Next Article in Journal
Level-K Classification from EEG Signals Using Transfer Learning
Next Article in Special Issue
W-Band Photonic Receiver for Compact Cloud Radars
Previous Article in Journal
Extending Camera’s Capabilities in Low Light Conditions Based on LIP Enhancement Coupled with CNN Denoising
Previous Article in Special Issue
Investigations on Practical Issues in Solid Immersion Lens Based Sub-Wavelength Terahertz Imaging Technique: System Stability Verification and Interference Pattern Removal
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Perspective

Plasmonic Field-Effect Transistors (TeraFETs) for 6G Communications

1
Rensselaer Polytechnic Institute, Troy, NY 12180, USA
2
Electronics of the Future, Inc., Vienna, VA 22181, USA
3
Kingsborough College, The City University of New York, Brooklyn, NY 11235, USA
4
Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan
5
Institute of Ultra High Frequency Semiconductor Electronics of RAS, 117105 Moscow, Russia
*
Author to whom correspondence should be addressed.
Sensors 2021, 21(23), 7907; https://doi.org/10.3390/s21237907
Submission received: 21 October 2021 / Revised: 13 November 2021 / Accepted: 16 November 2021 / Published: 27 November 2021
(This article belongs to the Special Issue Terahertz and Millimeter Wave Sensing and Applications)

Abstract

:
Ever increasing demands of data traffic makes the transition to 6G communications in the 300 GHz band inevitable. Short-channel field-effect transistors (FETs) have demonstrated excellent potential for detection and generation of terahertz (THz) and sub-THz radiation. Such transistors (often referred to as TeraFETs) include short-channel silicon complementary metal oxide (CMOS). The ballistic and quasi-ballistic electron transport in the TeraFET channels determine the TeraFET response at the sub-THz and THz frequencies. TeraFET arrays could form plasmonic crystals with nanoscale unit cells smaller or comparable to the electron mean free path but with the overall dimensions comparable with the radiation wavelength. Such plasmonic crystals have a potential of supporting the transition to 6G communications. The oscillations of the electron density (plasma waves) in the FET channels determine the phase relations between the unit cells of a FET plasmonic crystal. Excited by the impinging radiation and rectified by the device nonlinearities, the plasma waves could detect both the radiation intensity and the phase enabling the line-of-sight terahertz (THz) detection, spectrometry, amplification, and generation for 6G communication.

Graphical Abstract

1. Introduction

Within literally one generation, the Internet revolutionized our lives and proved to be a lifesaver during the COVID-19 pandemic. The wireless communication during the pandemic increased about 40%. Teleconferencing increased by about 300% [1]. It was mostly enabled by one material—silicon—and by one device—the field-effect transistor—albeit with a lot of help from germanium, III–V, and some other materials. We now use 4G and emerging 5G technology, but the 6G communications will be another transformational jump in communications (see Figure 1). 6G will raise applications in telemedicine, teleconferencing, defense, industrial controls, cyber security, the Internet of Things, autonomous unmanned cars, robotics and stay-at-home work and conferencing to a much higher level [2,3,4,5,6,7,8,9,10,11]. 6G will expand the wireless high-speed communications to the space, sea, and upper atmosphere.
Analyzing the spectrum of possible pandemic outcomes using the Pandemic Equation [12] shows that the pandemic tail and even possible spikes might still be with us for years to come driven by new emerging COVID-19 virus variants, such as the Delta variant. This makes the planned transition to the 6G communications using the sub-terahertz (sub-THz) range to be even more important. This 300 GHz range has been identified as the range between 252.72 GHz to 321.84 GHz [13].
Among the technologies to support such a transition, the plasmonic crystal technology has the potential to become a winner. A unit cell of such a crystal has small dimensions to support the ballistic or quasi-ballistic transport and plasmonic resonances, while the overall size of the crystal is sufficiently large to efficiently capture or emit a sub-THz or a THz beam (see Figure 2) [14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33].
For example, the critical unit cell dimensions for silicon at room temperature might be on the order of 20 to 50 nm depending on the mobility and electron density. For the 240 to 320 GHz range, the overall dimension of the plasmonic crystal device could be in the millimeter range. Unique circuit applications for the plasmonic crystal devices could range from the line-of-sight detection [34], spectroscopy [35,36], homodyne [37,38,39] or heterodyne detection [40,41,42,43], frequency to digital conversion [44], and travelling wave amplifiers [45].
Plasma waves were first predicted by Tonks and Langmuir in 1929 [46]. In 1952, David Pines and David Bohm introduced the term “plasmon” [47]. The seminal works of Stern and Ferrell [48] and Chaplik [49] considered plasma waves in semiconductors. The promise and demonstrations of the THz generation by unstable resonant plasma waves [50,51,52,53,54,55,56,57,58,59,60], and of the THz detection by both resonant [61,62,63,64,65,66] and decaying [67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84] plasma waves has stimulated a lot of interest to this research area and resulted in the demonstration of the THz plasmonic detection in Si [70,71,72,73,74,75], III–V [76,77,78], III–N [79,80,81,82], monolayer, bilayer, and bipolar graphene [64,65,85,86,87,88,89,90]. In this paper, we analyze the applications of this technology for future 6G communications.

2. Plasmonic TeraFETs

Field-effect transistors operating in plasmonic regimes and often referred to as TeraFETs have already demonstrated an impressive performance in the sub-THz and THz range (see Table 1).
Grated gate structures [14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,77,78,89,90,91] demonstrated a better performance compared to single TeraFETs and a promise of THz radiation. Most of the room temperature results are for damped plasma wave detection by field-effect transistors. Figure 3 presents the largest calculated resonant quality factors for the single TeraFETs and the plasmonic frequencies at which these maximum quality factors are obtained.
The quality factor values, Q, shown in Figure 3, were obtained using the following equation:
Q = ω p τ e f f
Here ω p = s k is the plasma velocity, k = π / ( 2 L ) is the wave vector of the fundamental plasmonic mode for a TeraFET detector, and s is the plasma wave velocity:
s = v t h ( ( 1 + exp [ q U o / ( η k B T ) ] ) ln [ 1 + exp [ q U o / ( η k B T ) ] ] ) 0.5
Uo = Ug − UT is the gate voltage swing, Ug is the gate-to-source voltage, Ug − UT is the threshold voltage, h is the subthreshold ideality factor, 1 / τ e f f = 1 / τ m + ν k 2 is the effective scattering frequency, ν is the electron fluid viscosity, L is the channel length, τ m = μ m / q is the momentum relaxation time, m is the low field mobility, m is the electron effective mass, q is the electronic charge, kB is the Boltzmann constant, and T is the temperature.
The quality factors in Figure 3 are much smaller than that for the photonic crystals operating in near infrared or visible range and using, for example, gold nanoparticles [94]. Moreover, the values in Table 2 represent the upper bound of the quality factors of the THz TeraFETs that could be achieved. Parasitic elements [95], surface scattering [96], quantum reflection [97] from the contact regions all conspire to reduce the quality factors. Oblique waves were mentioned as another reason for the quality factor reduction [98], which, however, was not confirmed by numerical simulations [99]. For example, the calculation in [91,92] predicts the quality factor for InGaAs at 77 K of 18. In fact, the measured quality factor at 110 K was 1.4 [100]. The resonant behavior for Si TeraFETs at room temperature for the 20 nm NMOS (Q = 7) is predicted for 11 THz, which is a larger frequency that the optical phonon frequency in Si (~8 THz). At such frequency, coupling with lattice vibrations should be accounted for. However, the data in Figure 3 provide the guidance for searching for the resonant plasmonic response at room temperature.
Table 2 compares the performance of THz TeraFET detectors with other THz detectors. As seen, the achieved TeraFET performance is at or above the state-of-the-art. Since the TeraFET technology is still developing, it is expected to become a leading THz detection technology. In addition to fast speed, tunability, and operating in a wide temperature range, possibly the greatest advantage of TeraFETs is the compatibility with the Si CMOS technology. All THz communication components, detectors, generators, and modulators operating in the 300 GHz band could be implemented using Si CMOS TeraFETs. This makes this technology especially appealing for the 6G communication integrated circuits.
The bandwidth is determined by the received power, Pr, the signal-to-noise ratio, SN, and the detector noise equivalent power, NEP [104].
B W = P r 2 S N 2 N E P 2
P r = c 2 G r G t P t A ( 4 π R f ) 2
Here, Pt is the transmitted power, c is the speed of light, Gr and Gt is the receiving and transmitting antenna gains, A is the propagation loss, R is the communication distance, and f is the communication frequency. The state-of-the-art Si FET emitters using frequency multiplication generate in the order of a hundred of microwatts power in the 300 GHz range [105,106]. However, the TeraFET output power could be increased using a series connection of TeraFETs [107] and even more by using the plasmonic crystal TeraFETs discussed in the next section with the estimated power output on the order ~100 mW [20]. Calculations using Equations (3) and (4) show that this power might be sufficient if the receiver NEP could be reduced to 0.1 pW/Hz1/2 from the current value of 0.5 pW/Hz1/2 (see Table 1). As seen from Equations (3) and (4), this increase in the transmitted power enable orders of magnitude increases in the bandwidth and/or in the communication range.
TeraFETs could detect and generate THz radiation. However, their modulation speed is limited by the transistor cutoff frequency, fT [108]. The upper bound of fT is given by [108]:
f T o = v s 2 π L
where L is the channel length and vs is the electron saturation velocity. For silicon longer channel devices, vs is ~105 m/s and could be ~50% higher in short-channel devices [109]. However, as shown in [110], the maximum modulation frequency peaks at the inverse effective electron relaxation time, which was taken as the electron momentum relaxation time, τ m = m μ / q , where m is the electron effective mass.
The contribution of this effect into fT could be estimated as follows:
f T = 1 1 / f T o + τ m
Figure 4 shows dependence of the cutoff frequency on the channel length for vs = 105 m/s and vs = 1.5 × 105 m/s with and without accounting for the electron momentum relaxation time. As seen, Si TeraFETs could be modulated at sub-THz frequency, enabling their application for the 300 GHz band 6G communication.
(The bandwidth is B W 2 f T , since the TeraFETs could be modulated at frequencies on the order of f T .)

