Automatic vs. Human Recognition of Pain Intensity from Facial Expression on the X-ITE Pain Database
Abstract
:1. Introduction
1.1. Related Work
1.2. Contribution
2. Materials and Methods
2.1. X-ITE Pain Database
2.2. Random Forest Classifier (RFc)
2.2.1. Random Forest Classifier (RFc) Baseline Method (RFc-BL)
2.2.2. Random Forest Classifier (RFc) with Facial Activity Descriptor (FAD)
2.3. The Deep Learning Approaches
2.3.1. Pre-Processing
2.3.2. Simple Convolutional Neural Network (CNN)
2.3.3. Reduced MobileNetV2 (MNV2) with Simple CNN
2.3.4. Two-Convolutional Neural Networks (Two-CNNs)
2.4. Multi-Task Learning in Deep Neural Networks (MTL)
2.5. Sample Weighting Method
2.6. Experiments
2.6.1. Human Observation Experiment
2.6.2. Automatic Pain Recognition Experiments
3. Results
3.1. 7-Class Pain Intensity Recognition
3.2. 5-Class Pain Intensity Recognition
3.3. 3-Class Pain Intensity Recognition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
B | No-pain |
E1 | Low electrical-pain stimuli |
E2 | Moderate electrical-pain stimuli |
E3 | Severe electrical-pain stimuli |
H1 | Low heat-pain stimuli |
H2 | Moderate heat-pain stimuli |
H3 | Severe heat-pain stimuli |
AU | Action Unit |
Conv | Convolution layers |
CNN | Convolutional Neural Network |
CNNs* | Sample weighting method used with two simple convolutional Neural Network |
ECG | Electrocardiogram |
EDA | Electrodermal activity |
EMG | Electromyography |
FACS | Facial Action Coding System |
FAD | Facial Activity Descriptor |
MVV2 | MobileNetV2 |
MNV2* | Sample weighting method used with MobileNetV2 and simple convolutional Neural Network |
MTL | Multi-task learning |
MTL-CNNs-loss-function (softmax, softmax) | The trained Multi-task learning model using softmax loss with two simple convolutional Neural Network |
MTL-CNNs-loss-function (softmax, mse) | The trained Multi-task learning model using softmax and mse loss with two simple convolutional Neural Network respectively |
MTL-CNNs-loss-function (softmax, sigmoid) | The trained Multi-task learning model using softmax and sigmoid loss with two simple convolutional Neural Network respectively |
MTL-CNNs*-loss-function (softmax, softmax) | The trained Multi-task learning model using softmax loss with two simple convolutional Neural Network |
MTL-CNNs*-loss-function (softmax, mse) | The trained Multi-task learning model using softmax and mse loss with MobileNetV2 and simple convolutional Neural Network respectively |
MTL-CNNs*-loss-function (softmax, sigmoid) | The trained Multi-task learning model using softmax and sigmoid loss with two simple convolutional Neural Network respectively |
MTL-MNV2-loss-function (softmax, softmax) | The trained Multi-task learning model using softmax loss with reduced MobileNetV2 and simple convolutional Neural Network |
MTL-MNV2-loss-function (softmax, mse) | The trained Multi-task learning model using softmax and mse loss with reduced MobileNetV2 and simple convolutional Neural Network respectively |
MTL-MNV2-CNN-loss-function (softmax, sigmoid) | The trained Multi-task learning model using softmax and sigmoid loss with reduced MobileNetV2 and simple convolutional Neural Network respectively |
MTL-MNV2*-loss-function (softmax, softmax) | The trained Multi-task learning model using softmax loss with reduced MobileNetV2 and simple convolutional Neural Network |
MTL-MNV2*-loss-function (softmax, mse) | The trained Multi-task learning model using softmax and mse loss with reduced MobileNetV2 and simple convolutional Neural Network respectively |
