, C.; Koncar, V. Flexible photovoltaic cells embedded into textile structures. In Smart Textiles and Their Applications; Koncar, V., Ed.; Woodhead Publishing: Duxdorf, Germany, 2016; pp. 401–422. [Google Scholar]
- Cheng, C.-W.; Shiu, K.-T.; Li, N.; Han, S.-J.; Shi, L.; Sadana, D.K. Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics. Nat. Commun. 2013, 4, 1577. [Google Scholar] [CrossRef]
- Moon, S.; Kim, K.; Kim, Y.; Heo, J.; Lee, J. Highly efficient single-junction GaAs thin-film solar cell on flexible substrate. Sci. Rep. 2016, 6, 30107. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Kim, D.R.; Zheng, X. Transfer Printing Methods for Flexible Thin Film Solar Cells: Basic Concepts and Working Principles. ACS Nano 2014, 8, 8746–8756. [Google Scholar] [CrossRef]
- Perovskite-Based Photovoltaics: A Unique Chance for European PV-Industry, A White Paper from the European Perovskite Initiative; Green Square SPRL: Waterloo, Belgium, 2019; 16p.
- Grancini, G.; Nazeeruddin, M.K. Dimensional tailoring of hybrid perovskites for photovoltaics. Nat. Rev. Mater. 2019, 4, 4–22. [Google Scholar] [CrossRef]
- Aernouts, T. The 5 Things You Always Wanted to Know About Perovskite Solar Cells (the New Hype in pv World). imec Magazine. Available online: www.imec-int.com/en/imec-magazine (accessed on 15 November 2019).
- Qiu, L.; Zou, J.; Chen, W.-H.; Dong, L.; Mei, D.; Song, L.; Wang, J.; Jiang, P.-C.; Du, P.-F.; Xiong, J. Highly efficient and stable perovskite solar cells produced by maximizing additive engineering. Sustain. Energy Fuels 2021, 5, 469–477. [Google Scholar] [CrossRef]
- Jung, J.; Son, S.; Choi, J. Polyaniline/Reduced Graphene Oxide Composites for Hole Transporting Layer of High-Performance Inverted Perovskite Solar Cells. Polymers 2021, 13, 1281. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Sun, P.; Wu, Z.; Li, J.; Wang, X.; Xiao, T.; Yang, L.; Zheng, Z.; Huang, Z. Titanium Nanopillar Arrays Functioning as Electron Transporting Layers for Efficient, Anti-Aging Perovskite Solar Cells. Small 2021, 17, e2004778. [Google Scholar] [CrossRef]
- Wang, Y.; Cong, H.; Yu, B. Photovoltaic Materials. In Handbook of Ecomaterials; Torres Martínez, L.M., Kharissova, O.V., Kharisov, B.I., Eds.; Springer International Publishing: Cham, Swizerland, 2018; pp. 1033–1054. [Google Scholar]
- Billen, P.; Leccisi, E.; Dastidar, S.; Li, S.; Lobaton, L.; Spatari, S.; Fafarman, A.T.; Fthenakis, V.M.; Baxter, J.B. Comparative evaluation of lead emissions and toxicity potential in the life cycle of lead halide perovskite photovoltaics. Energy 2019, 166, 1089–1096. [Google Scholar] [CrossRef]
- Song, W.; Yu, K.; Zhou, E.; Xie, L.; Hong, L.; Ge, J.; Zhang, J.; Zhang, X.; Peng, R.; Ge, Z. Crumple Durable Ultraflexible Organic Solar Cells with an Excellent Power-per-Weight Performance. Adv. Funct. Mater. 2021, 31, 2102694. [Google Scholar] [CrossRef]
- Manafi, P.; Nazockdast, H.; Karimi, M.; Sadighi, M.; Magagnin, L. A study on the microstructural development of gel polymer electrolytes and different imidazolium-based ionic liquids for dye-sensitized solar cells. J. Power Sources 2021, 481, 228622. [Google Scholar] [CrossRef]
- Kaltenbrunner, M.; White, M.; Głowacki, E.D.; Sekitani, T.; Someya, T.; Sariciftci, N.S.; Bauer, S. Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun. 2012, 3, 770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, J.; Mather, R.R. Photovoltaic energy harvesting for intelligent textiles. In Electronic Textiles Smart Fabrics and Wearable Technology; Dias, T., Ed.; Woodhead Publishing: Cambridge, UK, 2015; pp. 155–172. [Google Scholar]
- Borazan, I.; Bedeloglu, A.C.; Demir, A. A photovoltaic textile design with a stainless steel mesh fabric. J. Ind. Text. 2020. [Google Scholar] [CrossRef]
- Li, Y.; Arumugam, S.; Krishnan, C.; Charlton, M.D.B.; Beeby, S.P. Encapsulated Textile Organic Solar Cells Fabricated by Spray Coating. Chem. Sel. 2019, 4, 407–412. [Google Scholar] [CrossRef]
- Lei, T.; Peng, R.; Song, W.; Hong, L.; Huang, J.; Fei, N.; Ge, Z. Bendable and foldable flexible organic solar cells based on Ag nanowire films with 10.30% efficiency. J. Mater. Chem. A 2019, 7, 3737–3744. [Google Scholar] [CrossRef]
- Gu, X.; Zhou, Y.; Gu, K.; Kurosawa, T.; Guo, Y.; Li, Y.; Lin, H.; Schroeder, B.C.; Yan, H.; Molina-Lopez, F.; et al. Roll-to-Roll Printed Large-Area All-Polymer Solar Cells with 5% Efficiency Based on a Low Crystallinity Conjugated Polymer Blend. Adv. Energy Mater. 2017, 7, 1602742. [Google Scholar] [CrossRef] [Green Version]
