Electrical Tomography Reconstruction Using Reconfigurable Waveforms in a FPGA
Abstract
:1. Introduction
- Precise time synchronization of the parallel execution of excitation and sensing processes.
- Real-time reconfiguration of excitation signals.
2. Materials and Methods
2.1. Impedance Modeled Tomography
2.2. ET Platform Design for IoT in Healthcare
2.3. FTDAQ System Design
- Store a periodic excitation waveform in a RAM device synchronized to a foreign, irregular clock enable signal from a MCU.
- To use as default excitation a set of waveforms are stored in a ROM.
- Configure the emitter parameters (output frequency).
- Trigger and drive the excitation signal using a precise and fast clock.
- Synchronize sensors to acquire the response signal at the same clock that the excitation signal.
- Store the acquired signal in RAM at high speed using the fast clock.
- Write back to MCU device from RAM using a slow clock to synchronize with the MCU.
2.4. Emitter Design
- Set read address for T-RAM.
- Set write address for T-RAM.
- Set data to write for T-RAM.
- The first 100 addresses (0–99) points to the re-configurable excitation waveform data.
- The next 10 addresses (100–109) points to the tomographic data acquisition parameters.
- The rest 65,425 addresses (110–65,535) points to the sensed tomographic data.
- The wave output sample clock, that controls the speed of the output wave.
- The wave selected code, that selects which waveform to load: RAM-W-0, ROM-W-0, or ROM-W-1.
2.5. Mobile Tomographic System
- In our current prototype, we use a new technology that allows for software-hardware codesign. A system-on-chip Zynq 7020 from Xilinx, with FPGA+ and ARM processor, provides direct communication between the processor communication bus and the FPGA fabric.
- For the new development, we have explored standard communication buses (Wishbone and AXI). We have selected the AXI bus, reducing the complexity between programming user interfaces and the FPGA logic, and allowing for interoperability with respect to the available computing cores.
- Excitation signal generation block—based on two high-speed DAC converters with a measuring shunt system and a 16-bit 25MSPS ADC converter, which together with the FPGA system creates digital feedback loops.
- Measurement block—a set of amplifiers and pre-filters multiplexed into 32 channels with a PGA gain control system and a 16-bit 25MSPS differential analog-to-digital converter.
- Body surface potential mapping block—A set of 102 active addressable measurement electrodes based on a signal matching and amplification unit.
- Power supply 5 V DC/Battery powered LI-Ion 3000 mAh, Energy consumption during measurement 2 W, sleep mode 0.1 W, frequency 50 kHz, Amplitude 500 mV p-p, current 100 . Signal noise ratio 90 dB.
2.6. Tomographer Design with Dedicated Electrodes
- Heterogeneous, non equidistant electrode positioning on the surface .
- Temporal variations on the shape of the object under study e.g., tidal volume variations.
- The acquisition, collection and processing of redundant data for research on signal and image processing.
3. Results
3.1. SISO Data Analysis
3.2. MIMO Data Analysis for Electrolyte Tank Measurements
3.3. Tomographic Imaging
- The Jacobian J can be estimated, for example, solving the forward problem using the finite element method for the background material distribution.
- A Jacobian element in a finite element method model represents the sensitivity of the electrical potential in the electrode nodes with respect to the variation of the conductivity in the mesh element.
