Broken Rotor Bar Detection in Induction Motors through Contrast Estimation
Abstract
:1. Introduction
2. Theoretical Background
2.1. Motor Current Signal Analysis
2.2. Contrast
- Adjustable bounds of gray levels;
- Polarization of the black and white dispersion on the gray-level histogram or the correlation between black and white regions.
2.3. Fuzzy Logic Classifier
- For a membership function that represents a fuzzy set A, the CORE is defined as the area of the universe that has the characteristic of belonging completely to set A. In other words, the CORE comprises all the elements x in the universe in which µA(x) = 1.
- The SUPPORT in a membership function representing fuzzy set A is determined by the region of the universe characterized by non-zero values of membership elements in set A. This implies that the SUPPORT comprises all the elements x in the universe in which µA(x) > 0.
- The BOUNDARY of a membership function representing fuzzy set A is defined as the area of the universe containing elements with non-zero membership values that do not belong completely to set A. This means that the BOUNDARIES of a membership function comprise those elements x of the universe in which 0 < µA(x) < 1 [36].
3. Experimental Setup
4. Results and Discussion
Discussion
5. Conclusions
- Most approaches in the literature require the IM to stop and be put on a heavy load to be applied. It is desirable to have a reliable BRB detection technique that can be applied during the IM steady state under low load.
- In this work, a novel method for BRB detection, through analysis of the IM current signal by contrast estimation during its steady state, is proposed.
- Unser and Tamura definitions of contrast have been widely used in image processing for the analysis of texture; however, to the best of the authors’ knowledge, this index has never been used for detecting faults in IM.
- Experimentally obtained results validate that the technique put forward is able to detect and classify the induction motor operational condition as healthy, 1BB, or 2BB, with high effectiveness.
- The introduced method surpasses other approaches in state-of-the-art schemes in this area, which usually perform BRB detection by relying on subjective interpretation of a chart.
- The Unser definition of contrast provides higher effectiveness for BRB detection and classification than that of Tamura, with lower computational complexity and processing time.
- Contrast estimation from one phase of the electric current power supply is asserted as a useful indicator to identify and classify BRBs in an IM, even under low mechanical load.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lucena-Junior, J.A.; de Vasconcelos Lima, T.L.; Bruno, G.P.; Brito, A.V.; de Souza Ramos, J.G.G.; Belo, F.A.; Lima-Filho, A.C. Chaos Theory Using Density of Maxima Applied to the Diagnosis of Three-Phase Induction Motor Bearings Failure by Sound Analysis. Comput. Ind. 2020, 123, 103304. [Google Scholar] [CrossRef]
- De Jesus Rangel-Magdaleno, J.; Peregrina-Barreto, H.; Ramirez-Cortes, J.M.; Gomez-Gil, P.; Morales-Caporal, R. FPGA-Based Broken Bars Detection on Induction Motors under Different Load Using Motor Current Signature Analysis and Mathematical Morphology. IEEE Trans. Instrum. Meas. 2014, 63, 1032–1040. [Google Scholar] [CrossRef]
- Mesbeh, A.; Jarboui, M.; Masmoudi, A. Broken Bar and End-Ring Faults: Analysis of Their Effects on the Rotor Cage Currents. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 2015, 34, 1771–1795. [Google Scholar] [CrossRef]
- Gyftakis, K.N.; Panagiotou, P.A.; Lee, S.B. Generation of Mechanical Frequency Related Harmonics in the Stray Flux Spectra of Induction Motors Suffering From Rotor Electrical Faults. IEEE Trans. Ind. Appl. 2020, 56, 4796–4803. [Google Scholar] [CrossRef]
