Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (579)

Search Parameters:
Keywords = smart textiles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 3411 KB  
Review
Recent Advances in Reversible Thermochromic Materials for Smart Textiles: A Review
by Qiucheng Lu, Xu Wang, Xiaohui Zhao, Ziqiang Bi, Hailin Li and Yuqing Liu
Materials 2026, 19(4), 742; https://doi.org/10.3390/ma19040742 (registering DOI) - 14 Feb 2026
Abstract
Reversible thermochromic materials change color in response to temperature variations and hold significant potential in smart textiles. Their reversible color-changing property not only offers temperature indication and enhances textile performance but also promotes smart textile development. This is achieved by improving the intelligence, [...] Read more.
Reversible thermochromic materials change color in response to temperature variations and hold significant potential in smart textiles. Their reversible color-changing property not only offers temperature indication and enhances textile performance but also promotes smart textile development. This is achieved by improving the intelligence, multifunctionality, and environmental adaptability of textiles. This review summarizes the characteristics and recent advancements of reversible thermochromic materials, including leuco dye-based organic systems and other organic, liquid crystal (LC), inorganic, and photonic crystal (PC) types. It emphasizes recent progress in integrating these materials into textiles through techniques such as microencapsulation, printing and dyeing, and fiber fabrication. Furthermore, this review systematically examines applications of reversible thermochromic materials in smart textiles, covering areas such as anti-counterfeiting, temperature-sensitive regulation, and aesthetic enhancement. Current challenges, including limited stability, inadequate wash durability, and low color sensitivity, are also addressed, alongside potential development directions. The aim of this review is to provide a theoretical foundation and technical guidance for designing and developing reversible thermochromic smart textiles. Full article
(This article belongs to the Section Smart Materials)
41 pages, 120569 KB  
Review
Hydrogel Microcapsules for Stimuli-Responsive Textiles
by Chloe M. Taylor and Lucian A. Lucia
Fibers 2026, 14(2), 22; https://doi.org/10.3390/fib14020022 - 9 Feb 2026
Viewed by 304
Abstract
Stimuli-responsive textiles are a rapidly evolving class of functional fiber-based materials that sense and adapt to environmental triggers. Within these enabling technologies, hydrogels and microcapsules are very illustrative, as they offer complementary mechanisms for moisture management, controlled release, and adaptive performance. Hydrogels provide [...] Read more.
Stimuli-responsive textiles are a rapidly evolving class of functional fiber-based materials that sense and adapt to environmental triggers. Within these enabling technologies, hydrogels and microcapsules are very illustrative, as they offer complementary mechanisms for moisture management, controlled release, and adaptive performance. Hydrogels provide soft, water-rich polymer networks with modifiable swelling, permeability, and mechanics, while microcapsules offer protection and targeted delivery of active agents through engineered shell structures. When integrated into fibrous networks, they impart dynamic detection responses for moisture, temperature, pH, mechanical stress, light, and chemical or biological agents. This review critically examines progress in design, synthesis, and textile integration of hydrogel- and microcapsule-based systems, with emphasis on materials that exhibit stimuli-responsive behavior rather than passive or extended-release functionality. Strategies for incorporating bulk hydrogels, micro- and nanogels, and stimuli-responsive microcapsules into fibers, yarns, and fabrics are discussed in addition to applications such as smart apparel, medical and hygienic textiles, controlled drug delivery, antimicrobial fabrics, and adaptive filtration media. Existing challenges for durability, washability, response kinetics, scalability, and sustainability are highlighted, while future research directions are proposed to advance the development of robust and intelligent textile systems at the nexus of soft matter science and fiber engineering. Full article
(This article belongs to the Collection Review Papers of Fibers)
Show Figures

