Impedance Spectroscopy of Hierarchical Porous Nanomaterials Based on por-Si, por-Si Incorporated by Ni and Metal Oxides for Gas Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Oxide Nanomaterials with Fractal-Percolation Structure
2.2. Synthesis of Porous Silicon Layers and Their Functionalization by Nickel
2.3. Por-Si/Ni Morphology and Optical Properties
2.4. Impedance Spectroscopy Studies
3. Results
3.1. Por-Si Microstructure
3.2. Investigation of the Refractive Index of por-Si and por-Si/Ni
3.3. Impedance Spectroscopy of por-Si and por-Si/Ni
3.4. Impedance Spectroscopy of Metal Oxides with Fractal Percolation Structure
3.5. Fractal Model of Porous Sensor Materials
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Qiao, S.; Ma, Y. Highly sensitive methane detection based on light-induced thermoelastic spectroscopy with a 2.33 µm diode laser and adaptive Savitzky-Golay filtering. Opt. Exp. 2022, 30, 1304–1313. [Google Scholar] [CrossRef]
- Vasiliev, R.B.; Rumyantseva, M.N.; Yakovlev, N.V.; Gaskov, A.M. CuO/SnO2 thin film heterostructures as chemical sensors to H2S. Sens. Actuators B Chem. 1998, 50, 186–193. [Google Scholar] [CrossRef]
- Rumyantseva, M.N.; Vladimirova, S.A.; Platonov, V.B.; Chizhov, A.S.; Gaskov, A.M.; Batuk, M.; Hadermann, J.; Khmelevsky, N.O. Sub-ppm H2S sensing by tubular ZnO-Co3O4 nanofibers. Sens. Actuators B Chem. 2020, 307, 127624. [Google Scholar] [CrossRef]
- Maksimova, N.K.; Sevastyanov, E.Y.; Chernikov, E.V.; Korusenko, P.M.; Nesov, S.N.; Kim, S.V.; Biryukov, A.A.; Sergeychenko, N.V.; Davletkildeev, N.A.; Sokolov, D.V. Sensors based on tin dioxide thin films for the detection of pre-explosive hydrogen concentrations. Sens. Actuators B Chem. 2021, 341, 130020. [Google Scholar] [CrossRef]
- Haviar, S.; Kumar, N.; Batková, Š.; Čapek, J. Nanostructured Materials Based on Thin Films and Nanoclusters for Hydrogen Gas Sensing. Proceedings 2020, 56, 38. [Google Scholar] [CrossRef]
- Nemufulwi, M.I.; Swart, H.C.; Mhlongo, G.H. Evaluation of the effects of Au addition into ZnFe2O4 nanostructures on acetone detection capabilities. Mater. Res. Bull. 2021, 142, 111395. [Google Scholar] [CrossRef]
- Roshan, H.; Kuchi, P.S.; Sheikhi, M.H.; Mirzaei, A. Enhancement of room temperature ethanol sensing behavior of PbS–SnS2 nanocomposite by Au decoration. Mater. Sci. Semicond. Processing 2021, 127, 105742. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, Y.; Li, X.; Lin, S.; Li, T.; Rumyantseva, M.N.; Gaskov, A.M. Room temperature formaldehyde sensing of hollow SnO2/ZnO heterojunctions under UV-led activation. IEEE Sens. J. 2019, 19, 7207–7214. [Google Scholar] [CrossRef]
- Martyshov, M.N.; Forsh, E.A.; Marikutsa, A.V.; Forsh, P.A.; Rumyantseva, M.N.; Gaskov, A.M.; Kashkarov, P.K. Influence of In2O3 nanocrystals size on the sensitivity to NO2. J. Nanoelectron. Optoelectron. 2011, 6, 452–455. [Google Scholar] [CrossRef]
- Chizhov, A.S.; Mordvinova, N.E.; Rumyantseva, M.N.; Gaskov, A.M.; Krylov, I.V.; Drozdov, K.A.; Li, X. The effect of CdSe and InP quantum dots on the interaction of ZnO with NO2 under visible light irradiation. Russ. J. Inorg. Chem. 2018, 63, 512–518. [Google Scholar]