3. Plasmonic Crystals

Figure 5, Figure 6, Figure 7 and Figure 8 show different plasmonic crystal implementations proposed for detecting, processing, and generating the THz radiation. Figure 5 illustrated the Dyakonov–Shur (DS) instability mechanism [50] that relies on the difference in the reflection coefficients from the channel boundaries due to the differences in the velocities of the plasma waves propagating from the source to the drain (s + v) and reflected from the drain (sv). Here, v is the electron drift velocity. The largest increment corresponds to the boundary conditions of the short-circuited source and open drain. Having finite impedances at the source and drain reduces the increment [111,112].
Figure 6 shows two possible implementations of the plasmonic boom structures. The plasmonic boom instability [19,20] occurs when the electron velocity exceeds the plasma velocity. It is similar to the sonic boom occurring when a jet achieves a supersonic velocity. In a plasmonic crystal, such instability should be very effective if the electron drift velocity repeatedly goes higher and lower than the plasma velocity. In the structure shown in Figure 6a, the plasma frequency is modulated via having the periodic pattern of varying electron densities. In contrast, the structure shown in Figure 6b corresponds to the same plasma frequency spectrum in all the regions. However, the electron drift velocity is higher in narrower regions and smaller in the wider regions. Using narrow protruding regions called plasmonic stubs allows for the phase control in plasmonic 1D, 2D, and 3D plasmonic crystals, schematically shown in Figure 7. The stubs could be gated as shown in Figure 6 and, therefore, tunable, allowing for the optimized phase relations [113].
The tunable transmission by the grated gate structure was described in [114]. The transmission minima at the fundamental plasma frequency and its harmonics were observed in the temperature range from 4.2 K to 170 K. THz generation by a grating gate structure, due to a plasmonic boom instability was proposed, for the first time, in [19] and observed in [115].
The idea of adjusting the phase shifts in the unit cells of a plasmonic crystal for the vector detection of generation could be also applied to a travelling wave amplifier concept [45] (see Figure 9). Feeding the phase-shifted terahertz (THz) signal into the stages of a TeraFET amplifier dramatically increases the response (see Figure 10). The number of stages is only limited by the THz beam cross-section. As seen from Figure 10, this “traveling wave amplifier” approach enables orders of magnitude enhancement in the THz detector responsivity.

4. TeraFET Sources

As mentioned above, the state-of-the-art Si FET emitters using frequency multiplication generate in the order of a hundred of microwatts power in the 300 GHz range [106]. However, the TeraFET output power could be increased using a series connection of TeraFETs [107] and even more by using the plasmonic crystal TeraFETs discussed above with the estimated power output on the order ~100 mW [20]. Table 3 compares the performance of the existing THz electronic sources.
Terahertz plasmon amplifying graphene-channel transistors have been also proposed (see [128] and references therein.) Vacuum electronic sources could produce THz radiation in a large range of frequencies and output powers. Free electron lasers generated up to 500 kW peak power [129] in the range of 0.1 to 2.73 THz; BWO lamps generate from 50 mW to 10 kW power in the 0.2 to 0.65 THz range [130]; and klinotrons produce up to watts of power in the range 0.1 to 0.5 THz [131], with gyrotrons producing kilowatts of power in the THz range [132]. However, THz electronic sources, especially Si CMOS, have the highest potential for 6G communications in the 300 GHz band. The progress in developing this technology has been incremental but important. The Si CMOS and BiCMOS plasmonic sources, even in the 300 GHz band, where plasmons quickly decay, have a promise of orders of magnitude improvement by developing circuits with matched phases between the stages (see reference [45] for the description of this concept).

5. Other TeraFET Applications

TeraFET technology will also enable THz applications including astronomical science [133,134,135], earth observation [136], sensing [137,138,139], chemical analysis [140,141], homeland security, concealed weapon and explosive detection [142,143], industrial controls [144,145], compact radars [146,147], structural integrity testing, spacecraft tiles control [144], Internet of Things (IoT), biotechnology [148,149,150], medicine [151,152], including cancer diagnostics [153], and non-destructive VLSI testing during the manufacturing process [154] and in-situ checking of the THz scans of chips [155,156,157,158,159]. Artificial intelligence processing of the VLSI THz scans allows distinguishing between genuine and fake VLSI for hardware cyber security applications [158]. Figure 11 shows the THz frequency ranges for different applications of the THz technology.
The THz range for 6G applications is extended to 10 THz to include communications in space [133] and between computer chips [160]. The development of 6G THz communication technology will be very beneficial for all other THz applications.

6. Conclusions

Short-channel TeraFETs and TeraFET plasmonic crystals have great potential for supporting transformational 6G communications technology in the 300 GHz band and beyond. The TeraFET physics involves ballistic or quasi-ballistic transport with the channel dimensions being smaller than or close to the electron mean free path in the TeraFET channel. GaAs plasmonic THz imaging arrays have already been commercialized [161]. Si CMOS deep submicron TeraFETs have also demonstrated excellent performance. This technology could support 300 GHz line-of-sight detectors, travelling wave amplifiers, spectrometers, and generators. III-N-based TeraFETs could find applications in the 6G communication towers because of their potential of delivering a higher power [162,163]. In a longer run, TeraFETs based on novel plasmonic materials, such as graphene, graphene-based heterojunctions, and p-diamond, might compete with GaAs and Si CMOS TeraFETs, and might even extend THz communications to higher THz frequencies.