Figure 1

12 pages, 1729 KB  
Communication
Liquid Crystal Elastomer Microfiber Actuators Prepared by Melt-Centrifugal Technology
by Wei Liao, Chenglin Jia and Zhongqiang Yang
Actuators 2026, 15(2), 93; https://doi.org/10.3390/act15020093 - 2 Feb 2026
Viewed by 250
Abstract
Fiber actuators underpin soft robots, artificial muscles, and smart textiles. A persistent bottleneck is the fabrication of monodomain liquid crystal elastomer (LCE) microfibers with narrow size distributions while preserving axial alignment. This work establishes a melt-centrifugal spinning (MCS) route with two-step UV fixation [...] Read more.
Fiber actuators underpin soft robots, artificial muscles, and smart textiles. A persistent bottleneck is the fabrication of monodomain liquid crystal elastomer (LCE) microfibers with narrow size distributions while preserving axial alignment. This work establishes a melt-centrifugal spinning (MCS) route with two-step UV fixation that separates flow-induced alignment from network crosslinking. High-speed rotation creates a long extensional jet; an obliquely incident, on-the-fly UV dose at touchdown locks the director, and a post-cure consolidates the network. The obtained LCE microfiber can achieve large reversible contraction (L/L0 = 0.56), lift a weight, and trigger the tweezers. The method produces a new approach for the fabrication of device-ready LCE actuators, establishes a general design principle for diameter control via curing sequence, and opens a practical path toward artificial muscles and flexible micro robotics. Full article
(This article belongs to the Section Actuator Materials)
Show Figures

Figure 1

12 pages, 2342 KB  
Article
Triboelectric Performance of Electrospun PVDF Fibers for Energy Harvesting: A Comparative Study of Boron Nitride (BN) and Reduced Graphene Oxide (rGO) Fillers
by Sunija Sukumaran, Piotr K. Szewczyk and Urszula Stachewicz
Materials 2026, 19(3), 475; https://doi.org/10.3390/ma19030475 - 24 Jan 2026
Viewed by 349
Abstract
The growing demand for smart electronic devices in daily life requires sustainable, renewable energy sources that reliably power portable and wearable systems. Triboelectric nanogenerators (TENGs) have emerged as a promising platform for smart textile-based energy harvesting due to their material versatility and mechanical [...] Read more.
The growing demand for smart electronic devices in daily life requires sustainable, renewable energy sources that reliably power portable and wearable systems. Triboelectric nanogenerators (TENGs) have emerged as a promising platform for smart textile-based energy harvesting due to their material versatility and mechanical compliance. In this work, electrospun poly (vinylidene fluoride) (PVDF) fiber mats incorporating boron nitride (BN) nanoparticles and reduced graphene oxide (rGO) were investigated to elucidate the roles of insulating and conductive nanofillers in governing the structural and electroactive properties of PVDF-based triboelectric materials. Electrospun PVDF mats containing 5 wt.% BN exhibited enhanced β-phase content (82%), attributed to the nucleating effect of BN and strong interfacial interactions between the nanofiller and the PVDF matrix. In contrast, 7 wt.% rGO demonstrated a high electroactive β-phase fraction (81%), arising from filler-induced dipole alignment and enhanced charge transport within the fibrous network. A comparative analysis of BN and rGO highlights filler-driven mechanisms influencing the electroactive phase formation and triboelectric charge generation in PVDF mats. The corresponding triboelectric power density reached 231 μWcm−2 for the 7 wt.% rGO/PVDF and 281 μWcm−2 for the 5 wt.% BN/PVDF-based TENGs, providing valuable insights for the rational design of high-performance, flexible triboelectric materials for wearable energy-harvesting applications. Full article
(This article belongs to the Special Issue Advances in Flexible Electronics and Electronic Devices)
Show Figures