- Korotcenkov, G. Electrospun Metal Oxide Nanofibers and Their Conductometric Gas Sensor Application. Part 2: Gas Sensors and Their Advantages and Limitations. Nanomaterials 2021, 11, 1555. [Google Scholar] [CrossRef] [PubMed]
- Marikutsa, A.; Rumyantseva, M.; Konstantinova, E.A.; Gaskov, A. The Key Role of Active Sites in the Development of Selective Metal Oxide Sensor Materials. Sensors 2021, 21, 2554. [Google Scholar] [CrossRef] [PubMed]
- Moshnikov, V.A.; Gracheva, I.E.; Kuznezov, V.V.; Maximov, A.I.; Karpova, S.S.; Ponomareva, A.A. Hierarchical nanostructured semiconductor porous materials for gas sensors. J. Non-Cryst. Solids 2010, 356, 2020–2025. [Google Scholar] [CrossRef]
- Nikolic, M.V.; Milovanovic, V.; Vasiljevic, Z.Z.; Stamenkovic, Z. Semiconductor Gas Sensors: Materials, Technology, Design, and Application. Sensors 2020, 20, 6694. [Google Scholar] [CrossRef]
- Bobkov, A.; Moshnikov, V.; Varezhnikov, A.; Plugin, I.; Fedorov, F.S.; Goffman, V.; Sysoev, V.; Trouillet, V.; Geckle, U.; Sommer, M. The multisensor array based on grown-on-chip zinc oxide nanorod network for selective discrimination of alcohol vapors at sub-ppm range. Sensors 2019, 19, 4265. [Google Scholar] [CrossRef] [Green Version]
- Korotcenkov, G.; Cho, B.K. Metal oxide composites in conductometric gas sensors: Achievements and challenges Sens. Sens. Actuators B Chem. 2017, 244, 182–210. [Google Scholar] [CrossRef]
- Kononova, I.; Kononov, P.; Moshnikov, V.; Ignat’ev, S. Fractal-Percolation Structure Architectonics in Sol-Gel Synthesis. Int. J. Mol. Sci. 2021, 22, 10521. [Google Scholar] [CrossRef]
- Sabri, Y.M.; Kandjani, A.E.; Rashid, S.; Harrison, C.J.; Ippolito, S.J.; Bhargava, S.K. Soot template TiO2 fractals as a photoactive gas sensor for acetone detection. Sens. Actuators B Chem. 2018, 275, 215–222. [Google Scholar] [CrossRef]
- Plugotarenko, N.K.; Petrov, V.V.; Ivanetz, V.A.; Smirnov, V.A. Investigation of the Formation of Fractal Structures in SiO2 ⋅ SnOx ⋅ CuOy Thin Films Prepared by the Sol–Gel Method. Glass Phys. Chem. 2011, 37, 590–595. [Google Scholar] [CrossRef]
- Kornyushchenko, A.; Kosminska, Y.; Shevchenko, S.; Wilde, G.; Perekrestov, V. Structural, Morphological and Sensor Properties of the Fractal-Percolation Nanosystem ZnO/NiO. J. Electron. Mater. 2021, 50, 2268–2276. [Google Scholar] [CrossRef]
- Moshnikov, V.A.; Nalimova, S.S.; Seleznev, B.I. Gas-sensitive layers based on fractal-percolation structures. Semiconductors 2014, 48, 1499–1503. [Google Scholar] [CrossRef]
- Baran, N.; Gebavi, H.; Mikac, L.; Ristić, D.; Gotić, M.; Ali Syed, K.; Ivanda, M. Sensing Properties of Oxidized Nanostructured Silicon Surface on Vaporized Molecules. Sensors 2019, 19, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eom, N.S.A.; Cho, H.-B.; Song, Y.; Lee, W.; Sekino, T.; Cho, Y.-H. Room-Temperature H2 Gas Sensing Characterization of Graphene-Doped Porous Silicon via a Facile Solution Dropping Method. Sensors 2017, 17, 2750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, M.S.; Mirzaei, A.; Bang, J.H.; Oum, W.; Kwon, Y.J.; Kim, J.-H.; Choi, S.-W.; Kim, S.S.; Kim, H.W. Selective H2S-sensing performance of Si nanowires through the formation of ZnO shells with Au functionalization. Sens. Actuators B Chem. 2019, 289, 1–14. [Google Scholar] [CrossRef]
