TTAS: Trusted Token Authentication Service of Securing SCADA Network in Energy Management System for Industrial Internet of Things
Abstract
:1. Introduction
2. Related Works
2.1. The Security of the Industrial Internet of Things
2.2. TLS Protocol
2.3. The Authentication in IoT Environment
3. Problem Definition
4. TTAS: Trusted Token Authentication Service
4.1. Authentication Mechanism
4.2. Generating Tokens
- src_ip: the IP of the device applying for the token, i.e., the IP of the applicant;
- src_hostname: the hostname of the applicant;
- src_mac_addr: the mac address of the applicant;
- dst_ip: the IP of the object to be authenticated by the applicant, i.e., the IP of the verifier;
- dst_port: the socket port of the verifier;
- dst_hostname: the hostname of the verifier;
- dst_mac_addr: the mac address of the verifier.
- iss: the device for generating tokens, i.e., TTAS, represented here by the IP of TTAS;
- iat: the time when the token was generated;
- exp: the expiry date of the token, i.e., the time during which the token can exist legitimately;
- aud: the IP of the applicant;
- hostname: the hostname of the applicant;
- mac_addr: the mac address of the applicant;
- priority: the priority of the token;
- service_type: the type of the token, i.e., the token can be used in a variety of applications.
4.3. System of Encryption and Verification Mechanism
5. Security Analysis
5.1. Claim 1: The Identity Information of Internet of Things Devices Is Confidential
5.2. The Proposed Mechanism Provides Mutual Authentication
5.3. The Proposed Mechanism Can Resist Man-in-the-Middle Attack
5.4. The Proposed Mechanism Can Resist Replay Attack
5.5. The Proposed Mechanism Can Resist Impersonation Attack
6. Experiment
6.1. Simulating Experimental Environment
6.2. Verifying the Encryption and Verification Mechanism
6.3. Actual Field Experiment Results
6.4. Efficiency Analysis
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wollschlaeger, M.; Sauter, T.; Jasperneite, J. The Future of Industrial Communication: Automation Networks in the Era of the Internet of Things and Industry 4.0. IEEE Ind. Electron. Mag. 2017, 11, 17–27. [Google Scholar] [CrossRef]
- Jeschke, S.; Brecher, C.; Meisen, T.; Özdemir, D.; Eschert, T. Industrial internet of things and cyber manufacturing systems. In Industrial Internet of Things; Springer: Cham, Switzerland, 2017; pp. 3–19. [Google Scholar]
- Schwab, K. The Fourth Industrial Revolution; Crown Business: New York, NY, USA, 2017. [Google Scholar]
- Stouffer, K.; Pillitteri, V.; Lightman, S.; Abrams, M.; Hahn, A. Guide to Industrial Control Systems (ICS) Security; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2014.
- Boyer, S.A. Supervisory Control and Data Acquisition, 4th ed.; International Society of Automation: Research Triangle Park, NC, USA, 2009. [Google Scholar]
- Webb, J.W.; Reis, R.A. Programmable Logic Controllers Principles and Applications, 5th ed.; Phi Learning Private Limited: Delhi, India, 2002. [Google Scholar]
- Bobat, A.; Gezgin, T.; Aslan, H. The SCADA system applications in management of Yuvacik Dam and Reservoir. Desalin. Water Treat. 2015, 54, 2108–2119. [Google Scholar] [CrossRef]
- Adnan, S.; Zheng, S.; Rouse, M.D.; Lu, W.; Opel, K.C. Distributed Control System. U.S. Patent 6,968,905, 18 March 2003. [Google Scholar]
- Patel, N.R.; Risbeck, M.J.; Rawlings, J.B.; Wenzel, M.J.; Turney, R.D. Distributed economic model predictive control for large-scale building temperature regulation. In Proceedings of the American Control Conference, Boston, MA, USA, 6–8 July 2016; Volume 11, pp. 895–900. [Google Scholar]
- Clarke, G.; Reynders, D.; Wright, E. Practical Modern SCADA Protocols: DNP3, 60870.5 and Related Systems; Elsevier: New York, NY, USA, 2004. [Google Scholar]
- OPC Unified Architecture Specification. Available online: https://opcfoundation.org/developer-tools/specifications-unified-architecture (accessed on 1 April 2021).
