The Role of Different Lanthanoid and Transition Metals in Perovskite Gas Sensors
Abstract
:1. Introduction
2. Experimental Details
2.1. Synthesis and Structural Characterization of Perovskites
2.2. DC Measurements
2.3. Operando DRIFT Spectroscopy
3. Results
3.1. Material Characterization
3.2. Electrical Characterization
3.3. Surface Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ortega-San-Martin, L. Introduction to Perovskites: A Historical Perspective. In Revolution of Perovskite. Materials Horizons: From Nature to Nanomaterials; Arul, N.N.V., Ed.; Springer: Singapore, 2020; pp. 1–141. [Google Scholar]
- Chakhmouradian, A.R.; Woodward, P.M. Celebrating 175 years of perovskite research: A tribute to Roger H. Mitchell. Phys. Chem. Miner. 2014, 41, 387–391. [Google Scholar] [CrossRef]
- Belich, N.; Udalova, N.; Semenova, A.; Petrov, A.; Fateev, S.; Tarasov, A.; Goodilin, E. Perovskite Puzzle for Revolutionary Functional Materials. Front. Chem. 2020, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bednorz, K.A.; Müller, G.J. Possible highT c superconductivity in the Ba−La−Cu−O system. Z. Phys. B-Condens. Matter 1986, 64, 189–193. [Google Scholar] [CrossRef]
- von Helmolt, K.; Wecker, R.; Holzapfel, J.; Schultz, B.; Samwer, L. Giant negative magnetoresistance in perovskitelike La 2/3 Ba 1/3 MnOx ferromagnetic films. Phys. Rev. Lett. 1993, 71, 2331–2333. [Google Scholar] [CrossRef] [PubMed]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Grätzel, M. The light and shade of perovskite solar cells. Nat. Mater. 2014, 13, 838–842. [Google Scholar] [CrossRef] [PubMed]
- Snaith, P.; Hacke, J.H. Enabling reliability assessments of pre-commercial perovskite photovoltaics with lessons learned from industrial standards. Nat. Energy 2018, 3, 459–465. [Google Scholar] [CrossRef]
- Alharbi, A.A.; Sackmann, A.; Weimar, U.; Bârsan, N. A highly selective sensor to acetylene and ethylene based on LaFeO3. Sens. Actuators B Chem. 2020, 303, 127204. [Google Scholar] [CrossRef]
- Sukee, A.; Alharbi, A.A.; Staerz, A.; Wisitsoraat, A.; Liewhiran, C.; Weimar, U. Effect of AgO loading on flame-made LaFeO3 p-type semiconductor nanoparticles to acetylene sensing. Sens. Actuators B Chem. 2020, 312, 127990. [Google Scholar] [CrossRef]
- Chen, Y.; Qin, H.; Wang, X.; Li, L.; Hu, J. Acetone sensing properties and mechanism of nano-LaFeO3 thick-films. Sens. Actuators B Chem. 2016, 235, 56–66. [Google Scholar] [CrossRef]
- Tong, Q.L.Y.; Zhang, Y.; Jiang, B.; He, J.; Zheng, X. Effect of Lanthanides on Acetone Sensing Properties of LnFeO3 Nanofibers. IEEE Sens. J. 2017, 17, 2404–2410. [Google Scholar] [CrossRef]
- Fan, K.; Qin, H.; Wang, L.; Ju, L.; Hu, J. CO2 gas sensors based on La1−xSrxFeO3 nanocrystalline powders. Sens. Actuators B Chem. 2013, 177, 265–269. [Google Scholar] [CrossRef]
- Dai, Z.; Lee, C.-S.; Kim, B.-Y.; Kwak, C.-H.; Yoon, J.-W.; Jeong, H.-M.; Lee, J.-H. Honeycomb-like Periodic Porous LaFeO3 Thin Film Chemiresistors with Enhanced Gas-Sensing Performances. ACS Appl. Mater. Interfaces 2014, 6, 16217–16226. [Google Scholar] [CrossRef]
- Obayashi, H.; Sakurai, Y.; Gejo, T. Perovskite-type oxides as ethanol sensors. J. Solid State Chem. 1976, 17, 299–303. [Google Scholar] [CrossRef]