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Manta, C.; Jain, S.S.; Coravos, A.; Mendelsohn, D.; Izmailova, E.S. An Evaluation of Biometric Monitoring Technologies for Vital Signs in the Era of COVID-19. Clin. Transl. Sci. 2020, 13, 1034–1044. [Google Scholar] [CrossRef]
- Aliverti, A. Wearable technology: Role in respiratory health and disease. Breathe 2017, 13, e27–e36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adler, A.; Amyot, R.; Guardo, R.; Bates, J.H.T.; Berthiaume, Y. Monitoring changes in lung air and liquid volumes with electrical impedance tomography. J. Appl. Physiol. 1997, 83, 1762–1767. [Google Scholar] [CrossRef] [PubMed]
- Bikker, I.G.; Leonhardt, S.; Bakker, J.; Gommers, D. Lung volume calculated from electrical impedance tomography in ICU patients at different PEEP levels. Intensive Care Med. 2009, 35, 1362–1367. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Abascal, J.F.P.J.; Soleimani, M. Extended Joint Sparsity Reconstruction for Spatial and Temporal ERT Imaging. Sensors 2018, 18, 4014. [Google Scholar] [CrossRef] [Green Version]
- Banasiak, R.; Wajman, R.; Jaworski, T.; Fiderek, P.; Fidos, H.; Nowakowski, J.; Sankowski, D. Study on two-phase flow regime visualization and identification using 3D electrical capacitance tomography and fuzzy-logic classification. Int. J. Multiph. Flow 2014, 58, 1–14. [Google Scholar] [CrossRef]
- Soleimani, M.; Mitchell, C.N.; Banasiak, R.; Wajman, R.; Adler, A. Four-Dimensional Electrical Capacitance Tomography Imaging Using Experimental Data. Prog. Electromagn. Res. 2009, 90, 171–186. [Google Scholar] [CrossRef] [Green Version]
- Kłosowski, G.; Rymarczyk, T.; Kania, K.; Świć, A.; Cieplak, T. Maintenance of industrial reactors supported by deep learning driven ultrasound tomography. Eksploat. Niezawodn. Maint. Reliab. 2019, 22, 138–147. [Google Scholar] [CrossRef]
- Dusek, J.; Vejar, A.; Rymarczyk, T.; Mikulka, J. Convergence error exploration for electrical impedance tomography problems with open and closed domains. In Proceedings of the 2018 International Interdisciplinary PhD Workshop (IIPhDW), Świnoujście, Poland, 9–12 May 2018; pp. 39–44. [Google Scholar] [CrossRef]
- Mikulka, J.; Dušek, J.; Dědková, J.; Pařilková, J.; Műnsterová, Z. A Fast and Low-cost Measuring System for Electrical Impedance Tomography. In Proceedings of the 2019 PhotonIcs Electromagnetics Research Symposium—Spring (PIERS-Spring), Rome, Italy, 17–20 June 2019; pp. 3751–3755. [Google Scholar] [CrossRef]
- Bartusek, K.; Fiala, P.; Mikulka, J. Numerical Modeling of Magnetic Field Deformation as Related to Susceptibility Measured with an MR System. Radioengineering 2008, 17, 113–118. [Google Scholar]
- Korzeniewska, E.; Sekulska-Nalewajko, J.; Goclawski, J.; Drózdz, T.; Kielbasa, P. Analysis of changes in fruit tissue after the pulsed electric field treatment using optical coherence tomography. Eur. Phys. J. Appl. Phys. 2020, 91, 30902. [Google Scholar] [CrossRef]
- Szczęsny, A.; Korzeniewska, E. Selection of the method for the earthing resistance measurement. Przegląd Elektrotechniczny 2018, 94, 178–181. [Google Scholar]
- Rymarczyk, T.; Vejar, A.; Nita, P.; Tchórzewski, P. Advanced tomographic platform for real-time image reconstruction and biomedical signal analysis. In Proceedings of the 2018 International Interdisciplinary PhD Workshop (IIPhDW), Świnoujście, Poland, 9–12 May 2018; pp. 186–190. [Google Scholar] [CrossRef]
- Rymarczyk, T.; Vejar, A.; Nita, P.; Stefaniak, B.; Woś, M.; Oleszek, M. Using Electrical Tomography for Remote Monitoring Cardiopulmonary State of Patients by Complementary Investigation Techniques. In Proceedings of the 2019 19th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF), Nancy, France, 29–31 August 2019; pp. 1–2. [Google Scholar]
- Rymarczyk, T.; Nita, P.; Vejar, A.; Stefaniak, B.; Sikora, J. Electrical tomography system for Innovative Imaging and Signal Analysis. Przegląd Elektrotechniczny 2019, 1, 135–138. [Google Scholar] [CrossRef] [Green Version]
- Vejar, A.; Rymarczyk, T.; Paprzycki, P. Mutual Information and Delay Embeddings in Polysomnography Studies. In Proceedings of the 2019 International Interdisciplinary PhD Workshop (IIPhDW), Wismar, Germany, 15–17 May 2019; pp. 89–94. [Google Scholar] [CrossRef]