MTL-MNV2*-loss-function (softmax, sigmoid) | The trained Multi-task learning model using softmax and sigmoid loss with reduced MobileNetV2 and simple convolutional Neural Network respectively |
PSPI | Prkachin and Solomon Pain Intensity |
RF / RFc | Random Forest / Random Forest classifier |
RFc-BL | Random Forest classifier baseline method |
two-CNNs | Combination of two simple convolutional neural networks |
UNBC-McMaster Shoulder Pain Database | University of Northern British Columbia-McMaster Shoulder Pain Database |
X-ITE Pain Database | Experimentally Induced Thermal and Electrical Pain Database |
References
- Herr, K.; Coyne, P.J.; McCaffery, M.; Manworren, R.; Merkel, S. Pain assessment in the patient unable to self-report: Position statement with clinical practice recommendations. Pain Manag. Nurs. Off. J. Am. Soc. Pain Manag. Nurses 2011, 12, 230–250. [Google Scholar] [CrossRef]
- Mieronkoski, R.; Syrjälä, E.; Jiang, M.; Rahmani, A.; Pahikkala, T.; Liljeberg, P.; Salanterä, S. Developing a pain intensity prediction model using facial expression: A feasibility study with electromyography. PLoS ONE 2020, 15, e0235545. [Google Scholar] [CrossRef] [PubMed]
- Craig, K.D. The social communication model of pain. Can. Psychol. 2009, 50, 22–32. [Google Scholar] [CrossRef]
- Craig, K.D. The facial expression of pain Better than a thousand words? APS J. 1992, 1, 153–162. [Google Scholar] [CrossRef]
- Werner, P.; Lopez-Martinez, D.; Walte, S.; Al-Hamadi, A.; Gruss, S.; Picard, R.W. Automatic Recognition Methods Supporting Pain Assessment: A Survey. IEEE Trans. Affect. Comput. 2019. [Google Scholar] [CrossRef]
- Williams, A.C. Facial expression of pain: An evolutionary account. Behav. Brain Sci. 2002, 25, 439–455. [Google Scholar] [CrossRef] [Green Version]
- Gruss, S.; Geiger, M.; Werner, P.; Wilhelm, O.; Traue, H.C.; Al-Hamadi, A.; Walter, S. Multi-Modal Signals for Analyzing Pain Responses to Thermal and Electrical Stimuli. J. Vis. Exp. 2019, 146, e59057. [Google Scholar] [CrossRef] [Green Version]
- Werner, P.; Al-Hamadi, A.; Limbrecht-Ecklundt, K.; Walter, S.; Gruss, S.; Traue, H.C. Automatic Pain Assessment with Facial Activity Descriptors. IEEE Trans. Affect. Comput. 2017, 8, 286–299. [Google Scholar] [CrossRef]
- Baltrusaitis, T.; Robinson, P.; Morency, L.-P. OpenFace: An open source facial behavior analysis toolkit. In Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, NY, USA, 7–10 March 2016. [Google Scholar]
- Othman, E.; Werner, P.; Saxen, F.; Al-Hamadi, A.; Walter, S. Cross-Database Evaluation of Pain Recognition from Facial Video. In Proceedings of the 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA), Zagreb, Croatia, 23–25 September 2019. [Google Scholar]
- Werner, P.; Al-Hamadi, A.; Walter, S. Analysis of Facial Expressiveness During Experimentally Induced Heat Pain. In Proceedings of the Seventh International Conference on Affective Computing and Intelligent InteractionWorkshops and Demos (ACIIW), San Antonio, TX, USA, 23–26 October 2017. [Google Scholar]
- Bull, P. State of the art-nonverbal communication. Psychologist 2001, 14, 644–647. [Google Scholar]
- Horstmann, G. What do facial expressions convey: Feeling states, behavioral intentions, or action requests? Emotion 2003, 3, 150–166. [Google Scholar] [CrossRef]
- Ekman, P. Differential communication of affect by head and body cues. J. Personal. Soc. Psychol. 1965, 2, 726–735. [Google Scholar] [CrossRef] [PubMed]