- MQTT 5 Specification. Available online: https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html (accessed on 1 April 2021).
- Francino, P.N.; Huff, C. Energy Management System. U.S. Patent 9,335,748, 2016. [Google Scholar]
- Miwa, K. Building Energy Management System. U.S. Patent 9,335,748, 2016. [Google Scholar]
- Rotger-Griful, S.; Welling, U.; Jacobsen, R.H. Implementation of a building energy management system for residential demand response. Microprocess. Microsyst. 2017, 55, 100–110. [Google Scholar] [CrossRef]
- Horst, G.R.; Zhang, J.; Syvokozov, A.D. Total Home Energy Management System. U.S. Patent 7,561,977, 2009. [Google Scholar]
- Al-Ali, A.R.; Zualkernan, I.A.; Rashid, M.; Gupta, R.; Alikarar, M. A smart home energy management system using IoT and big data analytics approach. IEEE Trans. Consum. Electron. 2017, 63, 426–434. [Google Scholar] [CrossRef]
- Liang, W.; Li, K.; Long, J.; Kui, X.; Zomaya, A.Y. An Industrial Network Intrusion Detection Algorithm Based on Multifeature Data Clustering Optimization Model. IEEE Trans. Ind. Inform. 2020, 16, 2063–2071. [Google Scholar] [CrossRef]
- Jokar, P.; Leung, V.C.M. Intrusion Detection and Prevention for ZigBee-Based Home Area Networks in Smart Grids. IEEE Trans. Smart Grid 2016, 9, 1800–1811. [Google Scholar] [CrossRef]
- Conti, M.; Dragoni, N.; Lesyk, V. A Survey of Man In The Middle Attacks. IEEE Commun. Surv. Tutor. 2016, 18, 2027–2051. [Google Scholar] [CrossRef]
- Upadhyay, D.; Sampalli, S. SCADA (Supervisory Control and Data Acquisition) systems: Vulnerability assessment and security recommendations. Comput. Secur. 2020, 89, 101666. [Google Scholar] [CrossRef]
- Radoglou Grammatikis, P.; Sarigiannidis, P.; Efstathopoulos, G.; Panaousis, E. ARIES: A Novel Multivariate Intrusion Detection System for Smart Grid. Sensors 2020, 20, 5305. [Google Scholar] [CrossRef]
- González, I.; Calderón, A.J.; Portalo, J.M. Innovative Multi-Layered Architecture for Heterogeneous Automation and Monitoring Systems: Application Case of a Photovoltaic Smart Microgrid. Sustainability 2021, 13, 2234. [Google Scholar] [CrossRef]
- Abad, C.L.; Bonilla, R.I. An analysis on the schemes for detecting and preventing arp cache poisoning attacks. In Proceedings of the 27th International Conference on Distributed Computing Systems Workshops (ICDCSW’07), Toronto, ON, Canada, 22–29 June 2007. [Google Scholar]
- Adams, C. Encyclopedia of Cryptography and Security; Springer: Boston, MA, USA, 2011; p. 1042. [Google Scholar]
- Knowles, W.; Prince, D.; Hutchison, D.; Disso, J.F.P.; Jones, K. A survey of cyber security management in industrial control systems. Int. J. Crit. Infrastruct. Prot. 2015, 9, 52–80. [Google Scholar] [CrossRef]
- Volkova, A.; Niedermeier, M.; Basmadjian, R.; de Meer, H. Security Challenges in Control Network Protocols: A Survey. IEEE Commun. Surv. Tutor. 2019, 21, 619–639. [Google Scholar] [CrossRef]
- Ghosh, S.; Sampalli, S. A Survey of Security in SCADA Networks: Current Issues and Future Challenges. IEEE Access 2019, 7, 135812–135831. [Google Scholar] [CrossRef]