- Kwon, Y.J.; Choi, S.-W.; Kang, S.Y.; Choi, M.S.; Bang, J.H.; Kim, S.S.; Kim, H.W. Enhancement of the benzene-sensing performance of Si nanowires through the incorporation of TeO2 heterointerfaces and Pd-sensitization. Sens. Actuators B Chem. 2017, 244, 1085–1097. [Google Scholar] [CrossRef]
- Smerdov, R.S.; Spivak, Y.M.; Moshnikov, V.A.; Mustafaev, A.S. Magnetic and Plasmonic Composite Nanostructures for Creating Optical Filters at Substance and Material Diagnostics Systems. J. Russ. Univ. Radioelectron. 2021, 24, 81–97. [Google Scholar] [CrossRef]
- Bejide, M.; Contreras, P.; Homm, P.; Duran, B.; García-Merino, J.A.; Rosenkranz, A.; Denardin, J.C.; del Río, R.; Hevia, S.A. Nickel Nanopillar Arrays Electrodeposited on Silicon Substrates Using Porous Alumina Templates. Molecules 2020, 25, 5377. [Google Scholar] [CrossRef]
- Granitzer, P.; Rumpf, K.; Reissner, M.; Michor, H. Metal Filled Light Emitting Porous Silicon as Platform for Tunable Optical and Magnetic Properties. In ECS Meeting Abstracts; IOP Publishing: Bristol, UK, 2021; p. 1434. [Google Scholar]
- Soboleva, E.; Geydt, P.; Zakharchuk, I.; Spivak, Y.; Moshnikov, V.; Lähderanta, E. Properties of porous silicon precipitated with nickel for gas sensors. Sens. Lett. 2018, 16, 672–676. [Google Scholar] [CrossRef]
- Zhang, X.; Tu, K.N. Preparation of hierarchically porous nickel from macroporous silicon. J. Am. Chem. Soc. 2006, 128, 15036–15037. [Google Scholar] [CrossRef]
- Moshnikov, V.A.; Gracheva, I.E.; Lenshin, A.S.; Spivak, Y.M.; Anchkov, M.G.; Kuznetsov, V.V.; Olchowik, J.M. Porous silicon with embedded metal oxides for gas sensing applications. J. Non-Cryst. Solids 2012, 358, 590–595. [Google Scholar] [CrossRef]
- Balasubramani, V.; Sureshkumar, S.; Subba Rao, T.; Sridhar, T.M. Impedance Spectroscopy-Based Reduced Graphene Oxide-Incorporated ZnO Composite Sensor for H2S Investigations. ACS Omega 2019, 4, 9976–9982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, M.C.; Bianchi, A.G.C.; Ushizima, D.M.; Pavinatto, F.J.; Bianchi, R.F. Ammonia gas sensor based on the fre-quency-dependent impedance characteristics of ultrathin polyaniline films. Sens. Actuators A Phys. 2017, 253, 156–164. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, M.; Fardindoost, S.; Irajizad, A.; Almasi-Kashi, M. Room temperature selective sensing of aligned Ni nan-owires using impedance spectroscopy. Mater. Res. Express 2020, 7, 25044. [Google Scholar] [CrossRef]
- Castro, R.; Spivak, Y.; Shevchenko, S.; Moshnikov, V. Low-Frequency Dielectric Relaxation in Structures Based on Macroporous Silicon with Meso-Macroporous Skin-Layer. Materials 2021, 14, 2471. [Google Scholar] [CrossRef]
- Karpova, S.S.; Moshnikov, V.A.; Mjakin, S.V.; Kolovangina, E.S. Surface functional composition and sensor properties of ZnO, Fe2O3, and ZnFe2O4. Semiconductors 2013, 47, 392–395. [Google Scholar] [CrossRef]