Graphical abstract

45 pages, 8284 KB  
Review
Recent Advances and Challenges of Textile-Based Triboelectric Nanogenerators for Smart Healthcare and Sports Applications
by Lijun Chen, Jie Wu, Ke Xu, Yuanyuan Zhang and Chaoyu Chen
Nanomaterials 2026, 16(2), 141; https://doi.org/10.3390/nano16020141 - 21 Jan 2026
Viewed by 724
Abstract
The combination of nanogenerator technology and traditional textile materials has given rise to textile-based triboelectric nanogenerators (T-TENGs) structured from fibers, yarns, and fabrics. Due to their lightweight, flexibility, washability, and cost-effectiveness, T-TENGs offer a promising platform for powering and sensing in next-generation wearable [...] Read more.
The combination of nanogenerator technology and traditional textile materials has given rise to textile-based triboelectric nanogenerators (T-TENGs) structured from fibers, yarns, and fabrics. Due to their lightweight, flexibility, washability, and cost-effectiveness, T-TENGs offer a promising platform for powering and sensing in next-generation wearable electronics, with particularly significant potential in smart healthcare and sports monitoring. However, the inherent electrical and structural limitations of textile materials often restrict their power output, signal stability, and sensing range, making it challenging to achieve both high electrical performance and high sensing sensitivity. This review focuses on the application of T-TENGs in smart healthcare and sports. It systematically presents recent developments in textile material selection, sensing structure, fabric design, working mechanisms, accuracy optimization, and practical application scenarios. Furthermore, it provides a critical analysis of the recurring structural and material limitations that constrain performance and offers constructive pathways to address them. Key challenges such as the low charge density of textile interfaces may be mitigated by selecting low-hygroscopicity materials, applying hydrophobic treatments, and optimizing textile structures to enhance contact efficiency and environmental stability. Issues of signal instability under dynamic deformation call for advanced structural designs that accommodate strain without compromising electrical pathways, coupled with robust signal processing algorithms. By providing a comparative analysis across materials and structures, this review aims to inform future designs and accelerate the translation of high-performance T-TENGs from laboratory research to real-world implementation. Full article
(This article belongs to the Special Issue Nanogenerators for Energy Harvesting and Sensing, 2nd Edition)
Show Figures

Graphical abstract

45 pages, 5089 KB  
Review
A Review on the Synthesis Methods, Properties, and Applications of Polyaniline-Based Electrochromic Materials
by Ge Cao, Yan Ke, Kaihua Huang, Tianhong Huang, Jiali Xiong, Zhujun Li and He Zhang
Coatings 2026, 16(1), 129; https://doi.org/10.3390/coatings16010129 - 19 Jan 2026
Viewed by 564
Abstract
Polyaniline (PANI), characterized by its proton-coupled redox mechanism and multicolor reversibility, is widely investigated for adaptive optical interfaces. Compared to inorganic oxides, PANI offers advantages in cost-effectiveness, mechanical flexibility, and molecular tunability; however, its practical implementation faces challenges related to kinetic limitations and [...] Read more.
Polyaniline (PANI), characterized by its proton-coupled redox mechanism and multicolor reversibility, is widely investigated for adaptive optical interfaces. Compared to inorganic oxides, PANI offers advantages in cost-effectiveness, mechanical flexibility, and molecular tunability; however, its practical implementation faces challenges related to kinetic limitations and environmental instability. This review presents a comprehensive analysis of PANI-based electrochromic materials, examining the intrinsic correlations among synthesis methodologies, microstructural characteristics, and optoelectronic performance. Synthesis strategies, including chemical oxidative polymerization, electrochemical deposition, and template-assisted techniques, are evaluated. Emphasis is placed on resolving the trade-off between optical contrast and switching kinetics by constructing high-surface-area porous nanostructures and inducing chain ordering via functional dopants to shorten ion diffusion paths and reduce charge transfer resistance. Fundamental electrochromic properties are subsequently discussed, with specific attention to degradation mechanisms triggered by environmental factors, such as pH drift, and stabilization strategies involving electrolyte engineering and composite design. Furthermore, the review addresses the evolution of applications from single-band monochromatic displays to dual-band smart windows for decoupled visible/near-infrared regulation and multifunctional integrated systems, including electrochromic supercapacitors and adaptive thermal management textiles. Finally, technical challenges regarding long-term durability, neutral color development, and large-area manufacturing are summarized to outline future research directions for PANI-based optical systems. Full article
Show Figures