- Kylberg, W.; De Castro, F.A.; Chabrecek, P.; Geiger, T.; Heier, J.; Nicholson, P.G.; Nüesch, F.; Theocharous, E.; Sonderegger, U.; Hany, R. Spatially resolved photocurrent mapping of efficient organic solar cells fabricated on a woven mesh electrode. Prog. Photovolt. Res. Appl. 2012, 21, 652–657. [Google Scholar] [CrossRef]
- Sumaiya, S.; Kardel, K.; El-Shahat, A. Organic Solar Cell by Inkjet Printing—An Overview. Technologies 2017, 5, 53. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Huang, G.; Wang, H.; Wang, T.; Zhao, Z.; Peng, H.; Cao, C.; Qi, Y.; Chen, W.; Yang, R. Weakening conformational locking for fine tuning of morphology and photovoltaic performance by introducing a third component. Chem. Eng. J. 2021, 422, 130097. [Google Scholar] [CrossRef]
- Chen, Y.-N.; Zheng, R.; Wang, J.; Wang, H.; Li, M.; Wang, Y.; Lu, H.; Zhang, Z.; Liu, Y.; Tang, Z.; et al. Improving the performance of organic solar cells by side chain engineering of fused ring electron acceptors. J. Mater. Chem. C 2021, 9, 6937–6943. [Google Scholar] [CrossRef]
- Huang, J.; Ren, Z.; Zhang, Y.; Liu, K.; Zhang, H.; Tang, H.; Yan, C.; Zheng, Z.; Li, G. Stretchable ITO-Free Organic Solar Cells with Intrinsic Anti-Reflection Substrate for High-Efficiency Outdoor and Indoor Energy Harvesting. Adv. Funct. Mater. 2021, 31, 2010172. [Google Scholar] [CrossRef]
- Hashemi, S.A.; Ramakrishna, S.; Aberle, A.G. Recent progress in flexible–wearable solar cells for self-powered electronic devices. Energy Environ. Sci. 2020, 13, 685–743. [Google Scholar] [CrossRef]
- Opwis, K.; Gutmann, J.S.; Alonso, A.R.L.; Henche, M.J.R.; Mayo, M.E.; Breuil, F.; Leonardi, E.; Sorbello, L. Preparation of a Textile-Based Dye-Sensitized Solar Cell. Int. J. Photoenergy 2016, 2016, 3796074. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Li, Y.; Arumugam, S.; Tudor, J.; Beeby, S. Screen Printed Dye-Sensitized Solar Cells (DSSCs) on Woven Polyester Cotton Fabric for Wearable Energy Harvesting Applications. Mater. Today Proc. 2018, 5, 13753–13758. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Li, M.; Arumugam, S.; Beeby, S.P. Processing of Printed Dye Sensitized Solar Cells on Woven Textiles. IEEE J. Photovolt. 2019, 9, 1020–1024. [Google Scholar] [CrossRef]
- Tingare, Y.S.; Su, C.; Shen, M.-T.; Tsai, S.-H.; Ho, S.-Y.; Chakroborty, S.; Li, W.-R. Imine–carbene-based ruthenium complexes for dye-sensitized solar cells: The effect of isomeric mixture on the photovoltaic performance. New J. Chem. 2020, 44, 20568–20573. [Google Scholar] [CrossRef]
- Chirani, M.R.; Kowsari, E.; SalarAmoli, H.; Yousefzadeh, M.; Chinnappan, A.; Ramakrishna, S. Covalently functionalized graphene oxide with cobalt–nitrogen-enriched complex containing iodide ligand as charge carrier nanofiller for eco-friendly high performance ionic liquid-based dye-sensitized solar cell. J. Mol. Liq. 2021, 325, 115198. [Google Scholar] [CrossRef]
- Cha, S.; Lee, E.; Cho, G. Fabrication of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate)/Poly(vinylidene fluoride) Nanofiber-Web-Based Transparent Conducting Electrodes for Dye-Sensitized Photovoltaic Textiles. ACS Appl. Mater. Interfaces 2021, 13, 28855–28863. [Google Scholar] [CrossRef]
- Jeon, J.-H.; Cho, G. Fundamentals of and Requirements for Solar Cells and Photovoltaic Textiles. In Smart Clothing Technology and Applications; Cho, G.E., Ed.; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2010; pp. 249–265. [Google Scholar]
- Yun, M.J.; Cha, S.I.; Seo, S.H.; Kim, H.S.; Lee, D.Y. Insertion of Dye-Sensitized Solar Cells in Textiles using a Conventional Weaving Process. Sci. Rep. 2015, 5, 11022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugino, K.; Ikeda, Y.; Yonezawa, S.; Gennaka, S.; Kimura, M.; Fukawa, T.; Inagaki, S.; Konosu, Y.; Tanioka, A.; Matsumoto, H. Development of Fiber and Textile-Shaped Organic Solar Cells for Smart Textiles. J. Fiber Sci. Technol. 2017, 73, 336–342. [Google Scholar] [CrossRef] [Green Version]
- Balilonda, A.; Li, Q.; Tebyetekerwa, M.; Tusiime, R.; Zhang, H.; Jose, R.; Zabihi, F.; Yang, S.; Ramakrishna, S.; Zhu, M. Perovskite Solar Fibers: Current Status, Issues and Challenges. Adv. Fiber Mater. 2019, 1, 101–125. [Google Scholar] [CrossRef] [Green Version]