Author Contributions

M.S. contributed to conceptualization and wrote the manuscript; G.A., T.O. and V.R. contributed to conceptualization, methodology, and validation. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the U.S. Air Force Office of Scientific Research (No. FA9550-19-1-0355) (Project Manager Dr. Ken Goretta), Army Research Office (No. W911NF-17-S-0002) (Project Manager Dr. John Qiu), and the Army Research Laboratory under the ARL MSME Alliance (Project Manager Dr. Meredith Reed). The work done by Taiichi Otsuji was supported by the JSPS KAKENHI (Nos. 16H06361, 20K20349, and 21H04546), Japan.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Labovitz, C. Early Effects of COVID-19 Lockdowns on Service Provider Networks: The Networks Soldier on! Available online: https://www.nokia.com/blog/early-effects-covid-19-lockdowns-service-provider-networks-networks-soldier/ (accessed on 20 March 2020).
  2. Dhillon, S.S.; Vitiello, M.S.; Linfield, E.H.; Davies, A.; Hoffmann, M.; Booske, J.; Paoloni, C.; Gensch, M.; Weightman, P.; Williams, G.P.; et al. The 2017 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 2017, 50, 043001. [Google Scholar] [CrossRef]
  3. Chowdhury, M.Z.; Shahjalal, M.; Ahmed, S.; Jang, Y.M. 6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions. IEEE Open J. Commun. Soc. 2020, 1, 957–975. [Google Scholar] [CrossRef]
  4. Zhou, Y.; Liu, L.; Wang, L.; Hui, N.; Cui, X.; Wu, J.; Peng, Y.; Qi, Y.; Xing, C. Service-aware 6G: An intelligent and open network based on the convergence of communication, computing and caching. Digit. Commun. Netw. 2020, 6, 253–260. [Google Scholar] [CrossRef]
  5. O’Dea, S. Connection Density of 4G, 5G and 6G Technology, 19 November 2020. Available online: https://www.statista.com/statistics/1183690/mobile-broadband-connection-density/ (accessed on 22 November 2021).
  6. Pala, N.; Shur, M. THz Photonic and Plasmonic Devices for Sensing, Imaging and Communication Applications, SPIE Defense + Commercial Sensing. In Proceedings of the Micro- and Nanotechnology Sensors, Systems and Applications XI, Baltimore, MD, USA, 13 May 2019; Volume 10982, p. 109822Y. [Google Scholar] [CrossRef]
  7. Lee, S.; Hara, S.; Yoshida, T.; Amakawa, S.; Dong, R.; Kasamatsu, A.; Sato, J.; Fujishima, M. An 80-Gb/s 300-GHz-Band Single-Chip CMOS Transceiver. IEEE J. Solid-State Circuits 2019, 54, 3577–3588. [Google Scholar] [CrossRef]
  8. Fujishima, M. Overview of sub-terahertz communication and 300GHz CMOS transceivers. IEICE Electron. Express 2021, 18, 20212002. [Google Scholar] [CrossRef]
  9. Kürner, T.; Kallfass, I.; Ajito, K.; Kasamatsu, A.; Britz, D.; Priebe, S. “What’s Next? Wireless Communication beyond 60 GHz,” Tutorial of IEEE 802.15 IG THz, IEEE 802 Plenary. 2012. Available online: https://mentor.ieee.org/802.15/dcn/12/15-12-0320-02-0thz-what-s-next-wireless-communication-beyond-60-ghz-tu-torial-ig-thz.pdf (accessed on 22 November 2021).
  10. Bhat, J.R.; AlQahtani, S.A. 6G Ecosystem: Current Status and Future Perspective. IEEE Access 2021, 26, 43134–43136. [Google Scholar] [CrossRef]
  11. NTT DOCOMO, Inc. White Paper 5G Evolution and 6G. 2020. Available online: www.nttdocomo.co.jp/english/binary/pdf/corporate/technology/ (accessed on 22 November 2021).
  12. Shur, M. Pandemic Equation for Describing and Predicting COVID-19 Evolution. J. Health Inform. Res. 2021, 5, 168–180. [Google Scholar] [CrossRef]
  13. IEEE. IEEE Standard for High Data Rate Wireless Multi-Media Networks—Amendment 2:100 Gb/s Wireless Switched Point-to-Point Physical Layer; IEEE Standard 802.15.3d-2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
  14. Shur, M.; Gaska, R. Device and Method for Managing Radiation. U.S. Patent 7638817, 29 December 2009. [Google Scholar]
  15. Shur, M.; Ryzhii, V.; Gaska, R. Method of Radiation Generation and Manipulation. U.S. Patent 7,619,263, 17 November 2009. [Google Scholar]
  16. Petrov, A.S.; Svintsov, D.; Ryzhii, V.; Shur, M.S. Amplified-reflection plasmon instabilities in grating-gate plasmonic crystals. Phys. Rev. B 2017, 95, 045405. [Google Scholar] [CrossRef] [Green Version]
  17. Karabiyik, M.; Ahmadivand, A.; Sinha, R.; Al-Amin, C.; Vabbina, P.K.; Kaya, S.; Rupper, G.; Rudin, S.; Shur, M.; Pala, N. Plasmonic properties of asymmetric dual grating gate plasmonic crystals. Phys. Status Solidi B 2016, 253, 671–675. [Google Scholar] [CrossRef]
  18. Teperik, T.V.; De Abajo, F.J.G.; Popov, V.; Shur, M. Strong terahertz absorption bands in a scaled plasmonic crystal. Appl. Phys. Lett. 2007, 90, 251910. [Google Scholar] [CrossRef] [Green Version]
  19. Kachorovskii, V.; Shur, M. Current-induced terahertz oscillations in plasmonic crystal. Appl. Phys. Lett. 2012, 100, 232108. [Google Scholar] [CrossRef]
  20. Aizin, R.; Mikalopas, J.; Shur, M. Current driven “plasmonic” instability in gated periodic ballistic nanostructures. Phys. Rev. B 2016, 93, 195315. [Google Scholar] [CrossRef] [Green Version]
  21. Dmitriev, A.; Kachorovskii, V.; Shur, M. Granular semiconductor/pyroelectric media as a tunable plasmonic crystal. Solid-State Electron. 2007, 51, 812–815. [Google Scholar] [CrossRef]
  22. Zhang, X.; Xu, Q.; Xia, L.; Li, Y.; Gu, J.; Tian, Z.; Ouyang, C.; Han, J.; Zhang, W. Terahertz surface plasmonic waves: A review. Adv. Photonics 2020, 2, 014001. [Google Scholar] [CrossRef]
  23. Karabiyik, M. Terahertz Plasmonic Devices. ProQuest ETD Collection for FIU. AAI10744516. 2017. Available online: https://digitalcommons.fiu.edu/dissertations/AAI10744516 (accessed on 22 November 2021).
  24. Aizin, G.; Mikalopas, J.; Shur, M.S. Giant Inverse Faraday Effect in Plasmonic Crystal Ring. arXiv 2019, arXiv:2109.14051. Available online: http://arxiv.org/abs/2109.14051 (accessed on 20 October 2021).
  25. Yeung, K.Y.M.; Chee, J.; Yoon, H.; Song, Y.; Kong, J.; Ham, D. Far-Infrared Graphene Plasmonic Crystals for Plasmonic Band Engineering. Nano Lett. 2014, 14, 2479–2484. [Google Scholar] [CrossRef] [Green Version]
  26. Daniel, M. Mittleman, Frontiers in Terahertz Sources and Plasmonics Nature Photonics, Volume 7, September 2013. Available online: www.nature.com/naturephotonics (accessed on 22 November 2021).
  27. Sugaya, T.; Kawano, Y. Frequency-Tunable Terahertz Plasmonic Structure Based on the Solid Immersed Method for Sensing. Sensors 2021, 21, 1419. [Google Scholar] [CrossRef]
  28. Zakharko, Y.; Graf, A.; Zaumseil, J. Plasmonic Crystals for Strong Light–Matter Coupling in Carbon Nanotubes. Nano Lett. 2016, 16, 6504–6510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  29. Dyer, G.C.; Aizin, G.R.; Preu, S.; Vinh, N.Q.; Allen, S.J.; Reno, J.L.; Shaner, E.A. Inducing an Incipient Terahertz Finite Plasmonic Crystal in Coupled Two Dimensional Plasmonic Cavities. Phys. Rev. Lett. 2012, 109, 126803. [Google Scholar] [CrossRef]
  30. Dyer, G.C.; Aizin, G.R.; Allen, S.J.; Grine, A.D.; Bethke, D.; Reno, J.L.; Shaner, E.A. Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals. Nat. Photonics 2013, 7, 925–930. [Google Scholar] [CrossRef] [Green Version]
  31. Aizin, G.R.; Dyer, G.C. Transmission line theory of collective plasma excitations in periodic two-dimensional electron systems: Finite plasmonic crystals and Tamm states. Phys. Rev. B 2012, 86, 235316. [Google Scholar] [CrossRef] [Green Version]