Figure 1

15 pages, 7343 KB  
Article
Preparation and High-Sensitivity Thermochromic Performance of MXene-Enhanced Cholesteric Liquid Crystal Microcapsule Textiles
by Xuzhi Sun, Yi Yang, Xiangwu Zhang, Maoli Yin and Mingfei Sheng
Polymers 2026, 18(2), 223; https://doi.org/10.3390/polym18020223 - 15 Jan 2026
Viewed by 365
Abstract
To mitigate the attenuation of color-change sensitivity in cholesteric liquid crystals (CLCs) post-microencapsulation, this study developed MXene-reinforced thermochromic textiles. Monolayer/few-layer MXene nanosheets were fabricated via an etching-intercalation-dispersion approach, while cholesteric liquid crystal microcapsules (CLCMs) were synthesized through a solvent evaporation method. Cotton fabrics [...] Read more.
To mitigate the attenuation of color-change sensitivity in cholesteric liquid crystals (CLCs) post-microencapsulation, this study developed MXene-reinforced thermochromic textiles. Monolayer/few-layer MXene nanosheets were fabricated via an etching-intercalation-dispersion approach, while cholesteric liquid crystal microcapsules (CLCMs) were synthesized through a solvent evaporation method. Cotton fabrics were pretreated with polydopamine (PDA), followed by the fabrication of poly(diallyldimethylammonium chloride) (PDAC)/MXene composite coatings via layer-by-layer (LbL) self-assembly and subsequent hydrophobic modification. Systematic characterizations (scanning electron microscopy, SEM; atomic force microscopy, AFM) and performance evaluations revealed that MXene nanosheets have an average thickness of 1.54 nm, while CLCMs display a uniform spherical morphology. The resultant textiles exhibit a reversible red-green-blue color transition over the temperature range of 26.5–29.5 °C, with sensitivity comparable to pristine CLCs and excellent hydrophobicity. This work overcomes the long-standing bottleneck of inadequate color-change sensitivity in conventional liquid crystal microcapsule textiles, offering a novel strategy for the advancement of smart wearable color-changing materials. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

16 pages, 36371 KB  
Article
Synergistic Integration of Drop-Casting with Sonication and Thermal Treatment for Fabrication of MWCNT-Coated Conductive Cotton Fabrics
by Muhammad Shahbaz and Hiroshi Furuta
Crystals 2026, 16(1), 60; https://doi.org/10.3390/cryst16010060 - 14 Jan 2026
Viewed by 468
Abstract
This study introduces a synergistic drop-casting, sonication, and thermal treatment (DSTT) method for fabricating multi-walled carbon nanotube (MWCNT)-coated conductive cotton fabrics. The process produced uniform MWCNT networks with a minimum sheet resistance of 0.072 ± 0.004 kΩ/sq. at ~30 wt.% loading. Scanning electron [...] Read more.
This study introduces a synergistic drop-casting, sonication, and thermal treatment (DSTT) method for fabricating multi-walled carbon nanotube (MWCNT)-coated conductive cotton fabrics. The process produced uniform MWCNT networks with a minimum sheet resistance of 0.072 ± 0.004 kΩ/sq. at ~30 wt.% loading. Scanning electron microscopy confirmed an improved MWCNT network. Reproducibility was demonstrated for different fabric sizes, with resistance values remaining consistent within experimental errors. Stability tests showed only minor changes in sheet resistance after 16 weeks of ambient storage and periodic manual bending. Compared to conventional methods such as room-temperature drying, vacuum drying, and sonication alone, DSTT consistently performed better, yielding fabrics with lower resistance and more reliable conductivity. These results highlight DSTT as a reproducible and scalable method for producing conductive cotton fabrics suitable for smart textiles and wearable electronics. Full article
Show Figures