- Satharasinghe, A.; Hughes-Riley, T.; Dias, T. An investigation of a wash-durable solar energy harvesting textile. Prog. Photovolt. Res. Appl. 2020, 28, 578–592. [Google Scholar] [CrossRef]
- Joly, D.; Jung, J.-W.; Kim, I.-D.; Demadrille, R. Electrospun materials for solar energy conversion: Innovations and trends. J. Mater. Chem. C 2016, 4, 10173–10197. [Google Scholar] [CrossRef]
- Elshazly, A.; Rezk, M.Y.; Gameel, K.M.; Allam, N.K. Electrospun Lead-Free All-Inorganic Double Perovskite Nanofibers for Photovoltaic and Optoelectronic Applications. ACS Appl. Nano Mater. 2019, 2, 7085–7094. [Google Scholar] [CrossRef]
- Kim, J.H.; Hong, S.K.; Yoo, S.-J.; Woo, C.Y.; Choi, J.W.; Lee, D.; Kang, J.-W.; Lee, H.W.; Song, M. Pt-free, cost-effective and efficient counter electrode with carbon nanotube yarn for solid-state fiber dye-sensitized solar cells. Dye. Pigment. 2021, 185, 108855. [Google Scholar] [CrossRef]
- Covaci, C.; Gontean, A. Piezoelectric Energy Harvesting Solutions: A Review. Sensors 2020, 20, 3512. [Google Scholar] [CrossRef] [PubMed]
- Intel Corporation SCC. Fabric-Based Piezoelectric Energy Harvesting. U.S. Patent 10,215,164, 26 February 2019. [Google Scholar]
- Yang, B.; Yun, K. Efficient energy harvesting from human motion using wearable piezoelectric shell structures. In Proceedings of the 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS’11), Beijing, China, 4–9 June 2011; pp. 2646–2649. [Google Scholar]
- Talbourdet, A.; Rault, F.; Lemort, G.; Cochrane, C.; Devaux, E.; Campagne, C. 3D interlock design 100% PVDF piezoelectric to improve energy harvesting. Smart Mater. Struct. 2018, 27, 075010. [Google Scholar] [CrossRef]
- Azmi, S.; Varkiani, S.-M.H.; Latifi, M.; Bagherzadeh, R. Tuning energy harvesting devices with different layout angles to robust the mechanical-to-electrical energy conversion performance. J. Ind. Text. 2020, 17. [Google Scholar] [CrossRef]
- He, Z.; Rault, F.; Lewandowski, M.; Mohsenzadeh, E.; Salaün, F. Electrospun PVDF Nanofibers for Piezoelectric Applications: A Review of the Influence of Electrospinning Parameters on the β Phase and Crystallinity Enhancement. Polymers 2021, 13, 174. [Google Scholar] [CrossRef]
- Mishra, S.; Unnikrishnan, L.; Nayak, S.K.; Mohanty, S. Advances in Piezoelectric Polymer Composites for Energy Harvesting Applications: A Systematic Review. Macromol. Mater. Eng. 2018, 304, 1800463. [Google Scholar] [CrossRef] [Green Version]
- Ando, M.; Takeshima, S.; Ishiura, Y.; Ando, K.; Onishi, O. Piezoelectric antibacterial fabric comprised of poly(l-lactic acid) yarn. Jpn. J. Appl. Phys. 2017, 56, 10PG01. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Jin, L.; He, X.; Huang, X.; Xie, M.; Wang, C.; Zhang, C.; Yang, W.; Meng, F.; Lu, J. Glowing stereocomplex biopolymers are generating power: Polylactide/carbon quantum dot hybrid nanofibers with high piezoresponse and multicolor luminescence. J. Mater. Chem. A 2019, 7, 1810–1823. [Google Scholar] [CrossRef]
- Anwar, S.; Amiri, M.H.; Jiang, S.; Abolhasani, M.M.; Rocha, P.R.F.; Asadi, K. Piezoelectric Nylon-11 Fibers for Electronic Textiles, Energy Harvesting and Sensing. Adv. Funct. Mater. 2021, 31, 2004326. [Google Scholar] [CrossRef]
- Fukada, E. Piezoelectricity as a fundamental property of wood. Wood Sci. Technol. 1968, 2, 299–307. [Google Scholar] [CrossRef]
- Bairagi, S.; Banerjee, S.; Chowdhury, A.; Ali, S.W. Development of a Sustainable and Flexible Piezoelectric-cum-Triboelectric Energy Harvester Comprising a Simple Commodity Cotton Fabric. ACS Sustain. Chem. Eng. 2021, 9, 4004–4013. [Google Scholar] [CrossRef]
- Lund, A.; Rundqvist, K.; Nilsson, E.; Yu, L.; Hagström, B.; Müller, C. Energy harvesting textiles for a rainy day: Woven piezoelectrics based on melt-spun PVDF microfibres with a conducting core. NPJ Flex. Electron. 2018, 2, 9. [Google Scholar] [CrossRef] [Green Version]
- Mokhtari, F.; Spinks, G.M.; Fay, C.; Cheng, Z.; Raad, R.; Xi, J.; Foroughi, J. Wearable Electronic Textiles from Nanostructured Piezoelectric Fibers. Adv. Mater. Technol. 2020, 5, 1900900. [Google Scholar] [CrossRef]
- Cho, Y.; Jeong, J.; Choi, M.; Baek, G.; Park, S.; Choi, H.; Ahn, S.; Cha, S.; Kim, T.; Kang, D.-S.; et al. BaTiO3@PVDF-TrFE Nanocomposites with Efficient Orientation Prepared via Phase Separation Nano-coating Method for Piezoelectric Performance Improvement and Application to 3D-PENG. Chem. Eng. J. 2021, 427, 131030. [Google Scholar] [CrossRef]