- Ekman, P.; Friesen, W.V.; O’Sullivan, M.; Chan, A.Y.C.; Diacoyanni-Tarlatzis, I.; Heider, K.G.; Krause, R.; LeCompte, W.A.; Pitcairn, T.; Bitti, P.E.R. Universals and Cultural Differences in the Judgments of Facial Expressions of Emotion. J. Personal. Soc. Psychol. 1987, 53, 712–717. [Google Scholar] [CrossRef]
- Smith, F.W.; Rossit, S. Identifying and detecting facial expressions of emotion in peripheral vision. PLoS ONE 2018, 13, e0197160. [Google Scholar] [CrossRef] [PubMed]
- Ekman, P. Facial expression and emotion. Am. Psychol. 1993, 48, 384–392. [Google Scholar] [CrossRef]
- Prkachin, K.M. The Consistency of Facial Expressions of Pain: A Comparison Across Modalities. Pain 1992, 51, 297–306. [Google Scholar] [CrossRef]
- Wells, L.J.; Gillespie, S.M.; Rotshtein, P. Identification of Emotional Facial Expressions: Effects of Expression, Intensity, and Sex on Eye Gaze. PLoS ONE 2016, 11. [Google Scholar] [CrossRef] [PubMed]
- Grunau, R.V.E.; Craig, K.D. Pain expression in neonates: Facial action and cry. Pain 1987, 28, 395–410. [Google Scholar] [CrossRef]
- Botvinick, M.; Jha, A.P.; Bylsma, L.M.; Fabian, S.A.; Solomon, P.E.; Prkachin, K.M. Viewing facial expressions of pain engages cortical areas involved in the direct experience of pain. Neuroimage 2005, 25, 312–319. [Google Scholar] [CrossRef]
- Lucey, P.; Cohn, J.F.; Prkachin, K.M.; Solomon, P.E.; Matthews, I. Painful data: The UNBC-McMaster shoulder pain expression archived atabase. In Proceedings of the 2011 IEEE International Conference on Automatic Face & Gesture Recognition (FG), Santa Barbara, CA, USA, 21–25 March 2011; pp. 57–64. [Google Scholar]
- Prkachin, K.M.; Solomon, P.E. The structure, reliability and validity of pain expression: Evidence from patients with shoulder pain. Pain 2008, 139, 267–274. [Google Scholar] [CrossRef]
- Hammal, Z.; Cohn, J.F. Automatic, Objective, and Efficient Measurement of Pain Using Automated Face Analysis. In Social and Interpersonal Dynamics in Pain; Springer: Berlin/Heidelberg, Germany, 2018; Volume 139, pp. 121–146. [Google Scholar] [CrossRef]
- Prkachion, K.M.; Craig, K.D. Expressing pain: The communication and interpretation of facial pain signals. Nonverbal Behav. 1995, 19, 191–205. [Google Scholar] [CrossRef]
- Kunz, M.; Mylius, V.; Schepelman, K.; Lautenbacher, S. On the relationship between self-report and facial expression of pain. Pain 2004, 5, 368–376. [Google Scholar] [CrossRef]
- Mende-Siedlecki, P.; Qu-Lee, J.; Lin, J.; Drain, A.; Goharzad, A. The Delaware Pain Database: A set of painful expressions and corresponding norming data. Pain 2020, 5. [Google Scholar] [CrossRef]
- Gruss, S.; Treister, R.; Werner, P.; Traue, H.C.; Crawcour, S.; Andrade, A.; Walter, S. Pain Intensity Recognition Rates via Biopotential Feature Patterns with Support Vector Machines. PLoS ONE 2015, 10, e0140330. [Google Scholar] [CrossRef]
- Werner, P.; Al-Hamadi, A.; Limbrecht-Ecklundt, K.; Walter, S.; Traue, H.C. Head movements and postures as pain behavior. PLoS ONE 2015, 13, e0192767. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Li, S.; Shan, S.; Chen, X. AU-aware Deep Networks for facial expression recognition. In Proceedings of the International Conference on Automatic Face and Gesture Recognition, Shanghai, China, 22–26 April 2013. [Google Scholar]