- Karpova, S.S.; Moshnikov, V.A.; Maksimov, A.I.; Mjakin, S.V.; Kazantseva, N.E. Study of the effect of the acid-base surface properties of ZnO, Fe2O3 and ZnFe2O4 oxides on their gas sensitivity to ethanol vapor. Semiconductors 2013, 47, 1026–1030. [Google Scholar] [CrossRef]
- Travkin, P.G.; Sokolova, E.N.; Spivak, Y.M.; Moshnikov, V.A. Electrochemical Cell for the Production of Porous Anode Oxides of Metals and Semiconductors. RU Patent 122385 U1, 27 November 2012. Application No. 2012122692/02 dated 1 June 2012. [Google Scholar]
- Lenshin, A.S.; Kashkarov, V.M.; Spivak, Y.M.; Moshnikov, V.A. Investigations of nanoreactors on the basis of p-type porous silicon: Electron structure and phase composition. Mater. Chem. Phys. 2012, 135, 293–297. [Google Scholar] [CrossRef]
- Smerdov, R.; Spivak, Y.; Bizyaev, I.; Somov, P.; Gerasimov, V.; Mustafaev, A.; Moshnikov, V. Advances in Novel Low-Macroscopic Field Emission Electrode Design Based on Fullerene-Doped Porous Silicon. Electronics 2021, 10, 42. [Google Scholar] [CrossRef]
- Spivak, Y.M.; Myakin, S.V.; Moshnikov, V.A.; Panov, M.F.; Belorus, A.O.; Bobkov, A.A. Surface functionality features of porous silicon prepared and treated in different conditions. J. Nanomater. 2016, 2016, 2629582. [Google Scholar] [CrossRef] [Green Version]
- Eftekhari, A. (Ed.) Nanostructured Materials in Electrochemistry; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008; p. 463. [Google Scholar]
- Canham, L. Handbook of Porous Silicon; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar]
- Avrov, D.D.; Gorlyak, A.N.; Lebedev, A.O.; Luchinin, V.V.; Markov, A.V.; Panov, M.F.; Osipov, A.V.; Kukushkin, S.A. Comparative ellipsometric analysis of silicon carbide polytypes 4H, 15R, AND 6H produced by a modified lely method in the same growth process. Tech. Phys. Lett. 2020, 46, 968–971. [Google Scholar] [CrossRef]
- Astrova, E.V.; Voronkov, V.B.; Remenyuk, A.D.; Shuman, V.B.; Tolmachev, V.A. Variation of the parameters and composition of thin films of porous silicon as a result of oxidation: Ellipsometric studies. Semiconductors 1999, 33, 1149–1155. [Google Scholar] [CrossRef]
- Kravchyk, K.V.; Gomza, Y.P.; Pashkova, O.V.; V’yunov, O.I.; Nesin, S.D.; Belous, A.G. Effect of synthesis conditions on the fractal structure of yttrium-stabilized zirconium dioxide. J. Non-Cryst. Solids 2009, 355, 2557–2561. [Google Scholar] [CrossRef]
- Yapryntsev, A.D.; Gubanova, N.N.; Kopitsa, G.P.; Baranchikov, A.Y.; Kuznetsov, S.V.; Fedorov, P.P.; Ivanov, V.K.; Ezdakova, K.V.; Pipich, V. Mesostructure of yttrium and aluminum basic salts coprecipitated from aqueous solutions under ultrasonic treatment. J. Surf. Investig. X-Ray Synchrotron Neutron Tech. 2016, 10, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Emtsev, V.V.; Gushchina, E.V.; Petrov, V.N.; Tal’Nishnih, N.A.; Chernyakov, A.E.; Shabunina, E.I.; Shmidt, N.M.; Usikov, A.S.; Kartashova, A.P.; Zybin, A.A.; et al. Diversity of Properties of Device Structures Based on Group-III Nitrides, Related to Modification of the Fractal-Percolation System. Semiconductors 2018, 52, 942–949. [Google Scholar] [CrossRef]