- Ferst, M.K.; de Figueiredo, H.F.; Lopes, J. Implementation of Secure Communication With Modbus and Transport Layer Security protocols. In Proceedings of the 2018 13th IEEE International Conference on Industry Applications (INDUSCON), Sao Paulo, Brazil, 12–14 November 2018; pp. 155–162. [Google Scholar]
- Figueroa-Lorenzo, S.; Añorga, J.; Arrizabalaga, S. A Role-Based Access Control Model in Modbus SCADA Systems. A Centralized Model Approach. Sensors 2019, 19, 4455. [Google Scholar] [CrossRef] [Green Version]
- Tidrea, A.; Korodi, A.; Silea, I. Cryptographic Considerations for Automation and SCADA Systems Using Trusted Platform Modules. Sensors 2019, 19, 4191. [Google Scholar] [CrossRef] [Green Version]
- Pricop, E.; Fattahi, J.; Parashiv, N.; Zamfir, F.; Ghayoula, E. Method for authentication of sensors connected on modbus tcp. In Proceedings of the 2017 4th International Conference on Control, Decision and Information Technologies (CoDIT), Barcelona, Spain, 5–7 April 2017; pp. 679–683. [Google Scholar]
- Rescorla, E. The Transport Layer Security (TLS) Protocol Version 1.3. Available online: https://tools.ietf.org/html/rfc8446 (accessed on 1 April 2021).
- El-Hajj, M.; Fadlallah, A.; Chamoun, M.; Serhrouchni, A. A survey of internet of things (IoT) Authentication schemes. Sensors 2019, 19, 1141. [Google Scholar] [CrossRef] [Green Version]
- Aman, M.N.; Chua, K.C.; Sikdar, B. Mutual Authentication in IoT Systems Using Physical Unclonable Functions. IEEE Internet Things J. 2017, 4, 1327–1340. [Google Scholar] [CrossRef]
- Qureshi, M.A.; Munir, A. PUF-IPA: A PUF-based Identity Preserving Protocol for Internet of Things Authentication. In Proceedings of the 2020 IEEE 17th Annual Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 10–13 January 2020; pp. 1–7. [Google Scholar]
- Zhang, J.L.; Qu, G. Physical Unclonable Function-based Key-Sharing via Machine Learning for IoT Security. IEEE Trans. Ind. Electron. 2019, 67, 7025–7033. [Google Scholar] [CrossRef]
- Choudhary, K.; Gaba, G.S.; Butun, I.; Kumar, P. MAKE-IT—A Lightweight Mutual Authentication and Key Exchange Protocol for Industrial Internet of Things. Sensors 2020, 20, 5166. [Google Scholar] [CrossRef] [PubMed]
- Esfahani, A.; Mantas, G.; Matischek, R.; Saghezchi, F.B.; Rodriguez, J.; Bicaku, A.; Maksuti, S.; Tauber, M.G.; Schmittner, C.; Bastos, J. A Lightweight Authentication Mechanism for M2M Communications in Industrial IoT Environment. IEEE Internet Things J. 2017, 6, 288–296. [Google Scholar] [CrossRef]
- Dammak, M.; Boudia, R.R.M.; Messous, M.A.; Senouci, S.M.; Gransart, C. Token- based lightweight authentication to secure iot networks. In Proceedings of the 2019 16th IEEE Annual Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 11–14 January 2019; pp. 1–4. [Google Scholar]
- Sari, A.; Lekidis, A.; Butun, I. Industrial Networks and IIoT: Now and Future Trends. In Industrial IoT; Springer: Cham, Switzerland, 2020; pp. 3–55. [Google Scholar]
- OpenMUC User Guide. Available online: https://www.openmuc.org/openmuc/user-guide/ (accessed on 1 April 2021).