- Bartlett, M.S.; Littlewort, G.C.; Frank, M.G.; Lee, K. Automatic decoding of facial movements reveals deceptive pain expressions. Curr. Biol. 2014, 24, 738–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Littlewort, G.C.; Bartletta, M.S.; Lee, K. Automatic coding of facial expressions displayed during posed and genuine pain. Image Vis. Comput. 2009, 27, 1797–1803. [Google Scholar] [CrossRef]
- Sikka, K.; Ahmed, A.A.; Diaz, D.; Goodwin, M.S.; Craig, K.D.; Bartlett, M.S.; Huang, J.S. Automated Assessment of Children’s Postoperative Pain Using Computer Vision. Pediatrics 2015, 136, 124–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Werner, P.; Al-Hamadi, A.; Gruss, S.; Walter, S. Twofold-Multimodal Pain Recognition with the X-ITE Pain Database. In Proceedings of the International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), Cambridge, UK, 3–6 September 2019. [Google Scholar]
- Ruder, S. An Overview of Multi-Task Learningin Deep Neural Networks. arXiv 2017, arXiv:1706.05098. [Google Scholar]
- Zhang, Y.; Yang, Q. An overview of multi-task learning. Natl. Sci. Rev. Comput. Sci. 2018, 5, 30–43. [Google Scholar] [CrossRef] [Green Version]
- Prkachin, K.M. Assessing pain by facial expression: Facial expression as nexus. Pain Res. Manag. 2009, 14, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Spagna, A.; Wu, T.; Kim, T.H.; Wu, Q.; Chen, C.; Wu, Y.; Fan, J. Testing a Cognitive Control Model of Human Intelligence. Sci. Rep. 2019, 9, 2898. [Google Scholar] [CrossRef]
- Chen, Z.; Ansari, R.; Wilkie, D.J. Automated Pain Detection from Facial Expressions using FACS: A Revie. arXiv 2018, arXiv:1811.07988. [Google Scholar]
- Saxen, F.; Werner, P.; Al-Hamadi, A. Real vs. Fake Emotion Challenge: Learning to Rank Authenticity from Facial Activity Descriptors. In Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCVW), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Othman, E.; Saxen, F.; Bershadskyy, D.; Werner, P.; Al-Hamadi, A.; Weimann, J. Predicting the group contribution behaviour in a public goods game from Face-to-Face Communication. Sensors 2019, 19, 2786. [Google Scholar] [CrossRef] [Green Version]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. arXiv 2018, arXiv:1801.04381. [Google Scholar]
- Caruana, R. Multitask Learning: A Knowledge-Based Source of Inductive Bias. In Proceedings of the ICML’93: Tenth International Conference on Machine Learning, San Francisco, CA, USA, 27–29 June 1993. [Google Scholar]
- Baxter, J. A Bayesian/information theoretic model of learning to learn via multiple task sampling. Mach. Learn. 1991, 28, 7–39. [Google Scholar] [CrossRef]
- Prkachin, K.M.; Solomon, P.; Hwang, T.; Mercer, S.R. Does Experience Influence Judgements of Pain Behaviour? Evidence from Relatives of Pain Patients and Therapists. Pain Res. Manag. 2001, 6, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Kunz, M.; Lautenbacher, S. Improving recognition of pain by calling attention to its various faces. Eur. J. Pain 2015, 19, 1350–1361. [Google Scholar] [CrossRef]
- Rash, J.A.; Prkachin, K.M.; Solomon, P.E.; Campbell, T. Assessing the efficacy of a manual-based intervention for improving the detection of facial pain expression. Eur. J. Pain 2019, 23. [Google Scholar] [CrossRef]
Pain Stimulus | |||||
---|---|---|---|---|---|
n-Class | Modalities | Intensities | |||
Severe | Moderate | Low | No Pain | ||
7-class | E | E3 | E2 | E1 | B |
H | H3 | H2 | H1 | ||
5-class | E | E3 | - | E1 | B |
H | H3 | - | H1 | ||
5-class | E | E3 | E2 | - | B |
H | H3 | H2 | - | ||