- Duval, M. A review of faults detectable by gas-in-oil analysis in transformers. IEEE Electr. Insul. Mag. 2002, 18, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Dennison, J.C.; Trout, J.M. Transformer oil DGA monitoring technology study 2015. In Proceedings of the 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), Dallas, TX, USA, 3–5 May 2016; pp. 1–5. [Google Scholar]
- Esser, B.; Schnorr, J.M.; Swager, T.M. Selective Detection of Ethylene Gas Using Carbon Nanotube-based Devices: Utility in Determination of Fruit Ripeness. Angew. Chem. Int. Ed. 2012, 51, 5752–5756. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, T.; Kurachi, H.; Shiokawa, J. Physicochemical properties of rare earth perovskite oxides used as gas sensor material. J. Mater. Sci. 1985, 20, 1207–1210. [Google Scholar] [CrossRef]
- Aono, H.; Traversa, E.; Sakamoto, M.; Sadaoka, Y. Crystallographic characterization and NO2 gas sensing property of LnFeO3 prepared by thermal decomposition of Ln Fe hexacyanocomplexes, Ln[Fe(CN)6]·nH2O, Ln = La, Nd, Sm, Gd, and Dy. Sens. Actuators B Chem. 2003, 94, 132–139. [Google Scholar] [CrossRef]
- Siemons, M.; Leifert, A.; Simon, U. Preparation and Gas Sensing Characteristics of Nanoparticulate p-Type Semiconducting LnFeO3 and LnCrO3 Materials. Adv. Funct. Mater. 2007, 17, 2189–2197. [Google Scholar] [CrossRef]
- Chumakova, V.; Marikutsa, A.; Rumyantseva, M.; Fasquelle, D.; Gaskov, A. Nanocrystalline LaCoO3 modified by Ag nanoparticles with improved sensitivity to H2S. Sens. Actuators B Chem. 2019, 296, 126661. [Google Scholar] [CrossRef]
- Arima, T.; Tokura, Y.; Torrance, J.B. Variation of optical gaps in perovskite-type 3d transition-metal oxides. Phys. Rev. B 1993, 48, 17006–17009. [Google Scholar] [CrossRef] [PubMed]
- Polat, O.; Durmus, Z.; Coskun, F.M.; Coskun, M.; Turut, A. Engineering the band gap of LaCrO3 doping with transition metals (Co, Pd, and Ir). J. Mater. Sci. 2018, 53, 3544–3556. [Google Scholar] [CrossRef]
- Haas, O.; Ludwig, C.; Bergmann, U.; Singh, R.N.; Braun, A.; Graule, T. Electronic structure of La1-xSrxFeO3. Phys. Rev. B 1996, 54, 7816–7822. [Google Scholar]
- Guan, L.; Liu, B.; Jin, L.; Guo, J.; Zhao, Q.; Wang, Y.; Fu, G. Electronic structure and optical properties of LaNiO3: First-principles calculations. Solid State Commun. 2010, 150, 2011–2014. [Google Scholar] [CrossRef]
- Yannopoulos, L. A p-type semiconductor thick film gas sensor. Sens. Actuators 1987, 12, 263–273. [Google Scholar] [CrossRef]
- Hwang, D.K.; Kim, S.; Lee, J.H.; Hwang, I.S.; Kim, I.D. Phase evolution of perovskite LaNiO3 nanofibers for supercapacitor application and p-type gas sensing properties of LaOCl-NiO composite nanofibers. J. Mater. Chem. 2011, 21, 1959–1965. [Google Scholar] [CrossRef]
- Michel, C.R.; López-Alvarez, M.A.; Martínez-Preciado, A.H.; Oleinikov, V. Ultraviolet Detection and Photocatalytic Activity of Nanostructured LaCoO3 Prepared by Solution-Polymerization. ECS J. Solid State Sci. Technol. 2019, 8, Q9–Q14. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Finnis, M.W.; Harrison, N.M. Electronic structures and phonon free energies of LaCoO3 using hybrid-exchange density functional theory. Phys. Rev. B 2013, 87, 34–36. [Google Scholar] [CrossRef] [Green Version]
