An Integrated Evanescent Field Sensor for the Simultaneous Measurement of Layer Refractive Index and Thickness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Waveguide Geometries
2.1.1. Surface Topology
2.1.2. Higher Order Modes
2.2. Sensor Chips
2.3. Measurement System
2.4. Simulations
3. Results and Discussion
3.1. Theoretical Results
3.1.1. Measurement Uncertainty
3.1.2. Production Tolerances
3.1.3. Selection of Waveguides
3.2. Experimental Results
3.2.1. ALD Layer Deposition
3.2.2. Data Evaluation
3.2.3. Production Tolerances
3.2.4. Ambiguity of Spectral Data
3.2.5. Final Result
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ALD | atomic layer deposition |
CMP | chemical-mechanical polishing |
DUT | device under test |
FOM | figure of merit |
FSR | free spectral range |
PE-ALD | plasma enhanced atomic layer deposition |
PM | power meter |
RMS | root mean squared |
SEM | scanning electron-beam microscopy |
SOI | silicon on insulator |
TE | transverse electric |
TLS | tunable laser source |
TM | transverse magnetic |
References
- Janz, S.; Densmore, A.; Xu, D.X.; Waldron, P.; Lapointe, J.; Schmid, J.H.; Mischki, T.; Lopinski, G.; Delâge, A.; McKinnon, R.; et al. Silicon Photonic Wire Waveguide Sensors. In Advanced Photonic Structures for Biological and Chemical Detection; Fan, X., Ed.; Springer: New York, NY, USA, 2009; pp. 229–264. [Google Scholar] [CrossRef]
- Luchansky, M.S.; Bailey, R.C. High-Q optical sensors for chemical and biological analysis. Anal. Chem. 2012, 84, 793–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steglich, P.; Hülsemann, M.; Dietzel, B.; Mai, A. Optical biosensors based on silicon-on-insulator ring resonators: A review. Molecules 2019, 24, 519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yebo, N.A.; Taillaert, D.; Roels, J.; Lahem, D.; Debliquy, M.; Van Thourhout, D.; Baets, R. Silicon-on-insulator (SOI) ring resonator-based integrated optical hydrogen sensor. IEEE Photonics Technol. Lett. 2009, 21, 960–962. [Google Scholar] [CrossRef] [Green Version]
- Yebo, N.A.; Lommens, P.; Hens, Z.; Baets, R. An integrated optic ethanol vapor sensor based on a silicon-on-insulator microring resonator coated with a porous ZnO film. Opt. Express 2010, 18, 11859–11866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bogaerts, W.; De Heyn, P.; Van Vaerenbergh, T.; De Vos, K.; Kumar Selvaraja, S.; Claes, T.; Dumon, P.; Bienstman, P.; Van Thourhout, D.; Baets, R. Silicon microring resonators. Laser Photonics Rev. 2012, 6, 47–73. [Google Scholar] [CrossRef]
- Sepúlveda, B.; Del Rio, J.S.; Moreno, M.; Blanco, F.J.; Mayora, K.; Domínguez, C.; Lechuga, L.M. Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices. J. Opt. A Pure Appl. Opt. 2006, 8, S561. [Google Scholar] [CrossRef]
- Yu, H.; Xiong, L.; Chen, Z.; Li, Q.; Yi, X.; Ding, Y.; Wang, F.; Lv, H.; Ding, Y. Ultracompact and high sensitive refractive index sensor based on Mach–Zehnder interferometer. Opt. Lasers Eng. 2014, 56, 50–53. [Google Scholar] [CrossRef]
- Fernández Gavela, A.; Grajales García, D.; Ramirez, J.C.; Lechuga, L.M. Last advances in silicon-based optical biosensors. Sensors 2016, 16, 285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshie, T.; Tang, L.; Su, S.Y. Optical microcavity: Sensing down to single molecules and atoms. Sensors 2011, 11, 1972–1991. [Google Scholar] [CrossRef] [PubMed]
- Chrostowski, L.; Hochberg, M. Silicon Photonics Design: From Devices to Systems; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Zimmermann, L. Monolithic electronic-photonic co-integration in photonic BiCMOS. In ECOC 2016: 42nd European Conference on Optical Communication; VDE: Frankfurt, Germany, 2016; pp. 1–3. [Google Scholar]