3-class | E | E3 | - | E1 | B |
3-class | H | H3 | - | H1 | B |
3-class | E | E3 | E2 | - | B |
3-class | H | H3 | H2 | - | B |
Recognition Approaches | Acc.% | Mean% |
---|---|---|
Trivial | 14.2 | - |
RFc-BL | 19.4 | - |
MNV2 | 22.8 | 21.2 |
MTL-MNV2-loss-function (softmax, softmax) | 20.9 | |
MTL-MNV2-loss-function (softmax, mse) | 19.6 | |
MTL-MNV2-loss-function (softmax, sigmoid) | 21.4 | |
MNV2* | 20.4 | 20.8 |
MTL-MNV2-loss-function (softmax, softmax) | 21.7 | |
MTL-MNV2*-loss-function (softmax, mse) | 19.5 | |
MTL-MNV2*-loss-function (softmax, sigmoid) | 21.5 | |
RFc | 26.4 | - |
CNNs | 27.1 | 24.7 |
MLT-CNNs-loss-function (softmax, softmax) | 26.8 | |
MTL-CNNs-loss-function (softmax, mse) | 22.2 | |
MTL-CNNs-loss-function (softmax, sigmoid) | 22.5 | |
CNNs* | 27.8 | 25.0 |
MTL-CNNs*-loss-function (softmax, softmax) | 27.1 | |
MTL-CNNs*-loss-function (softmax, mse) | 23.7 | |
MTL-CNNs*-loss-function (softmax, sigmoid) | 21.5 |
Recognition Approaches | Acc.% | Mean% | p-Value |
---|---|---|---|
Trivial | 14.2 | - | - |
RFc-BL | 19.8 | - | 0.143 |
MNV2 | 20.8 | 20.6 | 0.842 |
MTL-MNV2-loss-function (softmax, softmax) | 20.6 | 0.645 | |
MTL-MNV2-loss-function (softmax, mse) | 19.6 | 0.133 | |
MTL-MNV2-loss-function (softmax, sigmoid) | 21.4 | 0.636 | |
MNV2* | 20.4 | 20.8 | 0.46 |
MTL-MNV2*-loss-function (softmax, softmax) | 21.5 | 0.456 | |
MTL-MNV2*-loss-function (softmax, mse) | 19.8 | 0.291 | |
MTL-MNV2*-loss-function (softmax, sigmoid) | 21.6 | 0.164 | |
RFc | 26.8 | - | |
CNNs | 27.3 | 24.4 | |
MLT-CNNs-loss-function (softmax, softmax) | 26.7 | ||
MTL-CNNs-loss-function (softmax, mse) | 21.8 | 0.24 | |
MTL-CNNs-loss-function (softmax, sigmoid) | 21.7 | 0.308 | |
CNNs* | 27.8 | 24.8 | |
MTL-CNNs*-loss-function (softmax, softmax) | 26.8 | ||
MTL-CNNs*-loss-function (softmax, mse) | 22.8 | 0.015 | |
MTL-CNNs*-loss-function (softmax, sigmoid) | 21.6 | 0.164 | |
Human | 21.1 | - | - |
Acc.% | B/E2/E3/H2/H3 | B/E1/E3/H1/H3 | Mean |
---|---|---|---|
Trivial | 19.9 | 19.9 | 19.9 |
RFc-BL | 26.6 | 26.8 | 26.7 |
RFc | 37.2 | 37.9 | 37.6 |
CNNs | 37.2 | 37.1 | 37.2 |
CNNs* | 38.0 | 37.4 | 37.7 |
Acc.% | B/ E2/E3 | B/ E1/E3 | B/ H2/H3 | B/ H1/H3 | Mean |
---|---|---|---|---|---|
Trivial | 33.1 | 33.1 | 33.3 | 33.3 | 33.2 |
RFc-BL | 40.5 | 40.2 | 40.1 | 38.1 | 39.7 |
RFc | 50.6 | 51.1 | 51.8 | 48.4 | 51.3 |
CNNs | 51.5 | 52.1 | 51.5 | 48.4 | 50.9 |
CNNs* | 52.0 | 52.0 | 49.9 | 49.0 | 51.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Othman, E.; Werner, P.; Saxen, F.; Al-Hamadi, A.; Gruss, S.; Walter, S. Automatic vs. Human Recognition of Pain Intensity from Facial Expression on the X-ITE Pain Database. Sensors 2021, 21, 3273. https://doi.org/10.3390/s21093273
Othman E, Werner P, Saxen F, Al-Hamadi A, Gruss S, Walter S. Automatic vs. Human Recognition of Pain Intensity from Facial Expression on the X-ITE Pain Database. Sensors. 2021; 21(9):3273. https://doi.org/10.3390/s21093273
Chicago/Turabian StyleOthman, Ehsan, Philipp Werner, Frerk Saxen, Ayoub Al-Hamadi, Sascha Gruss, and Steffen Walter. 2021. "Automatic vs. Human Recognition of Pain Intensity from Facial Expression on the X-ITE Pain Database" Sensors 21, no. 9: 3273. https://doi.org/10.3390/s21093273
APA StyleOthman, E., Werner, P., Saxen, F., Al-Hamadi, A., Gruss, S., & Walter, S. (2021). Automatic vs. Human Recognition of Pain Intensity from Facial Expression on the X-ITE Pain Database. Sensors, 21(9), 3273. https://doi.org/10.3390/s21093273