  32. Deng, X.; Li, L.; Enomoto, M.; Kawano, Y. Continuously Frequency-Tuneable Plasmonic Structures for Terahertz Bio-sensing and Spectroscopy. Sci. Rep. 2019, 9, 3498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  33. Schaafsma, M.C.; Rivas, J.G. Semiconductor plasmonic crystals: Active control of THz extinction. In Proceedings of the 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Mainz, Germany, 1 September 2013; pp. 1–2. [Google Scholar] [CrossRef] [Green Version]
  34. Liu, X.; Ytterdal, T.; Shur, M. Line of sight THz detector using Si TeraFETs. In Proceedings of the 46th IRMMW-THz 2021 Conference, Chengdu, China, 29 August–3 September 2021. [Google Scholar]
  35. Liu, X.; Ytterdal, T.; Shur, M. Travelling Wave THz Spectrometer using Si TeraFETs. In Proceedings of the 46th IRMMW-THz 2021 Conference, Chengdu, China, 29 August–3 September 2021. [Google Scholar]
  36. Rumyantsev, S.; Liu, X.; Kachorovskii, V.; Shur, M. Homodyne phase sensitive terahertz spectrometer. Appl. Phys. Lett. 2017, 111, 121105. [Google Scholar] [CrossRef]
  37. Veksler, D.; Muravjov, A.; Stillman, W.; Pala, N.; Shur, M. Detection and Homodyne Mixing of Terahertz Gas Laser Radiation by Submicron GaAs/AlGaAs FETs. In Proceedings of the 2017 IEEE Sensors Conference, Atlanta, GA, USA, 28–31 October 2007; pp. 443–445. [Google Scholar]
  38. Gorbenko, I.; Kachorovski, V.Y.; Shur, M.S. Plasmonic polarization-sensitive detector of terahertz radiation. J. Phys. Conf. Ser. 2019, 1236, 012029. [Google Scholar] [CrossRef]
  39. Ikamas, K.; But, D.B.; Lisauskas, A. Homodyne Spectroscopy with Broadband Terahertz Power Detector Based on 90-nm Silicon CMOS Transistor. Appl. Sci. 2021, 11, 412. [Google Scholar] [CrossRef]
  40. Gershgorin, B.; Kachorovskii, V.Y.; Lvov, Y.V.; Shur, M.S. Field effect transistor as heterodyne terahertz detector. Electron. Lett. 2008, 44, 1036–1037. [Google Scholar] [CrossRef]
  41. Shur, M.S.; Liu, X.; Rumyantsev, S.; Kachorovskii, V. Heterodyne Phase Sensitive Terahertz Spectrometer. In Proceedings of the 2017 IEEE Sensors Conference, Atlanta, GA, USA, 28–31 October 2007; pp. 621–623. [Google Scholar]
  42. Wang, N.; Javadi, H.; Jarrahi, M. Heterodyne terahertz detection with plasmonic photomixers. In Proceedings of the 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, USA, 22–27 May 2016; pp. 1–3. [Google Scholar] [CrossRef]
  43. Wang, N.; Cakmakyapan, S.; Lin, Y.-J.; Javadi, H.; Jarrahi, M. Room-temperature heterodyne terahertz detection with quantum-level sensitivity. Nat. Astron. 2019, 3, 977–982. [Google Scholar] [CrossRef]
  44. Liu, X.; Ytterdal, T.; Shur, M. Frequency to digital conversion using Si TeraFETs. Opt. Eng. 2021, 60, 082017. [Google Scholar] [CrossRef]
  45. Liu, X.; Ytterdal, T.; Shur, M. TeraFET amplifier detector. In Proceedings of the 2020 International Topical Meeting on Microwave Photonics (MWP), Matsue, Japan, 24–26 November 2020; pp. 216–219. [Google Scholar]
  46. Tonks, L.; Langmuir, I. Oscillations in Ionized Gases. Phys. Rev. 1929, 33, 195–210. [Google Scholar] [CrossRef]
  47. Pines, D.; Bohm, D. A Collective Description of Electron Interactions: II. Collective vs Individual Particle Aspects of the Interactions. Phys. Rev. 1952, 85, 338–353. [Google Scholar] [CrossRef]
  48. Stern, A.; Ferrell, R.A. Surface Plasma Oscillations of a Degenerate Electron Gas. Phys. Rev. 1960, 120, 130. [Google Scholar] [CrossRef]
  49. Chaplik, A.V. Possible crystallization of charge carriers in low-density inversion layers. Sov. Phys. JETP 1972, 35, 395. [Google Scholar]
  50. Dyakonov, M.; Shur, M. Shallow water analogy for a ballistic field effect transistor. New mechanism of plasma wave generation by DC current. Phys. Rev. Lett. 1993, 71, 2465. [Google Scholar] [CrossRef] [PubMed]
  51. Dyakonov, M.; Shur, M. Plasma wave electronics: Novel terahertz devices using two dimensional electron fluid. IEEE Trans. Electron. Devices 1996, 43, 1640–1645. [Google Scholar] [CrossRef]
  52. Ryzhii, V.; Satou, A.; Shur, M.S. Plasma Instability and Terahertz Generation in HEMTs Due to Electron Transit-Time Effect. IEICE Trans. Electron. 2006, E89-C, 1012–1019. [Google Scholar] [CrossRef]
  53. Knap, W.; Lusakowski, J.; Parenty, T.; Bollaert, S.; Cappy, A.; Popov, V.V.; Shur, M.S. Emission of terahertz radiation by plasma waves in 60 nm AlInAs/InGaAs high electron mobility transistors. Appl. Phys. Lett. 2004, 84, 2331–2333. [Google Scholar] [CrossRef] [Green Version]
  54. Lusakowski, J.; Knap, W.; Dyakonova, N.; Varani, L.; Mateos, J.; Gonzalez, T.; Roelens, Y.; Bollaert, S.; Cappy, A.; Karpierz, K. Voltage tunable terahertz emission from a ballistic nanometer InGaAs-InAlAs transistor. J. Appl. Phys. 2005, 97, 064307. [Google Scholar] [CrossRef] [Green Version]
  55. Watanabe, T.; Satou, A.; Suemitsu, T.; Knap, W.; Popov, V.V.; Otsuji, T. Plasmonic terahertz monochromatic coherent emission from an asymmetric chirped dual-grating-gate InP-HEMT with photonic vertical cavities. In Proceedings of the CLEO, Conference Lasers Electrooptics Digit, San Jose, CA, USA, 8–13 June 2013; pp. 1–9. [Google Scholar]
  56. Dyakonova, N.E.; El Fatimy, A.; Sakowski, J. Room-temperature terahertz emission from nanometer field-effect transistors. Appl. Phys. Lett. 2006, 88, 141906. [Google Scholar] [CrossRef]
  57. Zhou, Y.; Li, X.; Tan, R. Extraction of terahertz emission from a grating-coupled high-electron-mobility transistor. J. Semicond. 2013, 34, 022002. [Google Scholar] [CrossRef]
  58. Meziani, Y.M.; Handa, H.; Knap, W.; Otsuji, T.; Sano, E.; Popov, V.; Tsymbalov, G.M.; Coquillat, D.; Teppe, F. Room temperature terahertz emission from grating coupled two-dimensional plasmons. Appl. Phys. Lett. 2008, 92, 201108. [Google Scholar] [CrossRef]
  59. Onishi, T.; Tanigawa, T.; Takigawa, S. High power terahertz emission from a single gate AlGaN/GaN field effect transistor with periodic ohmic contacts for plasmon coupling. Appl. Phys. Lett. 2010, 97, 092117. [Google Scholar] [CrossRef]
  60. Kim, S.; Hong, S.; Jang, J. Strong and narrowband terahertz radiation from GaAs based pHEMT and terahertz imaging. Microw. Opt. Technol. Lett. 2020, 62, 3791–3795. [Google Scholar] [CrossRef]
  61. Boubanga-Tombet, S.; Teppe, F.; Coquillat, D.; Nadar, S.; Dyakonova, N.; Videlier, H.; Knap, W.; Shchepetov, A.; Gardès, C.; Roelens, Y.; et al. Current driven resonant plasma wave detection of terahertz radiation: Toward the Dyakonov–Shur instability. Appl. Phys. Lett. 2008, 92, 212101. [Google Scholar] [CrossRef] [Green Version]
  62. Bandurin, D.A.; Svintsov, D.; Gayduchenko, I.; Shuigang, G.; Xu, G.; Principi, A.; Moskotin, M.; Tretyakov, I.; Yagodkin, D.; Zhukov, S.; et al. Resonant terahertz detection using graphene plasmons. Nat. Commun. 2018, 9, 5392. [Google Scholar] [CrossRef] [Green Version]
  63. Shur, M. Plasmonic heterodimensional resonance for subwavelength imaging. In Proceedings of the SPIE 10639, Micro- and Nanotechnology Sensors, Systems, and Applications X, Orlando, FL, USA, 8 May 2018; Volume 1063907. [Google Scholar] [CrossRef]
  64. Kim, J.; Son, H.; Cho, D.J.; Geng, B.; Regan, W.; Shi, S.; Kim, K.; Zettl, A.; Shen, Y.-R.; Wang, F. Electrical Control of Optical Plasmon Resonance with Graphene. Nano Lett. 2012, 12, 5598–5602. [Google Scholar] [CrossRef] [Green Version]