- Hoste, J.W.; Werquin, S.; Claes, T.; Bienstman, P. Conformational analysis of proteins with a dual polarisation silicon microring. Opt. Express 2014, 22, 2807–2820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atsumi, Y.; Xu, D.X.; Delâge, A.; Schmid, J.H.; Vachon, M.; Cheben, P.; Janz, S.; Nishiyama, N.; Arai, S. Simultaneous retrieval of fluidic refractive index and surface adsorbed molecular film thickness using silicon wire waveguide biosensors. Opt. Express 2012, 20, 26969–26977. [Google Scholar] [CrossRef] [PubMed]
- Miikkulainen, V.; Leskelä, M.; Ritala, M.; Puurunen, R.L. Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends. J. Appl. Phys. 2013, 113, 021301. [Google Scholar] [CrossRef]
- Foest, R.; Schmidt, M.; Gargouri, H. Self-assembling and self-limiting monolayer deposition. Eur. Phys. J. D 2014, 68, 23. [Google Scholar] [CrossRef]
- Koos, C.; Poulton, C.; Zimmermann, L.; Jacome, L.; Leuthold, J.; Freude, W. Ideal Bend Contour Trajectories for Single-Mode Operation of Low-Loss Overmoded Waveguides. Photonics Technol. Lett. IEEE 2007, 19, 819–821. [Google Scholar] [CrossRef]
- Jäger, M.; Bruns, J.; Ehrentreich-Förster, E.; Petermann, K. Arrays of Individually Addressable SOI Micro Ring Resonators for Bio Sensing. In Advanced Photonics 2013; Optical Society of America: Washington, DC, USA, 2013; p. ST4B.3. [Google Scholar] [CrossRef]
- Lützow, P.; Pergande, D.; Heidrich, H. Integrated optical sensor platform for multiparameter bio-chemical analysis. Opt. Express 2011, 19, 13277–13284. [Google Scholar] [CrossRef] [PubMed]
- Pomplun, J.; Burger, S.; Zschiedrich, L.; Schmidt, F. Adaptive finite element method for simulation of optical nano structures. Phys. Status Solidi (b) 2007, 244, 3419–3434. [Google Scholar] [CrossRef] [Green Version]
- Pomplun, J.; Burger, S.; Schmidt, F.; Schliwa, A.; Bimberg, D.; Pietrzak, A.; Wenzel, H.; Erbert, G. Finite element simulation of the optical modes of semiconductor lasers. Phys. Status Solidi (b) 2010, 247, 846–853. [Google Scholar] [CrossRef] [Green Version]
- Das, C.; Henkel, K.; Tallarida, M.; Schmeißer, D.; Gargouri, H.; Kärkkänen, I.; Schneidewind, J.; Gruska, B.; Arens, M. Thermal and plasma enhanced atomic layer deposition of TiO2: Comparison of spectroscopic and electric properties. J. Vac. Sci. Technol. A Vacuum Surfaces Film 2015, 33, 01A144. [Google Scholar] [CrossRef]
- Jäger, M. Spatially Resolved Refractive Index Detection Based on SOI Ring Resonators. Ph.D. Thesis, Technische Universität Berlin, Berlin, Germany, 2016. [Google Scholar] [CrossRef]
Waveguide Type | Waveguide Width | Etch Depth | ||
---|---|---|---|---|
Design | SEM | Design | SEM | |
waveguide type 1 | ||||
waveguide type 2 | ||||
waveguide type 3 | ||||
Silicon Layer Height |
Waveguide Type | Start Wavel. | End Wavel. | Wavel. Shift |
---|---|---|---|
waveguide type 1 | |||
waveguide type 2 | |||
waveguide type 3 |
Measured | Design Value (from ALD Process) | |
---|---|---|
layer refractive index | ||
layer thickness |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jäger, M.; Bruns, J.; Schneidewind, J.; Pinnow, C.; Gargouri, H.; Petermann, K. An Integrated Evanescent Field Sensor for the Simultaneous Measurement of Layer Refractive Index and Thickness. Sensors 2021, 21, 1628. https://doi.org/10.3390/s21051628
Jäger M, Bruns J, Schneidewind J, Pinnow C, Gargouri H, Petermann K. An Integrated Evanescent Field Sensor for the Simultaneous Measurement of Layer Refractive Index and Thickness. Sensors. 2021; 21(5):1628. https://doi.org/10.3390/s21051628
Chicago/Turabian StyleJäger, Matthias, Jürgen Bruns, Jessica Schneidewind, Cay Pinnow, Hassan Gargouri, and Klaus Petermann. 2021. "An Integrated Evanescent Field Sensor for the Simultaneous Measurement of Layer Refractive Index and Thickness" Sensors 21, no. 5: 1628. https://doi.org/10.3390/s21051628
APA StyleJäger, M., Bruns, J., Schneidewind, J., Pinnow, C., Gargouri, H., & Petermann, K. (2021). An Integrated Evanescent Field Sensor for the Simultaneous Measurement of Layer Refractive Index and Thickness. Sensors, 21(5), 1628. https://doi.org/10.3390/s21051628