Figure 1

29 pages, 2741 KB  
Review
Production Techniques for Antibacterial Fabrics and Their Emerging Applications in Wearable Technology
by Azam Ali, Muhammad Zaman Khan, Sana Rasheed and Rimsha Imtiaz
Micro 2026, 6(1), 5; https://doi.org/10.3390/micro6010005 - 13 Jan 2026
Viewed by 675
Abstract
Integrating antibacterial fabrics into wearable technology represents a transformative advancement in healthcare, fashion, and personal hygiene. Antibacterial fabrics, designed to inhibit microbial growth, are gaining prominence due to their potential to reduce infections, enhance durability, and maintain cleanliness in wearable devices. These fabrics [...] Read more.
Integrating antibacterial fabrics into wearable technology represents a transformative advancement in healthcare, fashion, and personal hygiene. Antibacterial fabrics, designed to inhibit microbial growth, are gaining prominence due to their potential to reduce infections, enhance durability, and maintain cleanliness in wearable devices. These fabrics offer effective antimicrobial properties while retaining comfort and functionality by incorporating nanotechnology and advanced materials, such as silver nanoparticles, zinc oxide, titanium dioxide, and graphene. The production techniques for antibacterial textiles range from chemical and physical surface modifications to biological treatments, each tailored to achieve long-lasting antibacterial performance while preserving fabric comfort and breathability. Advanced methods such as nanoparticle embedding, sol–gel coating, electrospinning, and green synthesis approaches have shown significant promise in enhancing antibacterial efficacy and material compatibility. Wearable technology, including fitness trackers, smart clothing, and medical monitoring devices, relies on prolonged skin contact, making the prevention of bacterial colonization essential for user safety and product longevity. Antibacterial fabrics address these concerns by reducing odor, preventing skin irritation, and minimizing the risk of infection, especially in medical applications such as wound dressings and patient monitoring systems. Despite their potential, integrating antibacterial fabrics into wearable technology presents several challenges. This review provides a comprehensive overview of the key antibacterial agents, the production strategies used to fabricate antibacterial textiles, and their emerging applications in wearable technologies. It also highlights the need for interdisciplinary research to overcome current limitations and promote the development of sustainable, safe, and functional antibacterial fabrics for next-generation wearable. Full article
Show Figures

Figure 1

13 pages, 664 KB  
Review
A Review of Textile Hydrogel Integration in Firefighting Personal Protective Clothing
by Sydney Tindall, Meredith McQuerry and Josephine Bolaji
Polymers 2026, 18(2), 204; https://doi.org/10.3390/polym18020204 - 12 Jan 2026
Viewed by 440
Abstract
Traditional firefighting protective clothing materials, such as meta- and para-aramid fibers, provide significant thermal protection but often fail to adequately manage heat stress and moisture, especially due to the incorporation of semi-permeable membranes within the three-layer garment structure known as turnout gear. Integrating [...] Read more.
Traditional firefighting protective clothing materials, such as meta- and para-aramid fibers, provide significant thermal protection but often fail to adequately manage heat stress and moisture, especially due to the incorporation of semi-permeable membranes within the three-layer garment structure known as turnout gear. Integrating hydrogels into textiles for firefighting personal protective clothing (PPC) could enhance thermoregulation and moisture management, providing firefighters with improved comfort and safety. Hydrogels are three-dimensional, hydrophilic polymer networks capable of holding substantial amounts of water. Their high water content and excellent thermal properties make them ideal for cooling applications. Therefore, this review focuses on the potential of hydrogel-infused textiles to improve firefighters’ PPC by enhancing thermal comfort and moisture management. Specifically, hydrogel structures and engineered properties for enhanced performance are presented, including smart hydrogels and hydration customization mechanisms. Hydrogel integration into firefighting PPC for moisture management and improved thermoregulation is explored, including current and future market projections and state-of-the-art clinical trial findings. Overall, the future of hydrogel-integrated textiles for firefighting PPC is bright, with numerous advancements and trends poised to enhance the safety, comfort, and performance of protective gear. Full article
(This article belongs to the Special Issue Technical Textile Science and Technology)
Show Figures

Graphical abstract

33 pages, 4560 KB  
Review
Fundamentals and Uses of 4D Printing on Textiles
by Edgar Adrián Franco Urquiza and Fabian Luna Cabrera
Textiles 2026, 6(1), 10; https://doi.org/10.3390/textiles6010010 - 9 Jan 2026
Viewed by 562
Abstract
The rapid evolution of innovative materials and their 4D printing on fabrics allows textiles to change shape or properties when exposed to external stimuli. This work reviews the fundamentals of 4D printing, briefly revisiting additive manufacturing technology and materials, as both are extensively [...] Read more.
The rapid evolution of innovative materials and their 4D printing on fabrics allows textiles to change shape or properties when exposed to external stimuli. This work reviews the fundamentals of 4D printing, briefly revisiting additive manufacturing technology and materials, as both are extensively described in various articles and reviews. It also outlines the advancements in smart textiles and their functionality as multifunctional fabrics. The review focuses primarily on reviewing the technical foundations and emerging applications of 4D-printed smart polymers and their integration onto passive textiles for smart applications. Finally, a critical review is presented, emphasizing the numerous individual developments undertaken not only in academia but also by young students, independent engineers, and entrepreneurs who showcase their progress and various challenges through social media. Easy access to knowledge, digital communication, and an interest in creating new materials and structures with a relatively low budget will allow the advancement and development of 4D printing processing strategies for functional materials, promoting the creation of intelligent and adaptive textile systems. Full article
Show Figures

Graphical abstract

37 pages, 7246 KB  
Review
Wearable Sensing Systems for Multi-Modal Body Fluid Monitoring: Sensing-Combination Strategy, Platform-Integration Mechanism, and Data-Processing Pattern
by Manqi Peng, Yuntong Ning, Jiarui Zhang, Yuhang He, Zigan Xu, Ding Li, Yi Yang and Tian-Ling Ren
Biosensors 2026, 16(1), 46; https://doi.org/10.3390/bios16010046 - 6 Jan 2026
Viewed by 930
Abstract
Wearable multi-modal body fluid monitoring enables continuous, non-invasive, and context-aware assessment of human physiology. By integrating biochemical and physical information across multiple modalities, wearable systems overcome the limitations of single-marker sensing and provide a more holistic view of dynamic health states. This review [...] Read more.
Wearable multi-modal body fluid monitoring enables continuous, non-invasive, and context-aware assessment of human physiology. By integrating biochemical and physical information across multiple modalities, wearable systems overcome the limitations of single-marker sensing and provide a more holistic view of dynamic health states. This review offers a system-level overview of recent advances in multi-modal body fluid monitoring, structured into three hierarchical dimensions. We first examine sensing-combination strategies such as multi-marker analysis within single fluids, coupling biochemical signals with bioelectrical, mechanical, or thermal parameters, and emerging multi-fluid acquisition to improve analytical accuracy and physiological relevance. Next, we discuss platform-integration mechanisms based on biochemical, physical, and hybrid sensing principles, along with monolithic and modular architectures enabled by flexible electronics, microfluidics, microneedles, and smart textiles. Finally, the data-processing patterns are analyzed, involving cross-modal calibration, machine learning inference, and multi-level data fusion to enhance data reliability and support personalized and predictive healthcare. Beyond summarizing technical advances, this review establishes a comprehensive framework that moves beyond isolated signal acquisition or simple metric aggregation toward holistic physiological interpretation. It guides the development of next-generation wearable multi-modal body fluid monitoring systems that overcome the challenges of high integration, miniaturization, and personalized medical applications. Full article
(This article belongs to the Special Issue Biosensors for Personalized Treatment)
Show Figures

Figure 1

31 pages, 903 KB  
Systematic Review
A Systematic Framework for Evaluating Sustainability in the Textile and Apparel Industry
by Eui Kyung Roh
Sustainability 2026, 18(1), 131; https://doi.org/10.3390/su18010131 - 22 Dec 2025
Cited by 1 | Viewed by 640
Abstract
This study analyzes how sustainability research in the textile and apparel industry is structured and argues that technological innovation—while essential for sustainable transformation—cannot generate meaningful impact when pursued in isolation. Its effectiveness depends on alignment with environmental assessment, ethical and institutional mechanisms, and [...] Read more.
This study analyzes how sustainability research in the textile and apparel industry is structured and argues that technological innovation—while essential for sustainable transformation—cannot generate meaningful impact when pursued in isolation. Its effectiveness depends on alignment with environmental assessment, ethical and institutional mechanisms, and circular strategies. A review of 133 publications (2020–2024) examining titles, keywords, abstracts, and conclusions identified these four thematic axes as the core framework shaping current research. Findings show that technological innovation is the most extensively addressed dimension, yet its industrial and policy influence remains limited when not connected to standardized assessment tools, governance systems, or consumer use-phase behaviors. When the four dimensions operate collectively, technological advances achieve stronger empirical validation, institutional coherence, and circular-system integration. By addressing a key gap in prior literature—which has typically examined these dimensions separately rather than as an integrated system—this study clarifies how their coordinated interaction conditions sustainability transition pathways. The integrated framework provides a theoretical basis for understanding constraints and mediators within sustainability transitions and suggests that future research and policy should adopt system-level strategies that intentionally strengthen linkages across the four dimensions to accelerate sustainable transformation. Full article
Show Figures