- Armitage, B.I.; Murugappan, K.; Lefferts, M.J.; Cowsik, A.; Castell, M.R. Conducting polymer percolation gas sensor on a flexible substrate. J. Mater. Chem. C 2020, 8, 12669–12676. [Google Scholar] [CrossRef]
- Jaafar, A.H.; O’Neill, M.; Kelly, S.M.; Verrelli, E.; Kemp, N.T. Percolation Threshold Enables Optical Resistive-Memory Switching and Light-Tuneable Synaptic Learning in Segregated Nanocomposites. Adv. Electron. Mater. 2019, 5, 1900197. [Google Scholar] [CrossRef]
- Sarkar, A.; Rahaman, A.B.; Chakraborty, K.; Pal, T.; Ghosh, D. Banerjee Organic heterojunctions of phthalocyanine-reduced graphene oxide above percolation threshold for photovoltaic application. Mater. Chem. Phys. 2020, 253, 123418. [Google Scholar] [CrossRef]
- Mandelbrot, B.B.; Given, J.A. Physical properties of a new fractal model of percolation clusters. Phys. Rev. Lett. 1984, 1984, 1853–1856. [Google Scholar] [CrossRef]
- Feder, J. Fractals; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
No | Por-Si Synthesis Conditions | Ni Functionalization Conditions | ||||
---|---|---|---|---|---|---|
JA, mA/sm2 | t, min | Method | Electrolyte/Solution | U, V | t, min | |
I | 20 | 10 | Electro-chemical deposition | 1:10:10 NiCl2:H2O: C3H7OH | 10 | 30 |
II | 15 | 5 | ||||
III | Impregnation | - | Impregnation time |
Sample | Ni Functionalization Method | Impregnation Time, Days | Refractive Index |
---|---|---|---|
Por-Si | Impregnation | - | 1.414 |
- | 1.586 | ||
Por-Si/Ni | 7 | 2.540 | |
21 | 2.723 | ||
36 | 3.107 |
Sample | Acetone | Isopropanol | ||
---|---|---|---|---|
S | f, Hz | S | f, Hz | |
Por-Si | 1.58 | 1052 | 2.68 | 1103 |
Por-Si/Ni (impregnation) | 1.28 | 1839 | 472.73 | 1359 |
Por-Si/Ni (electrochemical cathode deposition) | 7.64 | 1005 | 6.24 | 1155 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bobkov, A.; Luchinin, V.; Moshnikov, V.; Nalimova, S.; Spivak, Y. Impedance Spectroscopy of Hierarchical Porous Nanomaterials Based on por-Si, por-Si Incorporated by Ni and Metal Oxides for Gas Sensors. Sensors 2022, 22, 1530. https://doi.org/10.3390/s22041530
Bobkov A, Luchinin V, Moshnikov V, Nalimova S, Spivak Y. Impedance Spectroscopy of Hierarchical Porous Nanomaterials Based on por-Si, por-Si Incorporated by Ni and Metal Oxides for Gas Sensors. Sensors. 2022; 22(4):1530. https://doi.org/10.3390/s22041530
Chicago/Turabian StyleBobkov, Anton, Victor Luchinin, Vyacheslav Moshnikov, Svetlana Nalimova, and Yulia Spivak. 2022. "Impedance Spectroscopy of Hierarchical Porous Nanomaterials Based on por-Si, por-Si Incorporated by Ni and Metal Oxides for Gas Sensors" Sensors 22, no. 4: 1530. https://doi.org/10.3390/s22041530
APA StyleBobkov, A., Luchinin, V., Moshnikov, V., Nalimova, S., & Spivak, Y. (2022). Impedance Spectroscopy of Hierarchical Porous Nanomaterials Based on por-Si, por-Si Incorporated by Ni and Metal Oxides for Gas Sensors. Sensors, 22(4), 1530. https://doi.org/10.3390/s22041530