  65. Li, Y.; Yan, H.; Farmer, D.B.; Meng, X.; Zhu, W.; Osgood, R.M.; Heinz, T.F.; Avouris, P. Graphene Plasmon Enhanced Vibrational Sensing of Surface-Adsorbed Layers. Nano Lett. 2014, 14, 1573–1577. [Google Scholar] [CrossRef]
  66. Knap, W.; Deng, Y.; Rumyantsev, S.; Lü, J.-Q.; Shur, M.; Saylor, C.A.; Brunel, L.C. Resonant detection of subterahertz radiation by plasma waves in a submicron field-effect transistor. Appl. Phys. Lett. 2002, 80, 3433–3435. [Google Scholar] [CrossRef]
  67. Peralta, X.G.; Allen, S.J.; Wanke, M.C.; Harff, N.E.; Simmons, J.A.; Lilly, M.P.; Reno, J.L.; Burke, P.J.; Eisenstein, J.P. Terahertz photoconductivity and plasmon modes in double-quantum-well field-effect transistors. Appl. Phys. Lett. 2002, 81, 1627. [Google Scholar] [CrossRef] [Green Version]
  68. Knap, W.; Kachorovskii, V.; Deng, Y.; Rumyantsev, S.; Lü, J.-Q.; Gaska, R.; Shur, M.; Simin, G.; Hu, X.; Khan, M.A.; et al. Nonresonant detection of terahertz radiation in field effect transistors. J. Appl. Phys. 2002, 91, 9346–9353. [Google Scholar] [CrossRef]
  69. Shur, M.S. Plasmonic detectors and sources for THz communication and sensing. Micro- Nanotechnol. Sens. Syst. Appl. X 2018, 10639, 1063929. [Google Scholar]
  70. Stillman, W.; Donais, C.; Rumyantsev, S.; Shur, M.; Veksler, D.; Hobbs, C.; Smith, C.; Bersuker, G.; Taylor, W.; Jammy, R. Silicon FIN FETs as detectors of terahertz and sub-terahertz radiation. Int. J. High Speed Electron. Syst. 2011, 20, 27–42. [Google Scholar] [CrossRef]
  71. Lisauskas, A.; Bauer, M.; Boppel, S.; Mundt, M.; Khamaisi, B.; Socher, E.; Venckevičius, R.; Minkevičius, L.; Kašalynas, I.; Seliuta, D.; et al. Exploration of Terahertz Imaging with Silicon MOSFETs. J. Infrared Millim. Terahertz Waves 2014, 35, 63–80. [Google Scholar] [CrossRef]
  72. Kenneth, K.O.; Chang, M.-C.F.; Shur, M.; Knap, W. Sub-millimeter wave signal generation and detection in CMOS. In Proceedings of the 2009 IEEE MTT-S International Microwave Symposium Digest, Boston, MA, USA, 7–12 June 2009; pp. 185–188. [Google Scholar]
  73. Ojefors, E.; Pfeiffer, U.; Lisauskas, A.; Roskos, H. A 0.65 THz Focal-Plane Array in a Quarter-Micron CMOS Process Technology. IEEE J. Solid-State Circuits 2009, 44, 1968–1976. [Google Scholar] [CrossRef]
  74. Stillman, W.; Guarin, F.; Kachorovskii, V.Y.; Pala, N.; Rumyantsev, S.; Shur, M.; Veksler, D. Nanometer scale complementary silicon MOSFETs as detectors of terahertz and sub-terahertz radiation. In Proceedings of the 2017 IEEE Sensors Conference, Atlanta, GA, USA, 28–31 October 2007; pp. 479–480. [Google Scholar]
  75. Stillman, W.; Veksler, D.; Elkhatib, T.; Salama, K.; Guarin, F.; Shur, M. Sub-terahertz testing of silicon MOSFET. Electron. Lett. 2008, 44, 1325–1327. [Google Scholar] [CrossRef]
  76. But, D.; Diakonova, N.; Drexler, C.; Drachenko, O.; Romanov, K.; Golenkov, O.G.; Sizov, F.F.; Gutin, A.; Shur, M.; Ganichev, S.D.; et al. The dynamic range of THz broadband FET detectors. In Proceedings of the SPIE 8846, Terahertz Emitters, Receivers, and Applications IV, San Francisco, CA, USA, 24 September 2013; Volume 884612. [Google Scholar] [CrossRef]
  77. Popov, V.; Ermolaev, D.M.; Maremyanin, K.V.; Maleev, N.A.; Zemlyakov, V.E.; Gavrilenko, V.I.; Shapoval, S.Y. High-responsivity terahertz detection by on-chip InGaAs/GaAs field-effect-transistor array. Appl. Phys. Lett. 2011, 98, 153504. [Google Scholar] [CrossRef]
  78. Popov, V.; Yermolaev, D.M.; Maremyanin, K.V.; Zemlyakov, V.E.; Maleev, N.A.; Gavrilenko, V.I.; Bespalov, V.A.; Yegorkin, V.I.; Ustinov, V.M.; Shapoval, S.Y. Detection of terahertz radiation by tightly concatenated InGaAs field-effect transistors integrated on a single chip. Appl. Phys. Lett. 2014, 104, 163508. [Google Scholar] [CrossRef]
  79. Zhang, Y.; Shur, M.S. p-Diamond, Si, GaN, and InGaAs TeraFETs. IEEE Trans. Electron. Devices 2020, 67, 4858–4865. [Google Scholar] [CrossRef]
  80. Gavrilenko, V.I.; Demidov, E.V.; Marem’yanin, K.V.; Morozov, S.V.; Knap, W.; Lusakowski, J. Electron transport and detection of terahertz radiation in a GaN/AlGaN submicrometer field-effect transistor. Semiconductors 2007, 41, 232–234. [Google Scholar] [CrossRef]
  81. El Fatimy, A.; Tombet, S.B.; Teppe, F.; Knap, W.; Veksler, D.; Rumyantsev, S.; Shur, M.; Pala, N.; Gaska, R.; Fareed, Q.; et al. Terahertz detection by GaN/AlGaN transistors. Electron. Lett. 2006, 42, 1342–1344. [Google Scholar] [CrossRef] [Green Version]
  82. Bauer, M.; Ramer, A.; Chevtchenko, S.A.; Osipov, K.Y.; Cibiraite, D.; Pralgauskaite, S.; Ikamas, K.; Lisauskas, A.; Heinrich, W.; Krozer, V.; et al. A High-Sensitivity AlGaN/GaN HEMT Terahertz Detector with Integrated Broadband Bow-Tie Antenna. IEEE Trans. Terahertz Sci. Technol. 2019, 9, 430–444. [Google Scholar] [CrossRef]
  83. Shaner, E.A.; Lee, M.; Wanke, M.C.; Grine, A.D.; Reno, J.L.; Allen, S.J. Single-quantum-well grating-gated terahertz plasmon detectors. Appl. Phys. Lett. 2005, 87, 193507. [Google Scholar] [CrossRef] [Green Version]
  84. Dyer, G.C.; Vinh, N.Q.; Allen, S.J.; Aizin, G.R.; Mikalopas, J.; Reno, J.L.; Shaner, E.A. A terahertz plasmon cavity detector. Appl. Phys. Lett. 2010, 97, 193507. [Google Scholar] [CrossRef] [Green Version]
  85. Mitin, V.; Ryzhii, V.; Otsuji, T. Graphene-Based Terahertz Electronics and Plasmonics: Detector and Emitter Concepts; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
  86. De Abajo, F.J.G. Graphene Plasmonics: Challenges and Opportunities. ACS Photonics 2014, 1, 135–152. [Google Scholar] [CrossRef] [Green Version]
  87. Grigorenko, A.N.; Polini, M.; Novoselov, K.S. Graphene plasmonics. Nat. Photonics 2012, 6, 749–758. [Google Scholar] [CrossRef]
  88. Koppens, F.H.L.; Chang, D.E.; de Abajo, F.J.G. Graphene Plasmonics: A Platform for Strong Light–Matter Interactions. Nano Lett. 2011, 11, 3370–3377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  89. Ju, L.; Geng, B.; Horng, J.; Girit, C.; Martin, M.; Hao, Z.; Bechtel, H.A.; Liang, X.; Zettl, A.; Shen, Y.R.; et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 2011, 6, 630–634. [Google Scholar] [CrossRef]
  90. Boubanga-Tombet, S.; Knap, W.; Yadav, D.; Satou, A.; But, D.B.; Popov, V.V.; Gorbenko, I.V.; Kachorovskii, V.; Otsuji, T. Room-Temperature Amplification of Terahertz Radiation by Grating-Gate Graphene Structures. Phys. Rev. X 2020, 10, 031004. [Google Scholar] [CrossRef]
  91. Losurdo, M.; Moreno, F.; Cobet, C.; Modreanu, M.; Pernice, W. Plasmonics: Enabling functionalities with novel materials. J. Appl. Phys. 2021, 129, 220401. [Google Scholar] [CrossRef]
  92. Aizin, G.R.; Mikalopas, J.; Shur, M. Plasmonic instabilities in two-dimensional electron channels of variable width. Phys. Rev. B 2020, 101, 245404. [Google Scholar] [CrossRef]
  93. Shur, M.; Mikalopas, J.; Aizin, G.R. Compact Design Models of Cryo and Room Temperature Si MOS, GaN, InGaAs, and p-diamond HEMT TeraFETs. In Proceedings of the 2020 IEEE Radio and Wireless Symposium (RWS), San Antonio, TX, USA, 26–29 January 2020; pp. 209–212. [Google Scholar]
  94. Park, D.J.; Zhang, C.; Ku, J.C.; Zhou, Y.; Schatz, G.C.; Mirkin, C.A. Plasmonic photonic crystals realized through DNA-programmable assembly. Proc. Natl. Acad. Sci. USA 2015, 112, 977–981. [Google Scholar] [CrossRef] [Green Version]