- Chainani, A.; Mathew, M.; Sarma, D.D. Electron-spectroscopy study of the semiconductor-metal transition in La1-xSrxCoO3. Phys. Rev. B 1992, 46, 9976–9983. [Google Scholar] [CrossRef] [PubMed]
- Smolin, S.Y.; Choquette, A.K.; Wilks, R.G.; Gauquelin, N.; Félix, R.; Gerlach, D.; May, S.J. Energy Level Alignment and Cation Charge States at the LaFeO3/LaMnO3 (001) Heterointerface. Adv. Mater. Interfaces 2017, 4, 1–8. [Google Scholar] [CrossRef]
- Choi, W.S.; Jeong, D.W.; Jang, S.Y.; Marton, Z.; Seo, S.S.A.; Lee, H.N.; Lee, Y.S. LaMnO3 Thin Films Grown by Using Pulsed Laser Deposition and Their Simple Recovery to a Stoichiometric Phase by Annealing. J. Korean Phys. Soc. 2011, 58, 569–574. [Google Scholar] [CrossRef]
- Jha, P.; Sands, T.D.; Cassels, L.; Jackson, P.; Favaloro, T.; Kirk, B.; Zide, J.; Xu, X.; Shakouri, A. Cross-plane electronic and thermal transport properties of p-type La0.67Sr0.33MnO3/LaMnO3 perovskite oxide metal/semiconductor superlattices. J. Appl. Phys. 2010, 112, 63714. [Google Scholar] [CrossRef] [Green Version]
- Scafetta, M.D.; Xie, Y.J.; Torres, M.; Spanier, J.E.; May, S.J. Optical absorption in epitaxial La1-xSrx FeO3 thin films. Appl. Phys. Lett. 2013, 102, 081904. [Google Scholar] [CrossRef]
- Tijare, S.N.; Joshi, M.V.; Padole, P.S.; Mangrulkar, P.A.; Rayalu, S.S.; Labhsetwar, N.K. Photocatalytic hydrogen generation through water splitting on nano-crystalline LaFeO3 perovskite. Int. J. Hydrog. Energy 2012, 37, 10451–10456. [Google Scholar] [CrossRef]
- Li, L.; Wang, X.; Zhang, Y. Enhanced visible light-responsive photocatalytic activity of LnFeO3 (Ln = La, Sm) nanoparticles by synergistic catalysis. Mater. Res. Bull. 2014, 50, 18–22. [Google Scholar] [CrossRef]
- Husain, S.; Keelani, A.O.; Khan, W. Influence of Mn substitution on morphological, thermal and optical properties of nanocrystalline GdFeO3 orthoferrite. Nano-Struct. Nano-Objects 2018, 15, 17–27. [Google Scholar] [CrossRef]
- Subramanian, Y.; Ramasamy, V.; Karthikeyan, R.J.; Srinivasan, G.R.; Arulmozhi, D.; Gubendiran, R.K.; Sriramalu, M. Investigations on the enhanced dye degradation activity of heterogeneous BiFeO3–GdFeO3 nanocomposite photocatalyst. Heliyon 2019, 5, e01831. [Google Scholar] [CrossRef] [Green Version]
- Alharbi, A.A.; Sackmann, A.; Weimar, U.; Barsan, N. Acetylene-and Ethylene-Sensing Mechanism for LaFeO3-Based Gas Sensors: Operando Insights. J. Phys. Chem. C 2020, 124, 7317–7326. [Google Scholar] [CrossRef]
- Barsan, N.; Weimar, U. Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2sensors in the presence of humidity. J. Phys. Condens. Matter 2003, 15, R813–R839. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, W.; Yang, Y.; Cheng, K.; Kang, J.; Zhang, L.; Zhang, G.; Min, X.; Zhang, Q.; Wang, Y. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates. Chem. Sci. 2018, 9, 4708–4718. [Google Scholar] [CrossRef] [Green Version]
- Busca, G.; Lamotte, J.; Lavalley, J.c.; Lorenzelli, V. FT-IR Study of the Adsorption and Transformation of Formaldehyde on Oxide Surfaces. J. Am. Chem. Soc. 1987, 109, 5197–5202. [Google Scholar] [CrossRef]
- Cao, T.; You, R.; Zhang, X.; Chen, S.; Li, D.; Zhang, Z.; Huang, W. An in situ DRIFTS mechanistic study of CeO2-catalyzed acetylene semihydrogenation reaction. Phys. Chem. Chem. Phys. 2018, 20, 9659–9670. [Google Scholar] [CrossRef] [PubMed]