- Watson, D.; Piette, M.; Sezgen, O. Machine to machine (M2M) technology in demand responsive commercial buildings. In Proceedings of the 2004 ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA, USA, 23–27 August 2004. [Google Scholar]
- Nxumalo, Z.C.; Tarwireyi, P.; Adigun, M.O. Towards privacy with tokenization as a service. In Proceedings of the 2014 IEEE 6th International Conference on Adaptive Science and Technology (ICAST), Ota, Nigeria, 29–31 October 2014; pp. 1–6. [Google Scholar]
- Wen, F.; Li, X. An improved dynamic id-based remote user authentication with key agreement scheme. Comput. Electr. Eng. 2012, 38, 381–387. [Google Scholar] [CrossRef]
- Hsiang, H.-C.; Shih, W.-K. Improvement of the secure dynamic ID based remote user authentication scheme for multi-server environment. Comput. Stand. Interfaces 2009, 31, 1118–1123. [Google Scholar] [CrossRef]
- Liao, Y.-P.; Wang, S.-S. A secure dynamic ID based remote user authentication scheme for multi-server environment. Comput. Stand. Interfaces 2009, 31, 24–29. [Google Scholar] [CrossRef]
- Butun, I.; Sari, A.; Österberg, P. Hardware Security of Fog End-Devices for the Internet of Things. Sensors 2020, 20, 5729. [Google Scholar] [CrossRef]
Control Server | TTAS | |
---|---|---|
CPU | Intel Core i7 3770 @ 3.40 GHz | Broadcom BCM2711, |
Quad core Cortex- | ||
-A72 64-bit SoC @ 1.5 GHz | ||
RAM | 24 GB DDR3 @ 1600 MHz | 4 GB LPDDR4-3200 SDRAM |
Storage | 256 GB SSD 512 GB HDD | 64 GB |
Ethernet | 1 Gb/s | 1 Gb/s |
OS | Windows 10 | Raspbian 10 (buster) |
Kernel Version | 10.0.18363.1316 | 5.4.72-v71+ |
Trusted Verification Module | Encrypted Validator/Attacker | |
---|---|---|
CPU | Broadcom BCM2711, | Broadcom BCM2711, |
Quad core Cortex- | Quad core Cortex- | |
-A72 64-bit SoC @ 1.5 GHz | -A72 64-bit SoC @ 1.5 GHz | |
RAM | 8 GB LPDDR4-3200 SDRAM | 4 GB LPDDR4-3200 SDRAM |
Storage | 64 GB | 64 GB |
Ethernet | 1 Gb/s | 1 Gb/s |
OS | Raspbian 10 (buster) | Raspbian 10 (buster) |
Kernel Version | 5.4.72-v71+ | 5.4.72-v71+ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.-S.; Lee, S.-H.; Chen, W.-C.; Yang, C.-S.; Huang, Y.-M.; Hou, T.-W. TTAS: Trusted Token Authentication Service of Securing SCADA Network in Energy Management System for Industrial Internet of Things. Sensors 2021, 21, 2685. https://doi.org/10.3390/s21082685
Yang Y-S, Lee S-H, Chen W-C, Yang C-S, Huang Y-M, Hou T-W. TTAS: Trusted Token Authentication Service of Securing SCADA Network in Energy Management System for Industrial Internet of Things. Sensors. 2021; 21(8):2685. https://doi.org/10.3390/s21082685
Chicago/Turabian StyleYang, Yu-Sheng, Shih-Hsiung Lee, Wei-Che Chen, Chu-Sing Yang, Yuen-Min Huang, and Ting-Wei Hou. 2021. "TTAS: Trusted Token Authentication Service of Securing SCADA Network in Energy Management System for Industrial Internet of Things" Sensors 21, no. 8: 2685. https://doi.org/10.3390/s21082685
APA StyleYang, Y. -S., Lee, S. -H., Chen, W. -C., Yang, C. -S., Huang, Y. -M., & Hou, T. -W. (2021). TTAS: Trusted Token Authentication Service of Securing SCADA Network in Energy Management System for Industrial Internet of Things. Sensors, 21(8), 2685. https://doi.org/10.3390/s21082685