- Grande-Barreto, J.; Morales-Perez, C.; Rangel-Magdaleno, J.; Peregrina-Barreto, H. Half-Broken Bar Detection Using MCSA and Statistical Analysis. In Proceedings of the 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 8–10 November 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Lizarraga-Morales, R.A.; Rodriguez-Donate, C.; Cabal-Yepez, E.; Lopez-Ramirez, M.; Ledesma-Carrillo, L.M.; Ferrucho-Alvarez, E.R. Novel FPGA-Based Methodology for Early Broken Rotor Bar Detection and Classification Through Homogeneity Estimation. IEEE Trans. Instrum. Meas. 2017, 66, 1760–1769. [Google Scholar] [CrossRef]
- Nemec, M.; Ambrožič, V.; Fišer, R.; Nedeljković, D.; Drobnič, K. Induction Motor Broken Rotor Bar Detection Based on Rotor Flux Angle Monitoring. Energies 2019, 12, 794. [Google Scholar] [CrossRef] [Green Version]
- Phumiphak, P.; Chat-uthai, C. Induction Motor Speed Measurement Using Motor Current Signature Analysis Technique. In Proceedings of the 2009 International Conference on Electrical Machines and Systems, Tokyo, Japan, 15–18 November 2009; pp. 1–5. [Google Scholar] [CrossRef]
- Lee, S.B.; Hyun, D.; Kang, T.; Yang, C.; Shin, S.; Kim, H.; Park, S.; Kong, T.-S.; Kim, H.-D. Identification of False Rotor Fault Indications Produced by Online MCSA for Medium-Voltage Induction Machines. IEEE Trans. Ind. Appl. 2016, 52, 729–739. [Google Scholar] [CrossRef]
- Naha, A.; Samanta, A.K.; Routray, A.; Deb, A.K. A Method for Detecting Half-Broken Rotor Bar in Lightly Loaded Induction Motors Using Current. IEEE Trans. Instrum. Meas. 2016, 65, 1614–1625. [Google Scholar] [CrossRef]
- Park, Y.; Jeong, M.; Lee, S.B.; Antonino-Daviu, J.A.; Teska, M. Influence of Blade Pass Frequency Vibrations on MCSA-Based Rotor Fault Detection of Induction Motors. IEEE Trans. Ind. Appl. 2017, 53, 2049–2058. [Google Scholar] [CrossRef]
- Zhang, J.; Dhupia, J.S.; Gajanayake, C.J. Stator Current Analysis From Electrical Machines Using Resonance Residual Technique to Detect Faults in Planetary Gearboxes. IEEE Trans. Ind. Electron. 2015, 62, 5709–5721. [Google Scholar] [CrossRef]
- Garcia-Bracamonte, J.E.; Ramirez-Cortes, J.M.; de Jesus Rangel-Magdaleno, J.; Gomez-Gil, P.; Peregrina-Barreto, H.; Alarcon-Aquino, V. An Approach on MCSA-Based Fault Detection Using Independent Component Analysis and Neural Networks. IEEE Trans. Instrum. Meas. 2019, 68, 1353–1361. [Google Scholar] [CrossRef]
- Wang, W.; Song, X.; Liu, G.; Chen, Q.; Zhao, W.; Zhu, H. Induction Motor Broken Rotor Bar Fault Diagnosis Based on Third-Order Energy Operator Demodulated Current Signal. IEEE Trans. Energy Convers. 2021. [Google Scholar] [CrossRef]
- Trujillo-Guajardo, L.A.; Rodriguez-Maldonado, J.; Moonem, M.A.; Platas-Garza, M.A. A Multiresolution Taylor–Kalman Approach for Broken Rotor Bar Detection in Cage Induction Motors. IEEE Trans. Instrum. Meas. 2018, 67, 1317–1328. [Google Scholar] [CrossRef]
- Rangel-Magdaleno, J.; Peregrina-Barreto, H.; Ramirez-Cortes, J.; Cruz-Vega, I. Hilbert Spectrum Analysis of Induction Motors for the Detection of Incipient Broken Rotor Bars. Measurement 2017, 109, 247–255. [Google Scholar] [CrossRef]
- Ameid, T.; Menacer, A.; Talhaoui, H.; Azzoug, Y. Discrete Wavelet Transform and Energy Eigen Value for Rotor Bars Fault Detection in Variable Speed Field-Oriented Control of Induction Motor Drive. ISA Trans. 2018, 79, 217–231. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, M.O.; Varagnolo, D.; Nikolakopoulos, G.; Gustafsson, T. Detecting Broken Rotor Bars in Induction Motors with Model-Based Support Vector Classifiers. Control. Eng. Pract. 2016, 52, 15–23. [Google Scholar] [CrossRef]
- Dias, C.G.; da Silva, L.C.; Luz Alves, W.A. A Histogram of Oriented Gradients Approach for Detecting Broken Bars in Squirrel-Cage Induction Motors. IEEE Trans. Instrum. Meas. 2020, 69, 6968–6981. [Google Scholar] [CrossRef]
- Morales-Perez, C.; Rangel-Magdaleno, J.; Peregrina-Barreto, H.; Amezquita-Sanchez, J.P.; Valtierra-Rodriguez, M. Incipient Broken Rotor Bar Detection in Induction Motors Using Vibration Signals and the Orthogonal Matching Pursuit Algorithm. IEEE Trans. Instrum. Meas. 2018, 67, 2058–2068. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, J.; Li, H.; Zhen, D.; Gu, F.; Ball, A. Improved Cyclostationary Analysis Method Based on TKEO and Its Application on the Faults Diagnosis of Induction Motors. ISA Trans. 2021. [Google Scholar] [CrossRef]
- Jerkan, D.G.; Reljic, D.D.; Marcetic, D.P. Broken Rotor Bar Fault Detection of IM Based on the Counter-Current Braking Method. IEEE Trans. Energy Convers. 2017, 32, 1356–1366. [Google Scholar] [CrossRef]
- Soleimani, Y.; Cruz, S.M.A.; Haghjoo, F. Broken Rotor Bar Detection in Induction Motors Based on Air-Gap Rotational Magnetic Field Measurement. IEEE Trans. Instrum. Meas. 2019, 68, 2916–2925. [Google Scholar] [CrossRef]
- Bessam, B.; Menacer, A.; Boumehraz, M.; Cherif, H. Detection of Broken Rotor Bar Faults in Induction Motor at Low Load Using Neural Network. ISA Trans. 2016, 64, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Valtierra-Rodriguez, M.; Rivera-Guillen, J.R.; Basurto-Hurtado, J.A.; De-Santiago-Perez, J.J.; Granados-Lieberman, D.; Amezquita-Sanchez, J.P. Convolutional Neural Network and Motor Current Signature Analysis during the Transient State for Detection of Broken Rotor Bars in Induction Motors. Sensors 2020, 20, 3721. [Google Scholar] [CrossRef]
- Martinez-Roman, J.; Puche-Panadero, R.; Terron-Santiago, C.; Sapena-Bano, A.; Burriel-Valencia, J.; Pineda-Sanchez, M. Low-Cost Diagnosis of Rotor Asymmetries of Induction Machines at Very Low Slip with the Goertzel Algorithm Applied to the Rectified Current. IEEE Trans. Instrum. Meas. 2021, 70, 1–11. [Google Scholar] [CrossRef]
- Gangsar, P.; Tiwari, R. Signal Based Condition Monitoring Techniques for Fault Detection and Diagnosis of Induction Motors: A State-of-the-Art Review. Mech. Syst. Signal. Process. 2020, 144, 106908. [Google Scholar] [CrossRef]
- Juez-Gil, M.; Saucedo-Dorantes, J.J.; Arnaiz-González, Á.; López-Nozal, C.; García-Osorio, C.; Lowe, D. Early and Extremely Early Multi-Label Fault Diagnosis in Induction Motors. ISA Trans. 2020, 106, 367–381. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Gu, S.; Zhang, L. Learning a Deep Single Image Contrast Enhancer from Multi-Exposure Images. IEEE Trans. Image Process. 2018, 27, 2049–2062. [Google Scholar] [CrossRef] [PubMed]
- Gu, K.; Zhai, G.; Lin, W.; Liu, M. The Analysis of Image Contrast: From Quality Assessment to Automatic Enhancement. IEEE Trans. Cybern. 2016, 46, 284–297. [Google Scholar] [CrossRef]
- Jung, J.-H.; Lee, J.-J.; Kwon, B.-H. Online Diagnosis of Induction Motors Using MCSA. IEEE Trans. Ind. Electron. 2006, 53, 1842–1852. [Google Scholar] [CrossRef]
- Bessous, N.; Zouzou, S.E.; Sbaa, S.; Bentrah, W. A Comparative Study between the MCSA, DWT and the Vibration Analysis Methods to Diagnose the Dynamic Eccentricity Fault in Induction Motors. In Proceedings of the 2017 6th International Conference on Systems and Control (ICSC), Batna, Algeria, 7–9 May 2017; pp. 414–421. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Unser, M. Sum and Difference Histograms for Texture Classification. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 118–125. [Google Scholar] [CrossRef]
- Tamura, H.; Mori, S.; Yamawaki, T. Textural Features Corresponding to Visual Perception. IEEE Trans. Syst. Man Cybern. 1978, 8, 460–473. [Google Scholar] [CrossRef]
- Ross, T.J. Fuzzy Logic. with Engineering Applications, 3rd ed.; John Wiley: Chichester, UK, 2010; ISBN 978-0-470-74376-8. [Google Scholar]
- Kuncheva, L.I. Fuzzy Classifier Design; Studies in Fuzziness and Soft Computing; Physica-Verlag HD: Heidelberg, Germany, 2000; Volume 49, ISBN 978-3-7908-2472-8. [Google Scholar]
- Texas Instruments. Incorporated ADS7809 Data Sheet Burr-Brown Products; Texas Instruments: Dallas, TX, USA, 2004. [Google Scholar]
- Khater, F.M.H.; Abu El-Sebah, M.I.; Osama, M.; Sakkoury, K.S. Proposed Fault Diagnostics of a Broken Rotor Bar Induction Motor Fed from PWM Inverter. J. Electr. Syst. Inf. Technol. 2016, 3, 387–397. [Google Scholar] [CrossRef] [Green Version]
- Aydin, I.; Karakose, M.; Akin, E. An Approach for Automated Fault Diagnosis Based on a Fuzzy Decision Tree and Boundary Analysis of a Reconstructed Phase Space. ISA Trans. 2014, 53, 220–229. [Google Scholar] [CrossRef]
- Fernandez-Cavero, V.; Pons-Llinares, J.; Duque-Perez, O.; Morinigo-SOTELO, D. Detection of Broken Rotor Bars in Non-Linear Startups of Inverter-Fed Induction Motors. IEEE Trans. Ind. Appl. 2021, 57, 2559–2568. [Google Scholar] [CrossRef]
- Li, H.; Feng, G.; Zhen, D.; Gu, F.; Ball, A.D. A Normalized Frequency-Domain Energy Operator for Broken Rotor Bar Fault Diagnosis. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, L. Multiple-Kernel MRVM With LBFO Algorithm for Fault Diagnosis of Broken Rotor Bar in Induction Motor. IEEE Access 2019, 7, 182173–182184. [Google Scholar] [CrossRef]
- Abd-el-Malek, M.; Abdelsalam, A.K.; Hassan, O.E. Induction Motor Broken Rotor Bar Fault Location Detection through Envelope Analysis of Start-up Current Using Hilbert Transform. Mech. Syst. Signal. Process. 2017, 93, 332–350. [Google Scholar] [CrossRef]
IM Condition | HLT | 1BB | 2BB |
---|---|---|---|
HLT | 59 | 0 | 1 |
1BB | 0 | 60 | 0 |
2BB | 0 | 0 | 60 |
IM Condition | HLT | 1BB | 2BB |
---|---|---|---|
HLT | 57 | 0 | 3 |
1BB | 0 | 60 | 0 |
2BB | 0 | 0 | 60 |
Contrast Definition | IM Condition | ||
---|---|---|---|
HLT | 1BB | 2BB | |
Unser | 98.3% | 100% | 100% |
Tamura | 95% | 100% | 100% |
Reference | Method | Detected Fault | Analyzed Signal | Motor State | Accuracy Rate |
---|---|---|---|---|---|
Aydin et al. [40] | 1. Preprocessing signal Hilbert transform 2. Boundary analysis 3. Fuzzy decision tree (FDT) | 1BB 2BB | Current signal | Not reported | 98.75% |
Fernandez-Cavero et al. [41] | 1. Dragon transform | 1BB | Current signal | Startup transient | Qualitative |
Haiyang Li et al. [42] | 1. Bandpass filter 2. Normalized frequency domain energy operator 3. Spectral analysis | 1BB 2BB | Current signal | Steady state | Qualitative |
Younes Soleimani et al. [23] | 1. Air-gap rotational magnetic field analysis | 1BB 2BB 3BB | Induced voltage in dual search coils | Not reported | Qualitative |
Weiguo Zhao et al. [43] | 1. Multivariate relevance vector machine with multiple Gaussian kernels 2. Principal components analysis 3. Bacterial foraging algorithm 4. Levy flight | 1BB 2BB 3BB | Current signal | Not reported | 80-95% |
Mina Abd-el-Malek et al. [44] | 1. Hilbert transform 2. Statistical analysis | Half broken bar 1BB 1.5BB | Current signal | Startup transient | Qualitative |
Rangel-Magdaleno et al. [16] | 1. Hilbert transform 2. Statistical analysis | Half broken bar 1BB 1.5BB | Current signal | Startup transient | 99% |
Proposed methodology | 1. Contrast computation 2. Fuzzy logic | 1BB 2BB | Current signal | Steady state | 98.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrucho-Alvarez, E.R.; Martinez-Herrera, A.L.; Cabal-Yepez, E.; Rodriguez-Donate, C.; Lopez-Ramirez, M.; Mata-Chavez, R.I. Broken Rotor Bar Detection in Induction Motors through Contrast Estimation. Sensors 2021, 21, 7446. https://doi.org/10.3390/s21227446
Ferrucho-Alvarez ER, Martinez-Herrera AL, Cabal-Yepez E, Rodriguez-Donate C, Lopez-Ramirez M, Mata-Chavez RI. Broken Rotor Bar Detection in Induction Motors through Contrast Estimation. Sensors. 2021; 21(22):7446. https://doi.org/10.3390/s21227446
Chicago/Turabian StyleFerrucho-Alvarez, Edna Rocio, Ana Laura Martinez-Herrera, Eduardo Cabal-Yepez, Carlos Rodriguez-Donate, Misael Lopez-Ramirez, and Ruth Ivonne Mata-Chavez. 2021. "Broken Rotor Bar Detection in Induction Motors through Contrast Estimation" Sensors 21, no. 22: 7446. https://doi.org/10.3390/s21227446
APA StyleFerrucho-Alvarez, E. R., Martinez-Herrera, A. L., Cabal-Yepez, E., Rodriguez-Donate, C., Lopez-Ramirez, M., & Mata-Chavez, R. I. (2021). Broken Rotor Bar Detection in Induction Motors through Contrast Estimation. Sensors, 21(22), 7446. https://doi.org/10.3390/s21227446