- Mierzejewski, K.; Véjar, A. A platform for joint analysis of biosignals ensembles in real-time using FPGA. Acta Bio-Opt. Inform. Med. InŻynieria Biomed. 2016, 22, 253–260. [Google Scholar]
- Wu, Y.; Jiang, D.; Bardill, A.; de Gelidi, S.; Bayford, R.; Demosthenous, A. A High Frame Rate Wearable EIT System Using Active Electrode ASICs for Lung Respiration and Heart Rate Monitoring. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 3810–3820. [Google Scholar] [CrossRef]
- Khan, S.; Manwaring, P.; Borsic, A.; Halter, R. FPGA-Based Voltage and Current Dual Drive System for High Frame Rate Electrical Impedance Tomography. IEEE Trans. Med. Imaging 2015, 34, 888–901. [Google Scholar] [CrossRef]
- Rymarczyk, T.; Vejar, A. Waveform-Reconfigurable Emitter Design for Multi Frequency Electrical Tomography. Przegląd Elektrotechniczny 2020, 2020, 164–167. [Google Scholar] [CrossRef]
- Rymarczyk, T.; Vejar, A. Multi Frequency Electrical Tomography with Re-configurable Excitation Waveforms. In Proceedings of the 2019 Applications of Electromagnetics in Modern Engineering and Medicine (PTZE), Janow Podlaski, Poland, 9–12 June 2019; pp. 198–202. [Google Scholar] [CrossRef]
- Lasia, A. Electrochemical Impedance Spectroscopy and its Applications. In Modern Aspects of Electrochemistry; Conway, B.E., Bockris, J.O., White, R.E., Eds.; Springer: Boston, MA, USA, 2002; pp. 143–248. [Google Scholar] [CrossRef]
- Naranjo-Hernández, D.; Reina-Tosina, J.; Roa, L.M.; Barbarov-Rostán, G.; Aresté-Fosalba, N.; Lara-Ruiz, A.; Cejudo-Ramos, P.; Ortega-Ruiz, F. Smart Bioimpedance Spectroscopy Device for Body Composition Estimation. Sensors 2020, 20, 70. [Google Scholar] [CrossRef] [Green Version]
- Padilha Leitzke, J.; Zangl, H. A Review on Electrical Impedance Tomography Spectroscopy. Sensors 2020, 20, 5160. [Google Scholar] [CrossRef]
- Console, A.; Devlin, J.C.; Cameron, J.D.; Kirsner, R.L.G.; Custovic, E.; Bienvenu, B.A.; Russell, D.J.E.; Console, V.G.A. Voltage and phase calibration for a quad-channel FPGA controlled EIT modular system. In Proceedings of the 7th International Conference on Broadband Communications and Biomedical Applications, Melbourne, VIC, Australia, 21–24 November 2011; pp. 74–79. [Google Scholar] [CrossRef]
- Curran-Everett, D.; Zhang, Y.; Jones, M.D.; Jones, R.H. An improved statistical methodology to estimate and analyze impedances and transfer functions. J. Appl. Physiol. 1997, 83, 2146–2157. [Google Scholar] [CrossRef]
- Piret, H.; Granjon, P.; Guillet, N.; Cattin, V. Tracking of electrochemical impedance of batteries. J. Power Sources 2016, 312, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Bullecks, B.; Suresh, R.; Rengaswamy, R. Rapid impedance measurement using chirp signals for electrochemical system analysis. Comput. Chem. Eng. 2017, 106, 421–436. [Google Scholar] [CrossRef]
- Lewis, G.K.; Lewis, G.K.; Olbricht, W. Cost-effective broad-band electrical impedance spectroscopy measurement circuit and signal analysis for piezo-materials and ultrasound transducers. Meas. Sci. Technol. 2008, 19, 105102. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Yu, S. A reconfigurable PCB test system based on VI. In Proceedings of the 2011 International Conference on Electric Information and Control Engineering, Wuhan, China, 15–17 April 2011; pp. 91–94. [Google Scholar]
- Neumann, P.; Pospíšilík, M.; Skočík, P.; Adámek, M. The IV characteristic comparison method in electronic component diagnostics. In Proceedings of the 20th IMEKO World Congress 2012, Busan, Korea, 9–14 September 2012. [Google Scholar]
- Adler, A.; Boyle, A. Electrical Impedance Tomography: Tissue Properties to Image Measures. IEEE Trans. Biomed. Eng. 2017, 64, 2494–2504. [Google Scholar] [CrossRef] [PubMed]
- Dimas, C.; Sotiriadis, P.P. Electrical impedance tomography image reconstruction for adjacent and opposite strategy using FEMM and EIDORS simulation models. In Proceedings of the 2018 7th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 7–9 May 2018; pp. 1–4. [Google Scholar]