- Kremenić, G.; Nieto, J.M.L.; Tascón, J.M.D.; Tejuca, L.G. Chemisorption and catalysis on LaMO3 oxides. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1985, 81, 939–949. [Google Scholar] [CrossRef]
- Hwang, J.; Rao, R.R.; Giordano, L.; Katayama, Y.; Yu, Y.; Shao-Horn, Y. Perovskites in catalysis and electrocatalysis. Science 2017, 358, 751–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Cheng, H.-P. Oxygen Reduction Activity on Perovskite Oxide Surfaces: A Comparative First-Principles Study of LaMnO3, LaFeO3, and LaCrO3. J. Phys. Chem. C 2013, 117, 2106–2112. [Google Scholar] [CrossRef] [Green Version]
Material | Bandgap | Conduction Type | Color |
---|---|---|---|
LaCrO3 | 3.4 eV [23,24] 2.8 eV [25] | p-type [21] n-type [19] | dark green |
LaNiO3 | metallic [23,26] | metallic p-type [27,28] | black |
LaCoO3 | 2.2 eV [29,30] 0.6 eV [23,31] | p-type [22] n-type [19] | black |
LaMnO3 | 0.7 eV [23,32] 0.33 eV [33] | p-type [34] n-type [19] | black |
LaFeO3 | 2.6 eV [35] 2.1 eV [23,36] | p-type [19,21] | light brown |
SmFeO3 | 2.2 eV [37] | p-type [21] | light brown |
GdFeO3 | 3.5 eV [38] 2.3 eV [39] | p-type [21] | brown |
Perovskite Material | Metal Precursors |
---|---|
LaCrO3 | La(NO3)3 · 6H2O (Fluka, (Buchs, Switzerland), Puriss. p.a., ≥99.0%) and Cr(NO3)2.9H2O (Sigma, (Buchs, Switzerland), Puriss. p.a., ≥99.0%) |
LaNiO3 | La(NO3)3 · 6H2O (Fluka, (Buchs, Switzerland), Puriss. p.a., ≥99.0%) and Ni(NO3)2.6H2O (Sigma, (Buchs, Switzerland), Puriss. p.a., ≥99.0%) |
LaCoO3 | La(NO3)3 · 6H2O (Fluka, (Buchs, Switzerland), Puriss. p.a., ≥99.0%) and Co(NO3)2 · 6H2O (Sigma, (Buchs, Switzerland), Puriss. p.a., ≥99.0%) |
LaMnO3 | La(NO3)3 · 6H2O (Fluka, (Buchs, Switzerland), Puriss. p.a., ≥99.0%) and Mn(NO3)2 · 4H2O (Sigma, (Buchs, Switzerland), Puriss. p.a., ≥99.0%) |
LaFeO3 | La(NO3)3 · 6H2O (Fluka, (Buchs, Switzerland), Puriss. p.a., ≥99.0%) and Fe(NO3)3 · 9H2O (Fluka, (Buchs, Switzerland), Puriss. p.a., ≥99.0%) |
SmFeO3 | Sm(NO3)3 · 6H2O (Acros Organics, (Geel, Belgium), ≥99.9%) and Fe(NO3)3 · 9H2O (Sigma Aldrich, (Buchs, Switzerland), ≥99.0%) |
GdFeO3 | Gd(NO3)3 · 6H2O (Aldrich, ≥99.9%) and Fe(NO3)3 · 9H2O (Sigma Aldrich, (Buchs, Switzerland), ≥99.0%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, A.; Junker, B.; Alduraibi, M.; Algarni, A.; Weimar, U.; Bârsan, N. The Role of Different Lanthanoid and Transition Metals in Perovskite Gas Sensors. Sensors 2021, 21, 8462. https://doi.org/10.3390/s21248462
Alharbi A, Junker B, Alduraibi M, Algarni A, Weimar U, Bârsan N. The Role of Different Lanthanoid and Transition Metals in Perovskite Gas Sensors. Sensors. 2021; 21(24):8462. https://doi.org/10.3390/s21248462
Chicago/Turabian StyleAlharbi, Abdulaziz, Benjamin Junker, Mohammad Alduraibi, Ahmad Algarni, Udo Weimar, and Nicolae Bârsan. 2021. "The Role of Different Lanthanoid and Transition Metals in Perovskite Gas Sensors" Sensors 21, no. 24: 8462. https://doi.org/10.3390/s21248462
APA StyleAlharbi, A., Junker, B., Alduraibi, M., Algarni, A., Weimar, U., & Bârsan, N. (2021). The Role of Different Lanthanoid and Transition Metals in Perovskite Gas Sensors. Sensors, 21(24), 8462. https://doi.org/10.3390/s21248462