- Mokhtari, F.; Spinks, G.M.; Sayyar, S.; Cheng, Z.; Ruhparwar, A.; Foroughi, J. Highly Stretchable Self-Powered Wearable Electrical Energy Generator and Sensors. Adv. Mater. Technol. 2021, 6. [Google Scholar] [CrossRef]
- Chamankar, N.; Khajavi, R.; Yousefi, A.A.; Rashidi, A.; Golestanifard, F. A flexible piezoelectric pressure sensor based on PVDF nanocomposite fibers doped with PZT particles for energy harvesting applications. Ceram. Int. 2020, 46, 19669–19681. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Ghahhari, M.R.; Bidoki, S.M. Enhanced piezoelectric performance of PVDF-based electrospun nanofibers by utilizing in situ synthesized graphene-ZnO nanocomposites. J. Mater. Sci. Mater. Electron. 2021, 32, 15789–15800. [Google Scholar] [CrossRef]
- Banerjee, S.; Bairagi, S.; Ali, S.W. A critical review on lead-free hybrid materials for next generation piezoelectric energy harvesting and conversion. Ceram. Int. 2021, 47, 16402–16421. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y.; Guo, J. ZnO nanorods patterned-textile using a novel hydrothermal method for sandwich structured-piezoelectric nanogenerator for human energy harvesting. Phys. E Low-Dimens. Syst. Nanostruct. 2019, 105, 212–218. [Google Scholar] [CrossRef]
- Matsouka, D.; Vassiliadis, S.; Bayramol, D.V. Piezoelectric textile fibres for wearable energy harvesting systems. Mater. Res. Express 2018, 5, 065508. [Google Scholar] [CrossRef]
- Almusallam, A.; Luo, Z.; Komolafe, A.; Yang, K.; Robinson, A.; Torah, R.; Beeby, S. Flexible piezoelectric nano-composite films for kinetic energy harvesting from textiles. Nano Energy 2017, 33, 146–156. [Google Scholar] [CrossRef]
- Shi, J.; Beeby, S.P. PDMS-ZNO Composite Textile Ferroelectret For Human Body Energy Harvesting. In Proceedings of the 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2019), Kraków, Poland, 2–6 December 2019; pp. 1–4. [Google Scholar]
- Zhang, M.; Gao, T.; Wang, J.; Liao, J.; Qiu, Y.; Yang, Q.; Xue, H.; Shi, Z.; Zhao, Y.; Xiong, Z.; et al. A hybrid fibers based wearable fabric piezoelectric nanogenerator for energy harvesting application. Nano Energy 2015, 13, 298–305. [Google Scholar] [CrossRef]
- Forouzan, A.; Yousefzadeh, M.; Latifi, M.; Jose, R. Effect of Geometrical Parameters on Piezoresponse of Nanofibrous Wearable Piezoelectric Nanofabrics under Low Impact Pressure. Macromol. Mater. Eng. 2021, 306, 2000510. [Google Scholar] [CrossRef]
- Kashfi, M.; Fakhri, P.; Amini, B.; Yavari, N.; Rashidi, B.; Kong, L.; Bagherzadeh, R. A novel approach to determining piezoelectric properties of nanogenerators based on PVDF nanofibers using iterative finite element simulation for walking energy harvesting. J. Ind. Text. 2020, 23. [Google Scholar] [CrossRef]
- Rafique, S.; Kasi, A.K.; Kasi, J.K.; Kasi, J.K.; Aminullah; Bokhari, M.; Shakoor, Z. Fabrication of silver-doped zinc oxide nanorods piezoelectric nanogenerator on cotton fabric to utilize and optimize the charging system. Nanomater. Nanotechnol. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- He, Q.; Li, X.; Zhang, J.; Zhang, H.; Briscoe, J. P–N junction-based ZnO wearable textile nanogenerator for biomechanical energy harvesting. Nano Energy 2021, 85, 105938. [Google Scholar] [CrossRef]
- Song, J.; Yang, B.; Zeng, W.; Peng, Z.; Lin, S.; Li, J.; Tao, X. Highly Flexible, Large-Area, and Facile Textile-Based Hybrid Nanogenerator with Cascaded Piezoelectric and Triboelectric Units for Mechanical Energy Harvesting. Adv. Mater. Technol. 2018, 3, 1800016. [Google Scholar] [CrossRef]
- Zhang, R.; Hummelgård, M.; Örtegren, J.; Olsen, M.; Andersson, H.; Yang, Y.; Zheng, H.; Olin, H. The triboelectricity of the human body. Nano Energy 2021, 86, 106041. [Google Scholar] [CrossRef]
- Proto, A.; Penhaker, M.; Conforto, S.; Schmid, M. Nanogenerators for Human Body Energy Harvesting. Trends Biotechnol. 2017, 35, 610–624. [Google Scholar] [CrossRef]
- Haque, R.I.; Ferracci, G.; Farine, P.; Briand, D. Fully casted stretchable triboelectric device for energy harvesting and sensing made of elastomeric materials. In Proceedings of the 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS’17), Kaohsiung, Taiwan, 18–22 June 2017; pp. 1816–1819. [Google Scholar]
- Jian, G.; Meng, Q.; Jiao, Y.; Feng, L.; Shao, H.; Wang, F.; Meng, F. Hybrid PDMS-TiO2-stainless steel textiles for triboelectric nanogenerators. Chem. Eng. J. 2021, 417, 127974. [Google Scholar] [CrossRef]