- Rymarczyk, T.; Kosior, A.; Tchórzewski, P.; Vejar, A. Image reconstruction in electrical impedance tomography using a reconfigurable FPGA system. J. Phys. Conf. Ser. 2021, 1782, 012033. [Google Scholar] [CrossRef]
- Zamora-Arellano, F.; López-Bonilla, O.R.; García-Guerrero, E.E.; Olguín-Tiznado, J.E.; Inzunza-González, E.; López-Mancilla, D.; Tlelo-Cuautle, E. Development of a Portable, Reliable and Low-Cost Electrical Impedance Tomography System Using an Embedded System. Electronics 2021, 10, 15. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, B.; Liu, K.; Zhu, C.; Pan, H.; Jia, J.; Wu, H.; Yao, J. Shape Reconstruction With Multiphase Conductivity for Electrical Impedance Tomography Using Improved Convolutional Neural Network Method. IEEE Sens. J. 2021, 21, 9277–9287. [Google Scholar] [CrossRef]
- Dong, G.; Zou, J.; Bayford, R.H.; Ma, X.; Gao, S.; Yan, W.; Ge, M. The comparison between FVM and FEM for EIT forward problem. IEEE Trans. Magn. 2005, 41, 1468–1471. [Google Scholar] [CrossRef]
- Jehl, M.; Dedner, A.; Betcke, T.; Aristovich, K.; Klöfkorn, R.; Holder, D. A Fast Parallel Solver for the Forward Problem in Electrical Impedance Tomography. IEEE Trans. Biomed. Eng. 2015, 62, 126–137. [Google Scholar] [CrossRef]
- Babaeizadeh, S.; Brooks, D.H.; Isaacson, D.; Newell, J.C. Electrode boundary conditions and experimental validation for BEM-based EIT forward and inverse solutions. IEEE Trans. Med. Imaging 2006, 25, 1180–1188. [Google Scholar] [CrossRef]
- Williams, T.; Bouazza-Marouf, K.; Zecca, M.; Green, A.L. Analysis of the validity of the mathematical assumptions of electrical impedance tomography for human head tissues. Biomed. Phys. Eng. Express 2021, 7, 025011. [Google Scholar] [CrossRef]
- Liu, S.; Wu, H.; Huang, Y.; Yang, Y.; Jia, J. Accelerated structure-aware sparse Bayesian learning for three-dimensional electrical impedance tomography. IEEE Trans. Ind. Inform. 2019, 15, 5033–5041. [Google Scholar] [CrossRef]
- Liu, S.; Cao, R.; Huang, Y.; Ouypornkochagorn, T.; Jia, J. Time sequence learning for electrical impedance tomography using Bayesian spatiotemporal priors. IEEE Trans. Instrum. Meas. 2020, 69, 6045–6057. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhou, Y.; Wang, J.; Wang, Q.; Lu, Y.; Duan, X.; Sun, Y.; Zhang, J.; Liu, Z. A novel deep neural network method for electrical impedance tomography. Trans. Inst. Meas. Control 2019, 41, 4035–4049. [Google Scholar] [CrossRef]
- Barber, D.C.; Brown, B.H. Applied potential tomography. J. Phys. E Sci. Instrum. 1984, 17, 723. [Google Scholar] [CrossRef]
- Eyuboglu, B.M.; Brown, B.H.; Barber, D.C.; Seager, A.D. Localisation of cardiac related impedance changes in the thorax. Clin. Phys. Physiol. Meas. 1987, 8, 167–173. [Google Scholar] [CrossRef]
- Hovnanian, A.L.D.; Costa, E.L.V.; Hoette, S.; Fernandes, C.J.C.S.; Jardim, C.V.P.; Dias, B.A.; Morinaga, L.T.K.; Amato, M.B.P.; Souza, R. Electrical impedance tomography in pulmonary arterial hypertension. PLoS ONE 2021, 16, e0248214. [Google Scholar] [CrossRef] [PubMed]
- Rapin, M.; Braun, F.; Adler, A.; Wacker, J.; Frerichs, I.; Vogt, B.; Chételat, O. Wearable Sensors for Frequency-Multiplexed EIT and Multilead ECG Data Acquisition. IEEE Trans. Biomed. Eng. 2019, 66, 810–820. [Google Scholar] [CrossRef] [PubMed]
- Szabała, T.; Rymarczyk, T.; Vejar, A. A robotic respiration phantom with patient data synchronization for medical tomography. J. Phys. Conf. Ser. 2021, 1782, 012037. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vejar, A.; Rymarczyk, T. Electrical Tomography Reconstruction Using Reconfigurable Waveforms in a FPGA. Sensors 2021, 21, 3272. https://doi.org/10.3390/s21093272
Vejar A, Rymarczyk T. Electrical Tomography Reconstruction Using Reconfigurable Waveforms in a FPGA. Sensors. 2021; 21(9):3272. https://doi.org/10.3390/s21093272
Chicago/Turabian StyleVejar, Andres, and Tomasz Rymarczyk. 2021. "Electrical Tomography Reconstruction Using Reconfigurable Waveforms in a FPGA" Sensors 21, no. 9: 3272. https://doi.org/10.3390/s21093272
APA StyleVejar, A., & Rymarczyk, T. (2021). Electrical Tomography Reconstruction Using Reconfigurable Waveforms in a FPGA. Sensors, 21(9), 3272. https://doi.org/10.3390/s21093272