  95. Liu, X.; Dovidenko, K.; Park, J.; Ytterdal, T.; Shur, M.S. Compact Terahertz SPICE Model: Effects of Drude Inductance and Leakage. IEEE Trans. Electron. Devices 2018, 65, 5350–5356. [Google Scholar] [CrossRef]
  96. Vartanian, V.; Zollner, S.; Thean, A.V.-Y.; White, T.; Nguyen, B.-Y.; Prabhu, L.; Eades, D.; Parsons, S.; Desjardins, H.; Kim, K.; et al. Metrology Challenges for 45-nm Strained-Si Device Technology. IEEE Trans. Semicond. Manuf. 2006, 19, 381–390. [Google Scholar] [CrossRef]
  97. Venugopal, R.; Goasguen, S.; Datta, S.; Lundstrom, M.S. Quantum mechanical analysis of channel access geometry and series resistance in nanoscale transistors. J. Appl. Phys. 2004, 95, 292–305. [Google Scholar] [CrossRef] [Green Version]
  98. Shchepetov, A.; Gardes, C.; Roelens, Y.; Cappy, A.; Bollaert, S.; Boubanga-Tombet, S.; Teppe, F.; Coquillat, D.; Nadar, S.; Dyakonova, N.; et al. Oblique modes effect on terahertz plasma wave resonant detection in InGaAs/InAlAs multichannel transistors. Appl. Phys. Lett. 2008, 92, 242105. [Google Scholar] [CrossRef]
  99. Rupper, G.; Rudin, S.; Crowne, F.J. Effects of oblique wave propagation on the nonlinear plasma resonance in the two-dimensional channel of the Dyakonov-Shur detector. In Proceedings of the 2011 International Semiconductor Device Research Symposium (ISDRS), College Park, MD, USA, 7–9 December 2011; pp. 1–2. [Google Scholar] [CrossRef]
  100. Hosotani, T.; Watanabe, T.; Satou, A.; Otsuji, T. Terahertz Emission from an Asymmetric Dual-Grating-Gate InGaAs High-Electron-Mobility Transistor Stimulated by Plasmonic Boom. In Proceedings of the 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 1–6 September 2019. [Google Scholar]
  101. Otsuji, T.; Shur, M. Terahertz Plasmonics: Good Results and Great Expectations. IEEE Microw. Mag. 2014, 15, 43–50. [Google Scholar] [CrossRef]
  102. Clochiatti, S.; Mutlu, E.; Preuss, C.; Kress, R.; Prost, W.; Weimann, N. Broadband THz Detection Using InP Triple-Barrier Resonant Tunneling Diode With Integrated Antenna. In 2021 Fourth International Workshop on Mobile Terahertz Systems (IWMTS); IEEE: Piscataway, NJ, USA, 2021; pp. 1–5. [Google Scholar] [CrossRef]
  103. Takida, Y.; Suzuki, S.; Asada, M.; Minamide, H. Sensitive Continuous-Wave Terahertz Detection by Resonant-Tunneling-Diode Oscillators. In Proceedings of the 2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Buffalo, NY, USA, 8–13 November 2020; pp. 1–2. [Google Scholar] [CrossRef]
  104. Shur, M.; Rudin, S.; Rupper, G.; Dagefu, F.; Brodsky, M. TeraFETs for Terahertz Communications. Photonics Newsl. 2019, 33, 4–7. [Google Scholar]
  105. Ikamas, K.; But, D.B.; Cesiul, A.; Kołaciński, C.; Lisauskas, T.; Knap, W.; Lisauskas, A. All-Electronic Emitter-Detector Pairs for 250 GHz in Silicon. Sensors 2021, 21, 5795. [Google Scholar] [CrossRef]
  106. Vu, T.A.; Fujishima, M. A 300 GHz CMOS Transmitter Front-End for Ultrahigh-Speed Wireless Communications. Int. J. Electr. Comput. Eng. 2017, 7, 2278–2286. [Google Scholar] [CrossRef]
  107. Elkhatib, T.A.; Kachorovskii, V.; Stillman, W.J.; Veksler, D.B.; Salama, K.N.; Zhang, X.-C.; Shur, M. Enhanced Plasma Wave Detection of Terahertz Radiation Using Multiple High Electron-Mobility Transistors Connected in Series. IEEE Trans. Microw. Theory Tech. 2010, 58, 331–339. [Google Scholar] [CrossRef]
  108. Shur, M.S. Introduction to Electronic Devices; John Wiley and Sons: New York, NY, USA, 1996. [Google Scholar]
  109. Assaderaghi, F.; Kop, P.; Hu, C. Observation of velocity overshoot in silicon inversion layers. IEEE Electron. Device Lett. 1993, 14, 484–486. [Google Scholar] [CrossRef] [Green Version]
  110. Shur, M.; Rupper, G.; Rudin, S. Ultimate limits for highest modulation frequency and shortest response time of field effect transistor. In Proceedings of the SPIE 10194, Micro- and Nanotechnology Sensors, Systems and Applications IX, Orlando, FL, USA, 18 May 2017; Volume 101942M. [Google Scholar] [CrossRef]
  111. Lu, J.-Q.; Shur, M.; Hesler, J.; Sun, L.; Weikle, R. A Resonant Terahertz Detector Utilizing a High Electron Mobility Transistor. In Proceedings of the IEDM Technical Digest, San Francisco, CA, USA, 6–9 December 1998; pp. 453–456. [Google Scholar]
  112. Nafari, M.; Aizin, G.R.; Jornet, J.M. Plasmonic HEMT Terahertz Transmitter based on the Dyakonov-Shur Instability: Performance Analysis and Impact of Nonideal Boundaries. Phys. Rev. Appl. 2018, 10, 064025. [Google Scholar] [CrossRef] [Green Version]
  113. Aizin, G.R.; Mikalopas, J.; Shur, M.S. Plasmons in Ballistic Nanostructures with Stubs: Transmission Line Approach. IEEE Trans. Electron. Devices 2018, 66, 126–131. [Google Scholar] [CrossRef]
  114. Muravjov, A.V.; Veksler, D.B.; Popov, V.V.; Polischuk, O.; Hu, X.; Gaska, R.; Pala, N.; Saxena, H.; Peale, R.E.; Shur, M.S. Temperature dependence of plasmonic terahertz absorption in grating-gate GaN HEMT structures. Appl. Phys. Lett. 2010, 96, 042105. [Google Scholar] [CrossRef] [Green Version]
  115. Otsuji, A.; Dubinov, V.; Ya Aleshkin, D.; Svintsov, M.; Ryzhii, S.; Boubanga Tombet, D.; Yadav, A.; Satou, V.; Mitin, M.S.; Shur, V.; et al. Graphene-based van der Waals heterostructures for emission and detection of terahertz radiation. In Proceedings of the SPIE 9856, Terahertz Physics, Devices, and Systems X: Advanced Applications in Industry and Defense, Baltimore, MD, USA, 29 April 2016; p. 985603. [Google Scholar] [CrossRef]
  116. Rodríguez-Vázquez, P.; Grzyb, J.; Sarmah, N.; Heinemann, B.; Pfeiffer, U.R. A 65 Gbps QPSK one meter wireless link operating at a 225–255 GHz tunable carrier in a SiGe HBT technology. In Proceedings of the IEEE Radio Wireless Symposium, Anaheim, CA, USA, 15–18 January 2018; pp. 146–149. [Google Scholar]
  117. Al-Eryani; Knapp, H.; Kammerer, J.; Aufinger, K.; Li, H.; Maurer, L. Fully integrated single-chip 305–375-GHz transceiver with on-chip antennas in SiGe BiCMOS. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 329–339. [Google Scholar] [CrossRef]
  118. Lisauskas, A.; Rämer, A.; Burakevič, M.; Chevtchenko, S.A.; Krozer, V.; Heinrich, W.; Roskos, H.G. Terahertz emission from biased AlGaN/GaN high-electron-mobility transistors. J. Appl. Phys. 2019, 125, 151614. [Google Scholar] [CrossRef]
  119. Wang, Z.; Chiang, P.-Y.; Nazari, P.; Wang, C.-C.; Chen, Z.; Heydari, P. A CMOS 210-GHz Fundamental Transceiver with OOK Modulation. IEEE J. Solid-State Circuits 2014, 49, 564–580. [Google Scholar] [CrossRef]
  120. Wang, C.; Lu, B.; Lin, C.; Chen, Q.; Miao, L.; Deng, X.; Zhang, J. 0.34-THz Wireless Link Based on High-Order Modulation for Future Wireless Local Area Network Applications. IEEE Trans. Terahertz Sci. Technol. 2014, 4, 75–85. [Google Scholar] [CrossRef]
  121. Sengupta, K.; Hajimiri, A. Distributed active radiation for THz signal generation. In Proceedings of the 2011 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 20–24 February 2011; pp. 288–289. [Google Scholar]
  122. Sengupta, K.; Hajimiri, A. A 0.28 THz 4 x 4 power generation and beam-steering array. In Proceedings of the 2012 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 19–23 February 2012; pp. 256–258. [Google Scholar]
  123. Available online: https://vadiodes.com/en/frequency-multipliers (accessed on 19 October 2021).