Figure 1

17 pages, 718 KB  
Review
Modern Fire-Resistant Fabrics—Requirements for Durability of Materials After Washing After a Fire
by Anna Rabajczyk, Maria Zielecka and Michał Chmiel
Materials 2026, 19(1), 44; https://doi.org/10.3390/ma19010044 - 22 Dec 2025
Viewed by 756
Abstract
Developments in the textile industry occur both as a consequence of increased awareness among users and various requirements in terms of human and environmental safety. Modifications are aimed at improving performance parameters, using natural substances, moving away from synthetic materials, and improving ergonomics. [...] Read more.
Developments in the textile industry occur both as a consequence of increased awareness among users and various requirements in terms of human and environmental safety. Modifications are aimed at improving performance parameters, using natural substances, moving away from synthetic materials, and improving ergonomics. In order to achieve this, various fibre-production techniques are used, as is the addition of substances, including nanosubstances, into the structure or onto the surface of a given material. In the case of fire-resistant fabrics, which primarily must meet thermal protection requirements, efforts are also being made to reduce weight and eliminate harmful chemicals (e.g., polycyclic aromatic hydrocarbons PAHs), and to create smart materials with sensors. However, it is necessary to further develop not only the materials themselves but also cleaning and decontamination techniques that will allow the fire resistance parameters that have been developed to be maintained. Full article
(This article belongs to the Section Smart Materials)
Show Figures

Graphical abstract

61 pages, 4694 KB  
Review
Advancing Wearable Technologies with Hydrogels: Innovations and Future Perspectives
by Kindness A. Uyanga, Ejike J. Onyeukwu and Jie Han
Gels 2025, 11(12), 988; https://doi.org/10.3390/gels11120988 - 8 Dec 2025
Cited by 1 | Viewed by 1829
Abstract
Functionalized hydrogels represent an emerging class of smart materials being explored for advancing next-generation wearable technologies, owing to their flexibility, biocompatibility, stimuli-responsiveness, and tunable properties. This review provides an overview of recent developments in hydrogel-based wearables, highlighting their potential to enhance adaptive, multifunctional, [...] Read more.
Functionalized hydrogels represent an emerging class of smart materials being explored for advancing next-generation wearable technologies, owing to their flexibility, biocompatibility, stimuli-responsiveness, and tunable properties. This review provides an overview of recent developments in hydrogel-based wearables, highlighting their potential to enhance adaptive, multifunctional, and environmentally sustainable devices and textiles. It begins by examining progress in wearable sensors, energy storage and harvesting, biosignal monitoring, and smart textiles, as well as the associated challenges, including limited battery life, inadequate skin adhesion, user discomfort, and constrained functionality. The review further explores the synthesis, fabrication techniques, properties, and types of hydrogels tailored for wearable technologies, followed by a detailed discussion of their applications in smart batteries, supercapacitors, sensors, nanogenerators, fabrics and hybrid systems. It also highlights integrating artificial intelligence (AI) and the Internet of Things (IoT) to improve designs; enhance performance through real-time monitoring, data analytics, and user interaction; and expand functionality. Also, it analyzes key limitations of current hydrogels—particularly in energy density, dehydration resistance, fatigue behaviour, and large-scale reproducibility—and outlines strategies based on hierarchical material design, sustainable and biodegradable formulations, and standardized testing and regulatory alignment. The review concludes by affirming the role of hydrogel-based technologies in shaping the future of wearable innovations across healthcare, lifestyle, and beyond and outlines promising research directions. Full article
Show Figures

Graphical abstract

Back to TopTop