- Paosangthong, W.; Wagih, M.; torah, R.; Beeby, S. Textile-based triboelectric nanogenerator with alternating positive and negative freestanding grating structure. Nano Energy 2019, 66, 104148. [Google Scholar] [CrossRef]
- Jeng, Y.-R.; Mendy, A.; Ko, C.-T.; Tseng, S.-F.; Yang, C.-R. Development of Flexible Triboelectric Generators Based on Patterned Conductive Textile and PDMS Layers. Energies 2021, 14, 1391. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, W.; Zhang, H. A high-performance textile-based triboelectric nanogenerator manufactured by a novel brush method for self-powered human motion pattern detector. Sustain. Energy Technol. Assess. 2021, 46, 101290. [Google Scholar] [CrossRef]
- Feng, P.-Y.; Xia, Z.; Sun, B.; Jing, X.; Li, H.; Tao, X.; Mi, H.-Y.; Liu, Y. Enhancing the Performance of Fabric-Based Triboelectric Nanogenerators by Structural and Chemical Modification. ACS Appl. Mater. Interfaces 2021, 13, 16916–16927. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Jeon, S.; Lone, S.; Doh, S.J.; Shin, D.-M.; Kim, H.K.; Hwang, Y.-H.; Hong, S.W. Versatile nanodot-patterned Gore-Tex fabric for multiple energy harvesting in wearable and aerodynamic nanogenerators. Nano Energy 2018, 54, 209–217. [Google Scholar] [CrossRef]
- Kim, M.-O.; Pyo, S.; Song, G.; Kim, W.; Oh, Y.; Park, C.; Park, C.; Kim, J. Humidity-Resistant, Fabric-Based, Wearable Triboelectric Energy Harvester by Treatment of Hydrophobic Self-Assembled Monolayers. Adv. Mater. Technol. 2018, 3, 1800048. [Google Scholar] [CrossRef]
- Wen, F.; He, T.; Shi, Q.; Zhang, T.; Lee, C. Superhydrophobic Triboelectric Textile for Sensing and Energy Harvesting Applications. In Proceedings of the 33rd International Conference on Micro Electro Mechanical Systems (IEEE MEMS 2020), Vancouver, BC, Canada, 18–22 January 2020; pp. 582–585. [Google Scholar]
- Ye, C.; Dong, S.; Ren, J.; Ling, S. Ultrastable and High-Performance Silk Energy Harvesting Textiles. Nano-Micro Lett. 2020, 12, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, A.; Pu, X.; Wen, R.; Liu, M.; Zhou, T.; Zhang, K.; Zhang, Y.; Zhai, J.; Hu, W.; Wang, Z.L. Core–Shell-Yarn-Based Triboelectric Nanogenerator Textiles as Power Cloths. ACS Nano 2017, 11, 12764–12771. [Google Scholar] [CrossRef] [PubMed]
- Busolo, T.; Szewczyk, P.K.; Nair, M.; Stachewicz, U.; Kar-Narayan, S. Triboelectric Yarns with Electrospun Functional Polymer Coatings for Highly Durable and Washable Smart Textile Applications. ACS Appl. Mater. Interfaces 2021, 13, 16876–16886. [Google Scholar] [CrossRef]
- Feng, Z.; Yang, S.; Jia, S.; Zhang, Y.; Jiang, S.; Yu, L.; Li, R.; Song, G.; Wang, A.; Martin, T.; et al. Scalable, washable and lightweight triboelectric-energy-generating fibers by the thermal drawing process for industrial loom weaving. Nano Energy 2020, 74, 104805. [Google Scholar] [CrossRef]
- Sangkhun, W.; Wanwong, S. Natural textile based triboelectric nanogenerators for efficient energy harvesting applications. Nanoscale 2021, 13, 2420–2428. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Mo, J.; Fu, Q.; Liu, Y.; Wang, S.; Nie, S. Wood-cellulose-fiber-based functional materials for triboelectric nanogenerators. Nano Energy 2021, 81, 105637. [Google Scholar] [CrossRef]
- Rezaei, J.; Nikfarjam, A. Rib Stitch Knitted Extremely Stretchable and Washable Textile Triboelectric Nanogenerator. Adv. Mater. Technol. 2021, 6, 2000983. [Google Scholar] [CrossRef]
- Chen, L.; Chen, C.; Jin, L.; Guo, H.; Wang, A.C.; Ning, F.; Xu, Q.; Du, Z.; Wang, F.; Wang, Z.L. Stretchable negative Poisson’s ratio yarn for triboelectric nanogenerator for environmental energy harvesting and self-powered sensor. Energy Environ. Sci. 2021, 14, 955–964. [Google Scholar] [CrossRef]
- Chen, C.; Chen, L.; Wu, Z.; Guo, H.; Yu, W.; Du, Z.; Wang, Z.L. 3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3D tactile sensors. Mater. Today 2020, 32, 84–93. [Google Scholar] [CrossRef]
- Xu, F.; Dong, S.; Liu, G.; Pan, C.; Guo, Z.H.; Guo, W.; Li, L.; Liu, Y.; Zhang, C.; Pu, X.; et al. Scalable fabrication of stretchable and washable textile triboelectric nanogenerators as constant power sources for wearable electronics. Nano Energy 2021, 88, 106247. [Google Scholar] [CrossRef]
- Li, X.; Sun, Y. WearETE: A Scalable Wearable E-Textile Triboelectric Energy Harvesting System for Human Motion Scavenging. Sensors 2017, 17, 2649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Xu, J.; Yu, J.; Song, L.; He, J.; Ma, N.; Hou, X.; Chou, X. An all-rubber-based woven nanogenerator with improved triboelectric effect for highly efficient energy harvesting. Mater. Lett. 2021, 287, 129271. [Google Scholar] [CrossRef]
- Huang, J.; Hao, Y.; Zhao, M.; Li, W.; Huang, F.; Wei, Q. All-Fiber-Structured Triboelectric Nanogenerator via One-Pot Electrospinning for Self-Powered Wearable Sensors. ACS Appl. Mater. Interfaces 2021, 13, 24774–24784. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; He, J.; Ma, L.; Yao, Y.; Zhu, X.; Peng, L.; Liu, X.; Li, K.; Qu, M. A humidity-resistant, stretchable and wearable textile-based triboelectric nanogenerator for mechanical energy harvesting and multifunctional self-powered haptic sensing. Chem. Eng. J. 2021, 423, 130200. [Google Scholar] [CrossRef]
- He, T.; Wang, H.; Wang, J.; Tian, X.; Wen, F.; Shi, Q.; Ho, J.S.; Lee, C. Self-Sustainable Wearable Textile Nano-Energy Nano-System (NENS) for Next-Generation Healthcare Applications. Adv. Sci. 2019, 6, 1901437. [Google Scholar] [CrossRef] [Green Version]
- Gang, X.; Guo, Z.H.; Cong, Z.; Wang, J.; Chang, C.; Pan, C.; Pu, X.; Wang, Z.L. Textile Triboelectric Nanogenerators Simultaneously Harvesting Multiple “High-Entropy” Kinetic Energies. ACS Appl. Mater. Interfaces 2021, 13, 20145–20152. [Google Scholar] [CrossRef]
- He, J.; Qian, S.; Niu, X.; Zhang, N.; Qian, J.; Hou, X.; Mu, J.; Geng, W.; Chou, X. Piezoelectric-enhanced triboelectric nanogenerator fabric for biomechanical energy harvesting. Nano Energy 2019, 64, 103933. [Google Scholar] [CrossRef]
- Jing, T.; Xu, B.; Yang, Y. Organogel electrode based continuous fiber with large-scale production for stretchable triboelectric nanogenerator textiles. Nano Energy 2021, 84, 105867. [Google Scholar] [CrossRef]
- Jing, T.; Xu, B.; Xin, J.H.; Guan, X.; Yang, Y. Series to parallel structure of electrode fiber: An effective method to remarkably reduce inner resistance of triboelectric nanogenerator textiles. J. Mater. Chem. A 2021, 9, 12331–12339. [Google Scholar] [CrossRef]
- Zhang, H.; Cui, X.; Cao, S.; Zhang, Q.; Sang, S.; Zhang, W. Human Body as a Power Source for Biomechanical Energy Scavenging Based on Electrode-Free Triboelectric Nanogenerators. Energy Technol. 2018, 6, 2053–2057. [Google Scholar] [CrossRef]
- Lund, A.; van der Velden, N.M.; Persson, N.-K.; Hamedi, M.M.; Müller, C. Electrically conducting fibres for e-textiles: An open playground for conjugated polymers and carbon nanomaterials. Mater. Sci. Eng. R 2018, 126, 1–29. [Google Scholar] [CrossRef]
- Onofrei, E.; Codau, T.-C.; Bedek, G.; Dupont, D.; Cochrane, C. Textile sensor for heat flow measurements. Text. Res. J. 2017, 87, 165–174. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, H.; He, D.; Zhou, Y.; Peng, W.; Fan, F.; Huang, H. Transferable and flexible thermoelectric thin films based on elemental tellurium with a large power factor. Appl. Phys. Lett. 2018, 112, 243904. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Lwo, B.-J. Flexible Thermoelectric Films by Electrospinning. In Proceedings of the IEEE Computer Society Proceedings, International Microsystems, Packaging, Assembly and Circuits Technology Conference—IMPACT 2020 and 22nd International Conference on Electronics Materials and Packaging—EMAP 2020, Taipei, Taiwan, 21–23 October 2020; pp. 219–222. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, H.; Mao, C.; Li, C.M. Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body. Appl. Energy 2016, 164, 57–63. [Google Scholar] [CrossRef]
- Ikeda, H.; Khan, F.; Veluswamy, P.; Sakamoto, S.; Navaneethan, M.; Shimomura, M.; Murakami, K.; Hayakawa, Y. Thermoelectric characteristics of nanocrystalline ZnO grown on fabrics for wearable power generator. J. Phys. Conf. Ser. 2018, 1052, 012017. [Google Scholar] [CrossRef]
- MacLeod, B.A.; Stanton, N.J.; Gould, I.E.; Wesenberg, D.; Ihly, R.; Owczarczyk, Z.R.; Hurst, K.E.; Fewox, C.S.; Folmar, C.N.; Hughes, K.H.; et al. Large n- and p-type thermoelectric power factors from doped semiconducting single-walled carbon nanotube thin films. Energy Environ. Sci. 2017, 10, 2168–2179. [Google Scholar] [CrossRef]
- Song, H.; Qiu, Y.; Wang, Y.; Cai, K.; Li, D.; Deng, Y.; He, J. Polymer/carbon nanotube composite materials for flexible thermoelectric power generator. Compos. Sci. Technol. 2017, 153, 71–83. [Google Scholar] [CrossRef]
- Chatterjee, K.; Negi, A.; Kim, K.H.; Liu, J.; Ghosh, T.K. In-Plane Thermoelectric Properties of Flexible and Room-Temperature-Doped Carbon Nanotube Films. ACS Appl. Energy Mater. 2020, 3, 6929–6936. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, Q.; Jin, W.; Jing, Y.; Chen, X.; Han, X.; Bao, Q.; Liu, Y.; Wang, X.; Wang, S.; et al. Carbon nanotube yarn based thermoelectric textiles for harvesting thermal energy and powering electronics. J. Mater. Chem. A 2020, 8, 2984–2994. [Google Scholar] [CrossRef]
- Hardianto, H.; De Mey, G.; Ciesielska-Wrόbel, I.; Hertleer, C.; Van Langenhove, L. Seebeck Coefficient of Thermocouples from Nickel-Coated Carbon Fibers: Theory and Experiment. Materials 2018, 11, 922. [Google Scholar] [CrossRef] [Green Version]
- Jangra, V.; Maity, S.; Vishnoi, P. A review on the development of conjugated polymer-based textile thermoelectric generator. J. Ind. Text. 2021, 34. [Google Scholar] [CrossRef]
- Sparavigna, A.C.; Florio, L.; Avloni, J.; Henn, A. Polypyrrole Coated PET Fabrics for Thermal Applications. Mater. Sci. Appl. 2010, 1, 253–259. [Google Scholar] [CrossRef] [Green Version]
- Kirihara, K.; Wei, Q.; Mukaida, M.; Ishida, T. Thermoelectric power generation using nonwoven fabric module impregnated with conducting polymer PEDOT:PSS. Synth. Met. 2017, 225, 41–48. [Google Scholar] [CrossRef]
- Lund, A.; Tian, Y.; Darabi, S.; Müller, C. A polymer-based textile thermoelectric generator for wearable energy harvesting. J. Power Sources 2020, 480, 228836. [Google Scholar] [CrossRef]
- Kim, Y.; Lund, A.; Noh, H.; Hofmann, A.I.; Craighero, M.; Darabi, S.; Zokaei, S.; Park, J.I.; Yoon, M.-H.; Müller, C. Robust PEDOT:PSS Wet-Spun Fibers for Thermoelectric Textiles. Macromol. Mater. Eng. 2020, 305. [Google Scholar] [CrossRef]
- Khoso, N.A.; Jiao, X.; GuangYu, X.; Tian, S.; Wang, J. Enhanced thermoelectric performance of graphene based nanocomposite coated self-powered wearable e-textiles for energy harvesting from human body heat. RSC Adv. 2021, 11, 16675–16687. [Google Scholar] [CrossRef]
- Zhang, X.; Li, T.-T.; Ren, H.-T.; Peng, H.; Jiang, Q.; Wu, L.; Shiu, B.; Wang, Y.; Lou, C.-W.; Lin, J.-H. Flexible and wearable wristband for harvesting human body heat based on coral-like PEDOT: Tos-coated nanofibrous film. Smart Mater. Struct. 2021, 30, 015003. [Google Scholar] [CrossRef]
- Cooke, L. Durable Canvas Cloth with Embedded Solar Cells Generates 120 Watts Per Square Meter. InHabitat News. 17 November 2017. Available online: https://inhabitat.com/durable-canvas-cloth-with-embedded-solar-cells-generates-120-watts-per-square-meter/ (accessed on 31 July 2021).
- Buffenstein, A. Wear the Power of the Sun in Pauline van Dongen’s Solar Shirt. Vice. 19 February 2016. Available online: https://www.vice.com/en/article/d74k5a/solar-shirt-pauline-van-dongen (accessed on 31 July 2021).
- Arthur, R. Tommy Hilfiger’s Solar-Powered Jacket—Wearable Tech in Review. Forbes. 20 November 2014. Available online: https://www.forbes.com/sites/rachelarthur/2014/11/20/tommy-hilfigers-solar-powered-jacket-wearable-tech-in-review/?sh=1fbe771c566b (accessed on 31 July 2021).
- Weir, J. Noon Solar Satchel Bags. CrunchWear. 8 May 2008. Available online: https://crunchwear.com/noon-solar-satchel-bags/ (accessed on 31 July 2021).
- Kalvapalle, R. The CareJack Vest Helps Wearers Lift Heavy Loads Using Stored Kinetic Energy. The Trend Hunter. 3 April 2015. Available online: https://www.trendhunter.com/trends/carejack (accessed on 31 July 2021).
- Perez, D. Vodafone’s Power Shorts Uses Kinetic Energy to Charge Your Smartphone. Übergizmo. 19 June 2013. Available online: https://www.ubergizmo.com/2013/06/vodafones-power-shorts-uses-kinetic-energy-to-charge-your-smartphone/ (accessed on 31 July 2021).
- Sherwood, J. Orange Launches Dance-Powered Phone Charger. The Register. 24 June 2008. Available online: https://www.theregister.com/2008/06/24/orange_kinetic_phone_charger/ (accessed on 31 July 2021).
- Holloway, J. Power Pocket Prototype Uses Body Heat to Charge A Smartphone. New Atlas. 13 June 2013. Available online: https://newatlas.com/power-pocket-charger/27914/ (accessed on 31 July 2021).
- Flatley, J.L. Orange Power Wellies Convert All That Dancin’ to Juice for Your Mobile. Engadget. 7 June 2010. Available online: https://www.engadget.com/2010-06-07-orange-power-wellies-convert-all-that-dancin-to-juice-for-your.html (accessed on 31 July 2021).
- Satharasinghe, A.; Hughes-Riley, T.; Dias, T. A Review of Solar Energy Harvesting Electronic Textiles. Sensors 2020, 20, 5938. [Google Scholar] [CrossRef]
- Zhang, C.; Fan, W.; Wang, S.; Wang, Q.; Zhang, Y.; Dong, K. Recent Progress of Wearable Piezoelectric Nanogenerators. ACS Appl. Electron. Mater. 2021, 3, 2449–2467. [Google Scholar] [CrossRef]
- Huang, P.; Wen, D.-L.; Qiu, Y.; Yang, M.-H.; Tu, C.; Zhong, H.-S.; Zhang, X.-S. Textile-Based Triboelectric Nanogenerators for Wearable Self-Powered Microsystems. Micromachines 2021, 12, 158. [Google Scholar] [CrossRef]
- Molina-Lopez, F. Emerging Thermoelectric Generators Based on Printed and Flexible Electronics Technology. In Proceedings of the 2020 IEEE Sensors, Vitual, 25–28 October 2020; p. 9278922. [Google Scholar] [CrossRef]
- Dong, K.; Hu, Y.; Yang, J.; Kim, S.-W.; Hu, W.; Wang, Z.L. Smart textile triboelectric nanogenerators: Current status and perspectives. MRS Bull. 2021, 46, 512–521. [Google Scholar] [CrossRef]
- Mao, Y.; Li, Y.; Xie, J.; Liu, H.; Guo, C.; Hu, W. Triboelectric nanogenerator/supercapacitor in-one self-powered textile based on PTFE yarn wrapped PDMS/MnO2NW hybrid elastomer. Nano Energy 2021, 84, 105918. [Google Scholar] [CrossRef]
- Shuvo, I.I.; Decaens, J.; Lachapelle, D.; Dolez, P.I. Smart Textiles Testing: A Roadmap to Standardized Test Methods for Safety & Quality-Control. In Textiles for Functional Applications; Kumar, B., Ed.; IntechOpen: London, UK, 2021; pp. 1–15. [Google Scholar]
- EN 16812:2016. In Textiles and Textile Products—Electrically Conductive Textiles—Determination of the Linear Electrical Resistance of Conductive Tracks; European Committee for Standardization: Brussels, Belgium, 2016; pp. 1–15. Available online: https://standards.iteh.ai/catalog/standards/cen/6a8bc45e-d439-493d-ba92-58698b5ce97b/en-16812-2016 (accessed on 10 September 2021).
- Decaens, J.; Vermeersch, O. Specific testing for smart textiles. In Advanced Characterization and Testing of Textiles; Dolez, P.I., Vermeersch, O., Izquerdo, V., Eds.; Elsevier: Duxford, UK, 2018; pp. 351–374. [Google Scholar]
Technologies | Strengths | Weaknesses | Promising Strategies |
---|---|---|---|
Photovoltaic | |||
Inorganic films | High energy conversion efficiency | Rigid, brittle material; lack textile appearance and behavior; expensive; concerns with toxicity of compounds | Thin films, amorphous silicon, perovskites, tandem structures, combined with polymer layers |
Organic films | Flexible, thin, light; can be manufactured using continuous processes with which the textile industry is already familiar | Low energy conversion efficiency | Ternary polymerization, side chain engineering, nanocomposites, surface texturing of substrate |
Dye-sensitized solar cells | Low cost, can be manufactured using continuous processes with which the textile industry is already familiar | Low energy conversion efficiency | High purity sensitizers, ionic liquid electrolytes, nanofibrous transparent electrodes |
Fibers and filaments | Can be fully integrated in the textile structure | Low energy conversion efficiency, low resistance to bending | Core/shell structures, electrospun fibers |
Piezoelectric | |||
Ceramics and single crystals | High output power | Rigid, brittle material; toxicity in certain instances | Use as nanofillers in polymer matrices |
Polymers | Flexible, thin, light; Can be easily integrated into textile structures as a film or a yarn | High output power, low durability | Precise control of the manufacturing parameters to optimize the crystallinity and piezo phase content; nanofibrous structures |
Composites/ nanocomposites | Flexible, thin, light; Can be easily integrated into textile structures as a film or a yarn | High output power, low durability | Nanofibrous structures, piezoelectric fillers, multiscale features, lead-free alternatives to piezoelectric ceramic fillers |
PENG devices | Level of miniaturization desired for smart textiles | High output power, low durability | Coiled fibers, PDMS encapsulation, paired with TENG device |
Triboelectric | |||
Films/coatings | Flexible, thin, light; Can be easily integrated into textile structures | Limited power output, sensitive to moisture, low durability | Micro/nanopatterning |
Fibers/textiles | Flexible, thin, light; Can be easily integrated into textile structures | Limited power output, sensitive to moisture, low durability | Micro/nanopatterning, hierarchical structures, electrospun nanofibers, knitted/double-faced knitted structures |
TENG devices | Level of miniaturization desired for smart textiles | Limited power output, sensitive to moisture, low durability | Combination of charge flow paths, core/shell organogel electrode, combination of actuation modes, paired with PENG device |
Thermoelectric | |||
Large Seebeck effect materials | High energy conversion efficiency | Poor processability, toxicity, high cost | Use as nanofillers in conductive polymer matrices, nanoscale structures |
Carbonaceous materials | Easy to turn into p- and n-type materials by doping, easy to integrate into textile structures | Low durability | Combination with conductive polymers, yarn configuration for out-of-plane thermoelectric devices |
Organic materials/textiles | Flexible, thin, light; low thermal conductivity | Low energy conversion efficiency, low durability | Nanoscale structure (nanocomposite, nanofibers, etc.), out-of-plane construction |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolez, P.I. Energy Harvesting Materials and Structures for Smart Textile Applications: Recent Progress and Path Forward. Sensors 2021, 21, 6297. https://doi.org/10.3390/s21186297
Dolez PI. Energy Harvesting Materials and Structures for Smart Textile Applications: Recent Progress and Path Forward. Sensors. 2021; 21(18):6297. https://doi.org/10.3390/s21186297
Chicago/Turabian StyleDolez, Patricia I. 2021. "Energy Harvesting Materials and Structures for Smart Textile Applications: Recent Progress and Path Forward" Sensors 21, no. 18: 6297. https://doi.org/10.3390/s21186297
APA StyleDolez, P. I. (2021). Energy Harvesting Materials and Structures for Smart Textile Applications: Recent Progress and Path Forward. Sensors, 21(18), 6297. https://doi.org/10.3390/s21186297