  124. Khalid, A.; Dunn, G.M.; MacPherson, R.F.; Thoms, S.; MacIntyre, D.; Li, C.; Steer, M.J.; Papageorgiou, V.; Thayne, I.G.; Kuball, M.; et al. Terahertz oscillations in an In0.53Ga0.47As submicron planar Gunn diode. J. Appl. Phys. 2014, 115, 114502. [Google Scholar] [CrossRef] [Green Version]
  125. Available online: https://terasense.com/products/ (accessed on 19 October 2021).
  126. Asada, M.; Suzuki, S. Terahertz Emitter Using Resonant-Tunneling Diode and Applications. Sensors 2021, 21, 1384. [Google Scholar] [CrossRef]
  127. Yadav, D.; Tamamushi, G.; Watanabe, T.; Mitsushio, J.; Tobah, Y.; Sugawara, K.; Dubinov, A.A.; Satou, A.; Ryzhii, M.; Ryzhii, V.; et al. Terahertz light-emitting graphene-channel transistor toward single-mode lasing. Nanophotonics 2018, 7, 741–752. [Google Scholar] [CrossRef]
  128. Boubanga-Tombet, S.A.; Satou, A.; Yadav, D.; But, D.B.; Knap, W.; Popov, V.V.; Gorbenko, I.V.; Kachorovskii, V.; Otsuji, T. Paving the Way for Tunable Graphene Plasmonic THz Amplifiers. Front. Phys. 2021, 9, 726806. [Google Scholar] [CrossRef]
  129. Gavrilov, N.G.; Knyazev, B.A.; Kolobanov, E.I. Status of the Novosibirsk high-power terahertz FEL. Nucl. Instrum. Methods Phys. Res. 2007, 575, 54–57. [Google Scholar] [CrossRef]
  130. He, W.; Zhang, D.L.; Bowes, H.; Yin, K.; Ronald, A.D.; Phelps, R.; Cross, A.W. Generation of broadband terahertz radiation using a backward wave oscillator and pseudospark-sourced electron beam. Appl. Phys. Lett. 2015, 107, 133501. [Google Scholar] [CrossRef]
  131. Development of MW & THz Klinotrons. Available online: http://ire.kharkov.ua/Mysite/HTML/p0019.htm (accessed on 19 October 2021).
  132. Thumm, M. State-of-the-Art of High-Power Gyro-Devices and Free Electron Masers. J. Infrared Millim. Terahertz Waves 2020, 41, 1–140. [Google Scholar] [CrossRef] [Green Version]
  133. de Maagt, P.; Bolivar, P.H.; Mann, C. Terahertz Science, Engineering and Systems—From Space to Earth Applications. Encycl. RF Microw. Eng. 2005. [Google Scholar] [CrossRef]
  134. Siegel, P.H. THz for space: The golden age. In Proceedings of the 2010 IEEE MTT-S International Microwave Symposium, Anaheim, CA, USA, 27 January 2010; pp. 816–819. [Google Scholar] [CrossRef]
  135. Xia, B.G.; Zhang, D.H.; Meng, J.; Huang, J.; Yao, C.F.; Zhang, J.S. Terahertz FSS for space borne passive remote sensing application. Electron. Lett. 2013, 49, 1398–1399. [Google Scholar] [CrossRef]
  136. Waters, J. Submillimeter-wavelength heterodyne spectroscopy and remote sensing of the upper atmosphere. Proc. IEEE 1992, 80, 1679–1701. [Google Scholar] [CrossRef]
  137. Shur, M.S. Terahertz Plasmonic Technology. IEEE Sens. J. 2021, 21, 12752–12763. [Google Scholar] [CrossRef]
  138. Akter, N.; Pala, N.; Knap, W.; Shur, M. Chapter 8: THz Plasma Field Effect Transistor Detectors, in Fundamentals of Terahertz Devices and Applications; Pavlidis, D., Ed.; Wiley: Hoboken, NJ, USA, 2021. [Google Scholar]
  139. Matsuura, Y.; Suzuki, T.; Katagiri, T. Terahertz gas sensing based on time-domain-spectroscopy using a hollow-optical fiber gas cell. Opt. Fibers Sens. Med. Diagn. Treat. Appl. XVIII 2018, 10488, 1048808. [Google Scholar] [CrossRef]
  140. Kiwa, T.; Kamiya, T.; Morimoto, T.; Fujiwara, K.; Maeno, Y.; Akiwa, Y.; Iida, M.; Kuroda, T.; Sakai, K.; Nose, H.; et al. Imaging of Chemical Reactions Using a Terahertz Chemical Microscope. Photonics 2019, 6, 10. [Google Scholar] [CrossRef] [Green Version]
  141. Yang, L.; Guo, T.; Zhang, X.; Cao, S.; Ding, X. Toxic chemical compound detection by terahertz spectroscopy: A review. Rev. Anal. Chem. 2018, 37, 410. [Google Scholar] [CrossRef]
  142. Chen, Y.; Liu, H.; Fitch, M.J.; Osiander, R.; Spicer, J.B.; Shur, M.; Zhang, X.C. THz Diffuse Reflectance Spectra of Selected Explosives and Related Compounds, Passive Millimeter-Wave Imaging Technology VIII; Roger, A., David, A.W., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2005; Volume 5790, pp. 19–24. [Google Scholar]
  143. Federici, F.; Schulkin, B.; Huang, F.; Gary, D.; Barat, R.; Oliveira, F.; Zimdars, D. THz imaging and sensing for security applications- explosives, weapons, and drugs. Semicond. Sci. Technol. 2005, 20, S266. [Google Scholar] [CrossRef]
  144. Zhong, H.; Karpowicz, N.; Xu, J.; Deng, Y.; Ussery, W.; Shur, M.; Zhang, X.-C. Inspection of space shuttle insulation foam defects using a 0.2 THz Gunn diode oscillator, Infrared and Millimeter Waves. In Proceedings of the 12th International Conference on Terahertz Electronics, Karlsruhe, Germany, 27 September 2004; pp. 753–754. [Google Scholar]
  145. Lee, E.S.; Moon, K.; Lee, I.M.; Park, D.W.; Choi, D.H.; Shin, J.H.; Kim, H.S.; Choi, D.H.; Park, K.H. Terahertz Non-destructive Testing Technology for Industrial Applications. Electron. Telecommun. Trends 2018, 33, 59–69. [Google Scholar]
  146. Ruengwaree, A.; Ghose, A.; Weide, J.; Kampa, G. Ultra-fast pulse transmitter for UWB microwave radar. In Proceedings of the European Radar Conference, Manchester, UK, 13–15 September 2006; IEEE: Piscataway, NJ, USA; pp. 354–357. [Google Scholar]
  147. Nguyen, C.; Han, J. Time-Domain Ultra-Wideband Radar, Sensor and Components: Theory, Analysis and Design; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
  148. Sun, Q.; He, Y.; Liu, K.; Fan, S.; Parrott, E.P.J.; Pickwell-MacPherson, E. Recent advances in terahertz technology for biomedical applications. Quant. Imaging Med. Surg. 2017, 7, 345–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  149. Heilweil, E.; Plusquellic, D. Terahertz Spectroscopy of Biomolecules; CRC Press: Boca Raton, FL, USA, 2007; pp. 269–297. [Google Scholar]
  150. Shur, M.S. Subterahertz and terahertz sensing of biological objects and chemical agents. Terahertz RF Millim. Submillim.-Wave Technol. Appl. XI 2018, 10531, 1053108. [Google Scholar] [CrossRef]
  151. Siegel, P.H. Terahertz Technology in Biology and Medicine. IEEE Trans. Microw. Theory Tech. 2004, 52, 2438–2447. [Google Scholar] [CrossRef]
  152. Hintzsche, H.; Jastrow, C.; Kleine-Ostmann, T.; Kärst, U.; Schrader, T.; Stopper, H. Terahertz Electromagnetic Fields (0.106 THz) Do Not Induce Manifest Genomic Damage In Vitro. PLoS ONE 2012, 7, e46397. [Google Scholar] [CrossRef]
  153. Yu, C.; Fan, S.; Sun, Y.; Pickwell-MacPherson, E. The potential of terahertz imaging for cancer diagnosis: A review of investigations to date. Quant. Imaging Med. Surg. 2012, 2, 33–45. [Google Scholar] [CrossRef]
  154. Farooq, M.; Shur, M. Inspection System and Method for Detecting Defects at a Materials Interface. U.S. Patent 10,215,695 Bl, 26 February 2019. [Google Scholar]
  155. Rupper, G.; Suarez, J.; Rudin, S.; Reed, M.; Shur, M. Terahertz Plasmonics for Testing Very Large-Scale Integrated Circuits under Bias. U.S. Patent 10,890,618 B2, 12 January 2021. [Google Scholar]
  156. Shur, M.; Rudin, S.; Rupper, G.; Reed, M.; Suarez, J. Sub-terahertz testing of millimeter wave Monolithic and very large scale integrated circuits. Solid-State Electron. 2019, 155, 44–48. [Google Scholar] [CrossRef]
  157. Akter, N.; Karabiyik, M.; Shur, M.; Suarez, J.; Pala, N. AI Powered THz VLSI Testing Technology. In Proceedings of the 2020 IEEE 29th North Atlantic Test Workshop (NATW), Albany, NY, USA, 18–20 May 2020; pp. 1–5. [Google Scholar] [CrossRef]
  158. Akter, N.; Siddiquee, M.R.; Shur, M.; Pala, N. AI-Powered Terahertz VLSI Testing Technology for Ensuring Hardware Security and Reliability. IEEE Access 2021, 9, 64499–64509. [Google Scholar] [CrossRef]
  159. Shur, M.S.; Suarez, J. Nanoscale silicon MOSFET response to THz radiation for testing VLSI. In Proceedings of the 2018 IEEE 27th North Atlantic Test Workshop (NATW), Essex, VT, USA, 7–9 May 2018; pp. 1–6. [Google Scholar] [CrossRef]
  160. Deng, Y.; Shur, M.S. Electron mobility and terahertz detection using silicon MOSFETs. Solid-State Electron. 2003, 47, 1559–1563. [Google Scholar] [CrossRef]
  161. Available online: https://terasense.com/products/sub-thz-imaging-cameras/ (accessed on 11 November 2011).
  162. Shur, M. AlGaN/GaN plasmonic terahertz electronic devices. J. Phys. 2014, 486, 012025. [Google Scholar] [CrossRef]
  163. Ahi, K. Review of GaN-based devices for terahertz operation. Opt. Eng. 2017, 59, 090901. [Google Scholar] [CrossRef]
Figure 1. Communication evolution from 4G to 6G.
Figure 1. Communication evolution from 4G to 6G.
Sensors 21 07907 g001
Figure 2. Plasmonic crystal concept: multi finger (grating gate) (from [14]) (a) and two-dimensional plasmonic array (from [15]) (b).
Figure 2. Plasmonic crystal concept: multi finger (grating gate) (from [14]) (a) and two-dimensional plasmonic array (from [15]) (b).
Sensors 21 07907 g002
Figure 3. Estimated values of the maximum quality factor Qm, and the frequency at which this value is achieved, fm, for Si, GaN, InGaAs, and p-diamond TeraFETs (data from [92,93]). Parameters used in the calculation: mobilities for Si 0.1450 m2/Vs, for GaN 0.2 m2/Vs, for InGaAs 1.2 m2/Vs, and for p-diamond 0.53 m2/Vs; effective masses: for Si 0.19, for GaN 0.23, for InGaAs 0.041, and for p-diamond 0.663.
Figure 3. Estimated values of the maximum quality factor Qm, and the frequency at which this value is achieved, fm, for Si, GaN, InGaAs, and p-diamond TeraFETs (data from [92,93]). Parameters used in the calculation: mobilities for Si 0.1450 m2/Vs, for GaN 0.2 m2/Vs, for InGaAs 1.2 m2/Vs, and for p-diamond 0.53 m2/Vs; effective masses: for Si 0.19, for GaN 0.23, for InGaAs 0.041, and for p-diamond 0.663.
Sensors 21 07907 g003
Figure 4. Dependence of the cutoff frequency on the channel length for vs = 105 m/s (two bottom curves) and vs = 1.5 × 105 m/s (two top curves) with (bottom line in each set) and without (top line in each set) accounting for the electron momentum relaxation time.
Figure 4. Dependence of the cutoff frequency on the channel length for vs = 105 m/s (two bottom curves) and vs = 1.5 × 105 m/s (two top curves) with (bottom line in each set) and without (top line in each set) accounting for the electron momentum relaxation time.
Sensors 21 07907 g004
Figure 5. The Dyakonov–Shur (DS) instability increment (a) and 1D plasmonic crystal implementation (b).
Figure 5. The Dyakonov–Shur (DS) instability increment (a) and 1D plasmonic crystal implementation (b).
Sensors 21 07907 g005
Figure 6. Plasmonic boom: variable electron sheet density (a) and variable width structures (b).
Figure 6. Plasmonic boom: variable electron sheet density (a) and variable width structures (b).
Sensors 21 07907 g006
Figure 7. 2D (a) and 3D (b) plasmonic crystals of variable width.
Figure 7. 2D (a) and 3D (b) plasmonic crystals of variable width.
Sensors 21 07907 g007
Figure 8. Stubs for tuning: (a) ungated stub; (b) stub with a single tuning gate; (c) stub with a split tuning gate; (d) stub with side gates; (e) stube with side gates and top gate; (f) stub with side gate and two top tuning gates.
Figure 8. Stubs for tuning: (a) ungated stub; (b) stub with a single tuning gate; (c) stub with a split tuning gate; (d) stub with side gates; (e) stube with side gates and top gate; (f) stub with side gate and two top tuning gates.
Sensors 21 07907 g008
Figure 9. Schematic of the two-stage TeraFET amplifier detector with the THz signals applied to each stage with a phase shift.
Figure 9. Schematic of the two-stage TeraFET amplifier detector with the THz signals applied to each stage with a phase shift.
Sensors 21 07907 g009
Figure 10. Drain response for each stage using harmonic balance (HB) and transient simulation as a function of the THz signal impedance with different schemes and approaches. ΔU1, ΔU2, and ΔU3 are the response at Vd1, Vd2, and Vd3, respectively (see Figure 9).
Figure 10. Drain response for each stage using harmonic balance (HB) and transient simulation as a function of the THz signal impedance with different schemes and approaches. ΔU1, ΔU2, and ΔU3 are the response at Vd1, Vd2, and Vd3, respectively (see Figure 9).
Sensors 21 07907 g010
Figure 11. THz frequency ranges for different applications.
Figure 11. THz frequency ranges for different applications.
Sensors 21 07907 g011
Table 1. TeraFET detector performance at sub-THz and THz frequencies (data from [82]).
Table 1. TeraFET detector performance at sub-THz and THz frequencies (data from [82]).
Detector TypeFrequency (THz)Noise Equivalent Power (pW/Hz1/2)
AlGaN/GaN TeraFETs0.49–0.6525–31
AlGaN/GaN TeraFETs0.7–0.930–50
65 nm Si CMOS0.8–1100
65 nm Si CMOS0.6517
65 nm Si CMOS0.7214
90 nm Si CMOS0.648–70
130 nm Si CMOS0.268.4
Table 2. Performance of THz detection devices (data from [101,102,103]).
Table 2. Performance of THz detection devices (data from [101,102,103]).
THz DetectorMechanismSpeedOperating Temperature (K)Responsivity (kV/W or A/W)NEP
(pW/Hz−1/2)
Golay cellThermalSlow30010–100 kV/W~100
BolometerThermalSlow4.2~100 kV/W~0.1
Schottky diodeRectificationFast3000.1 to 1.5 kV/W2.7 to 40
GaN TeraFETPlasmonicFast3001.1 kV/W40
Grated Gate TeraFETPlasmonicFast3002.2 to 23 kV/W0.5 to 50
Resonant tunnelling diodeResonant tunnellingFast3007.3 A/W7.7
Resonant tunnelling diodeResonant tunnellingFast3000.9 kV/W2.5
Table 3. THz electronic sources operating at 300 K unless stated otherwise (see also [116,117,118,119,120,121,122,123,124,125,126,127]).
Table 3. THz electronic sources operating at 300 K unless stated otherwise (see also [116,117,118,119,120,121,122,123,124,125,126,127]).
THz EmitterFrequency (THz)Output Power (mW) 300 KDC Power (mW)Efficiency (%)Reference
40 nm Si CMOS0.2660.6917900.039[7]
GaAs pHEMT0.144–0.4320.063 @300 K 0.278 @77 K180 (estimated)0.1[60]
130 nm SiGe HBTs0.257.0819600.36[116]
130 nm SiGe BiCMOS0.341.0217000.87[117]
Schottky diode frequency multipliers0.05–5201900–200-38–5[123]
Gunn diodes0.1–0.30.05–0.023--[124]
IMPATT diodes0.1–300400–10--[125]
Resonant tunnelling
diode array
1–1.980.7--[126]
THz plasmon-emitting graphene-channel transistor1–7.60.01 @5.2 THz
0.001 @7.6 THz
@100 K
--[127]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Shur, M.; Aizin, G.; Otsuji, T.; Ryzhii, V. Plasmonic Field-Effect Transistors (TeraFETs) for 6G Communications. Sensors 2021, 21, 7907. https://doi.org/10.3390/s21237907

AMA Style

Shur M, Aizin G, Otsuji T, Ryzhii V. Plasmonic Field-Effect Transistors (TeraFETs) for 6G Communications. Sensors. 2021; 21(23):7907. https://doi.org/10.3390/s21237907

Chicago/Turabian Style

Shur, Michael, Gregory Aizin, Taiichi Otsuji, and Victor Ryzhii. 2021. "Plasmonic Field-Effect Transistors (TeraFETs) for 6G Communications" Sensors 21, no. 23: 7907. https://doi.org/10.3390/s21237907

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop