A Systematic Review of Hardware-Accelerated Compression of Remotely Sensed Hyperspectral Images
Abstract
:1. Introduction
- RQ1: What are the main hardware platforms and HSI datasets used to accelerate and evaluate HSI compression algorithms in remote sensing applications?
- RQ2: What are the different HSI compression algorithms and their classes that are accelerated in hardware?
- RQ3: What are the comparative performance results, obtained thus far, of the hardware-accelerated HSI compression algorithms?
- RQ4: What are some of the other pertinent factors that can impact the onboard implementation and utilization of hardware-accelerated HSI compression algorithms?
- To describe the available hardware-accelerated compression algorithms of remotely sensed hyperspectral images, their implementation platforms, and their datasets;
- To provide a comparative analysis of the collected studies against multiple metrics such as throughput, power requirement, compression ratio, and efficiency;
- To discuss the major factors impacting the efficient development and continued progress in this important area;
- To identify the related research gaps and present recommendations for future research work.
1.1. Related Work
1.2. Platforms for Hyperspectral Instruments
1.3. Overview of Compression Techniques
2. Materials and Methods
2.1. Search Methodology
- IEEE Xplore,
- SpringerLink,
- Elsevier ScienceDirect,
- ACM Digital Library,
- Wiley Online Library,
- Scopus, and
- Web of Science.
2.2. Inclusion and Exclusion Criteria
- Discuss hardware-accelerated compression algorithm(s) of remotely sensed hyperspectral images; and
- Be journal articles or conference papers that are dated from the year 2000 to 15 May 2021.
- The paper does not contain a hardware acceleration;
- The paper addresses data types other than hyperspectral data;
- The paper discusses image processing technique(s) other than compression; or
- The paper is intended for applications other than remote sensing.
2.3. Data Compilation
- When the compression rate is given in bpp or bpppb, the compression ratio is simply calculated by dividing the bit depth of the test image by the compression rate.
- Throughput is converted to Mega Samples per second (MSps) after ascertaining the bit depth of the test image.
- Power requirement is obtained in either Watts (W) or milliWatts (mW). All power values are presented in Watts for comparative analysis.
3. Descriptive Analysis
4. Hardware-Accelerated Compression Algorithms of HSI
4.1. Prediction-Based Algorithms
4.1.1. Fast Lossless
4.1.2. Fast Efficient and Lossless Image Compression System
4.1.3. Edge Detectors
4.1.4. Lossy Compression of ExoMars
4.1.5. Clustered Differential Pulse Code Modulation
4.1.6. Low Complexity Predictive Lossy Compression
4.1.7. Recursive Least Squares
4.1.8. Linear Prediction with Constant Coefficients
4.1.9. Consultative Committee for Space Data Systems Standard
4.2. Transform-Based Algorithms
4.2.1. Set Partitioning in Hierarchical Trees
4.2.2. JPEG2000 and JPEG-LS
4.2.3. Video Encoder
4.2.4. Karhunen-Loéve Transform
4.2.5. Discrete Wavelet Transform
4.2.6. Component Analysis
4.2.7. HyperLCA
4.3. Unmixing-Based Algorithms
4.4. Compressive Sensing Algorithms
4.5. Vector Quantization-Based Algorithms
4.6. Distributed Source Coding-Based Algorithms
4.7. Learning-Based Algorithms
5. Discussion
- In Section 5.1, research question RQ3: What are the comparative performance results, obtained thus far, of the hardware-accelerated HSI compression algorithms?
- In Section 5.2, Section 5.3, Section 5.4, Section 5.5, research question RQ4: What are some of the other pertinent factors that can impact the onboard implementation and utilization of hardware-accelerated HSI compression algorithms?
5.1. Performance Comparison
5.2. The Impact of Imager Type
5.3. The Impact of Scanning Order
5.4. The Impact of Signal-to-Noise Ratio
5.5. Power Considerations
5.6. Current Research Gaps
5.7. Future Recommendations
- More research work needs to be focused on hardware-accelerated compression by means of learning-based and compressive-sensing techniques in order to enrich the state of the art in this area.
- The full potential of hardware-accelerated compression using unmixing algorithms is not fully explored. Unmixing techniques can be further simplified to reduce their complexity. The power of this technique is manifest in the provision of both compression and classification, which is the purpose of obtaining spectral signatures in the first place.
- As space agencies around the world make available a variety of hyperspectral data for the research community, different datasets should be considered in the same study to present results that are unbiased by calibration or scanner type.
- Researchers are encouraged to provide more information regarding the performance of the implemented compression algorithm in terms of a full range of metrics such as compression ratio, throughput, and power requirement. This is in addition to SNR in order to better support decision making in regards to the best tradeoffs needed for further improvements.
- Explore other transform-based techniques for compression of HSI as the current methods are mainly focused on three transforms: DWT, DCT, and KLT.
- The use of Synthetic Radar Aperture (SAR) data types for hyperspectral image compression should be studied further. These data types might be promising in terms of obtaining more efficient compression because the coherence data from SAR images could be employed to detect different levels of changes in the scene. This is due to the fact that SAR’s performance is independent of visibility and available daylight.
- The use of Machine Learning (ML) techniques and models to solve many engineering and scientific problems is increasing at a rapid pace as ML is becoming less domain-specific and more general purpose than ever before [165]. To deliver on the high potential of ML, the design of domain-specific architectures tailored specifically for machine learning is paramount in this regard [166]. Given that ML has become a powerful prediction tool for the analysis and processing of hyperspectral data [167], we recommend exploring these new hardware platforms for the acceleration of HSI compression.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stuart, M.B.; McGonigle, A.J.; Willmott, J.R. Hyperspectral imaging in environmental monitoring: A review of recent developments and technological advances in compact field deployable systems. Sensors 2019, 19, 3071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Tan, Y.; Lu, L.; Bruzzone, L.; Guan, R.; Chang, Z.; Yang, C. Hyperspectral band selection for lithologic discrimination and geological mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 471–486. [Google Scholar] [CrossRef]
- Sudharsan, S.; Hemalatha, R.; Radha, S. A Survey on Hyperspectral Imaging for Mineral Exploration using Machine Learning Algorithms. In Proceedings of the 2019 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), Chennai, India, 21–23 March 2019; pp. 206–212. [Google Scholar]
- Gaurav, S.G. Hyperspectral Imaging: Technologies and Global Markets to 2023. Available online: https://www.bccresearch.com/market-research/instrumentation-and-sensors/hyperspectral-imaging.html (accessed on 15 May 2021).
- Motta, G.; Rizzo, F.; Storer, J.A. Hyperspectral Data Compression; Springer Science & Business Media: New York, NY, USA, 2006. [Google Scholar]
- All Sensors. Available online: https://webapps.itc.utwente.nl/sensor/default.aspx?view=allsensors (accessed on 15 May 2021).
- Velazco, R.; McMorrow, D.; Estela, J. Radiation Effects on Integrated Circuits and Systems for Space Applications; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Arnold, S.S.; Nuzzaci, R.; Gordon-Ross, A. Energy Budgeting for CubeSats with an Integrated FPGA. In Proceedings of the IEEE Aerospace Conference Proceedings, Big Sky, MT, USA, 3–10 March 2012. [Google Scholar]
- Santos, L.; Gómez, A.; Hernández-Fernández, P.; Sarmiento, R. SystemC Modelling of Lossless Compression IP Cores for Space Applications. In Proceedings of the Conference on Design and Architectures for Signal and Image Processing (DASIP), Rennes, France, 12–14 October 2016; pp. 65–72. [Google Scholar]
- Waidyasooriya, H.M.; Hariyama, M.; Uchiyama, K. Design of FPGA-Based Computing Systems with OpenCL; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Liu, D. Embedded DSP Processor Design: Application Specific Instruction Set Processors; Elsevier Science: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Ovtcharov, K.; Ruwase, O.; Kim, J.-Y.; Fowers, J.; Strauss, K.; Chung, E.S. Toward Accelerating Deep Learning at Scale using Specialized Hardware in the Datacenter. In Proceedings of the 2015 IEEE Hot Chips 27 Symposium (HCS), Cupertino, CA, USA, 22–25 August 2015; pp. 1–38. [Google Scholar]
- Dua, Y.; Kumar, V.; Singh, R.S. Comprehensive review of hyperspectral image compression algorithms. Opt. Eng. 2020, 59, 090902. [Google Scholar] [CrossRef]
- Yu, G.; Vladimirova, T.; Sweeting, M.N. Image compression systems on board satellites. Acta Astronaut. 2009, 64, 988–1005. [Google Scholar] [CrossRef]
- Mat Noor, N.R.; Vladimirova, T. Investigation into lossless hyperspectral image compression for satellite remote sensing. Int. J. Remote Sens. 2013, 34, 5072–5104. [Google Scholar] [CrossRef]
- Lambert-Nebout, C.; Moury, G. A Survey of On-Board Image Compression for CNES Space missions. In Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium, IGARSS’99 (Cat. No. 99CH36293), Hamburg, Germany, 28 June–2 July 1999; pp. 2032–2034. [Google Scholar]
- Sanjith, S.; Ganesan, R. A Review on Hyperspectral Image Compression. In Proceedings of the 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kanyakumari, India, 10–11 July 2014; pp. 1159–1163. [Google Scholar]
- Babu, K.S.; Ramachandran, V.; Thyagharajan, K.; Santhosh, G. Hyperspectral image compression algorithms—A review. Artif. Intell. Evol. Algorithms Eng. Syst. 2015, 325, 127–138. [Google Scholar]
- Dusselaar, R.; Paul, M. Hyperspectral image compression approaches: Opportunities, challenges, and future directions: Discussion. JOSA A 2017, 34, 2170–2180. [Google Scholar] [CrossRef]
- Gunasheela, K.; Prasantha, H. Satellite Image Compression-Detailed Survey of the Algorithms. Proceedings of the International Conference on Cognition and Recognition. Springer: Berlin/Heidelberg, Germany, 2016; pp. 187–198. Available online: https://link.springer.com/chapter/10.1007/978-981-10-5146-3_18 (accessed on 15 May 2021).
- Hussain, A.J.; Al-Fayadh, A.; Radi, N. Image compression techniques: A survey in lossless and lossy algorithms. Neurocomputing 2018, 300, 44–69. [Google Scholar] [CrossRef]
- Rusyn, B.; Lutsyk, O.; Lysak, Y.; Lukenyuk, A.; Pohreliuk, L. Lossless Image Compression in the Remote Sensing Applications. In Proceedings of the 2016 IEEE First International Conference on Data Stream Mining & Processing (DSMP), Lviv, Ukraine, 23–27 August 2016; pp. 195–198. [Google Scholar]
- Lopez, S.; Vladimirova, T.; Gonzalez, C.; Resano, J.; Mozos, D.; Plaza, A. The promise of reconfigurable computing for hyperspectral imaging onboard systems: A review and trends. Proc. IEEE 2013, 101, 698–722. [Google Scholar] [CrossRef]
- Kim, J.I.; Chi, J.; Masjedi, A.; Flatt, J.E.; Crawford, M.M.; Habib, A.F.; Lee, J.; Kim, H.C. High-Resolution Hyperspectral Imagery from Pushbroom Scanners on Unmanned Aerial Systems; Wiley Online Library: Hoboken, NJ, USA, 2021. [Google Scholar]
- Varshney, P.K.; Varshney, P.K.; Arora, M.K.; Arora, M.K. Advanced Image Processing Techniques for Remotely Sensed Hyperspectral Data; Springer Science & Business Media: New York, NY, USA, 2004. [Google Scholar]
- Oliveira, M.R.R.d.; Ribeiro, S.G.; Mas, J.-F.; Teixeira, A.d.S. Advances in hyperspectral sensing in agriculture: A review. Rev. Ciência Agronômica 2021, 51, 275–286. [Google Scholar] [CrossRef]
- Tan, S.-Y. Developments in hyperspectral sensing. In Handbook of Satellite Applications; Springer: Cham, Switzerland, 2017; pp. 1137–1157. [Google Scholar] [CrossRef]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef] [Green Version]
- Lodhi, V.; Chakravarty, D.; Mitra, P. Hyperspectral imaging for earth observation: Platforms and instruments. J. Indian Inst. Sci. 2018, 98, 429–443. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, C. Hyperspectral Image Processing; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Qian, S.-E.; Bergeron, M.; Cunningham, I.; Gagnon, L.; Hollinger, A. Near lossless data compression onboard a hyperspectral satellite. IEEE Trans. Aerosp. Electron. Syst. 2006, 42, 851–866. [Google Scholar] [CrossRef]
- Consultative Committee for Space Data Systems (CCSDS). Low-Complexity Lossless and Near-Lossless Multispectral and Hyperspectral Image Compression. Blue Book; Recommended Standard, Issue 2, 2019. Available online: https://public.ccsds.org/Pubs/123x0b2c3.pdf (accessed on 29 June 2021).
- Prasad, S.; Bruce, L.M.; Chanussot, J. Optical Remote Sensing: Advances in Signal Processing and Exploitation Techniques; Springer Science & Business Media: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Zhang, A.; Gourley, D. Creating Digital Collections: A Practical Guide; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Theiler, J.; Leeser, M.; Estlick, M.; Szymanski, J.J. Design issues for hardware implementation of an algorithm for segmenting hyperspectral imagery. Int. Soc. Opt. Eng. 2000, 4132, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Plaza, A.; Chang, C.I.; Plaza, J.; Valencia, D. Commodity cluster and hardware-based massively parallel implementations of hyperspectral imaging algorithms. Int. Soc. Opt. Eng. 2006, 6233, 623316. [Google Scholar]
- Du, Q.; Wei, W.; Ma, B.; Younan, N.H. Hyperspectral image compression and target detection using nonlinear principal component analysis. Int. Soc. Opt. Eng. 2013, 8871, 88710S. [Google Scholar]
- Cook, S.; Harsanyi, J. Onboard Processor for Compressing HSI Data. In Proceedings of the Applied Imagery Pattern Recognition Workshop, Washington, DC, USA, 16–18 October 2002; pp. 200–204. [Google Scholar]
- Valencia, D.; Plaza, A. FPGA-Based Hyperspectral Data Compression using Spectral Unmixing and the Pixel Purity Index Algorithm. In Computational Science—ICCS 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 888–891. [Google Scholar]
- Plaza, A. Towards Real-Time Compression of Hyperspectral Images Using Virtex-II FPGAs. In Euro-Par 2007 Parallel Processing; Springer: Berlin/Heidelberg, Germany, 2007; pp. 248–257. [Google Scholar]
- Plaza, A.; Plaza, J.; Sánchez, S.; Paz, A. Lossy hyperspectral image compression tuned for spectral mixture analysis applications on NVidia graphics processing units. Int. Soc. Opt. Eng. 2009, 7455, 74550F. [Google Scholar]
- Santos, L.; López, S.; Callicó, G.M.; López, J.F.; Sarmiento, R. Lossy hyperspectral image compression with state-of-the-art video encoder. Int. Soc. Opt. Eng. 2011, 8183, 81830G. [Google Scholar]
- Sanchez, S.; Plaza, A. Parallel hyperspectral image compression using iterative error analysis on graphics processing units. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 3474–3477. [Google Scholar]
- Haut, J.M.; Gallardo, J.A.; Paoletti, M.E.; Cavallaro, G.; Plaza, J.; Plaza, A.; Riedel, M. Cloud Deep Networks for Hyperspectral Image Analysis. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9832–9848. [Google Scholar] [CrossRef]
- Ciznicki, M.; Kurowski, K.; Plaza, A. Graphics processing unit implementation of JPEG2000 for hyperspectral image compression. J. Appl. Remote Sens. 2012, 6, 061507. [Google Scholar] [CrossRef]
- Jifara, W.; Jiang, F.; Zhang, B.; Wang, H.; Li, J.; Grigorev, A.; Liu, S. Hyperspectral image compression based on online learning spectral features dictionary. Multimed. Tools Appl. 2017, 76, 25003–25014. [Google Scholar] [CrossRef]
- Diaz, M.; Guerra, R.; Horstrand, P.; Martel, E.; Lopez, S.; Lopez, J.F.; Sarmiento, R. Real-Time Hyperspectral Image Compression onto Embedded GPUS. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2792–2809. [Google Scholar] [CrossRef]
- Barrios, Y.; Rodríguez, A.; Sánchez, A.; Pérez, A.; López, S.; Otero, A.; de la Torre, E.; Sarmiento, R. Lossy hyperspectral image compression on a reconfigurable and fault-tolerant fpga-based adaptive computing platform. Electronics 2020, 9, 1576. [Google Scholar] [CrossRef]
- Caba, J.; Díaz, M.; Barba, J.; Guerra, R.; de la Torre, J.A.; López, S. Fpga-based on-board hyperspectral imaging compression: Benchmarking performance and energy efficiency against gpu implementations. Remote Sens. 2020, 12, 3741. [Google Scholar] [CrossRef]
- Fry, T.W.; Hauck, S. Hyperspectral Image Compression on Reconfigurable Platforms. In Proceedings of the 10th annual IEEE Symposium on Field-Programmable Custom Computing Machines, Napa, CA, USA, 24 April 2002; pp. 251–260. [Google Scholar]
- Woolston, T.L.; Bingham, G.E.; Holt, N.S.; Wada, G. An FPGA-Based Demonstration Hyperspectral Image Compression System. Int. Soc. Opt. Eng. 2008, 6966, 69661J. [Google Scholar]
- Fan, X.; Hu, B.; Li, Z.; Chen, X.; Han, Y. Real-time compression system research based on DMD hadamard transform spectrometer. Procedia Eng. 2010, 7, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Santos, L.; Magli, E.; Vitulli, R.; Núñez, A.; López, J.F.; Sarmiento, R. Lossy hyperspectral image compression on a graphics processing unit: Parallelization strategy and performance evaluation. J. Appl. Remote Sens. 2013, 7, 074599. [Google Scholar] [CrossRef]
- Bernabe, S.; Martin, G.; Nascimento, J.M.P.; Bioucas-Dias, J.M.; Plaza, A.; Silva, V. Parallel Hyperspectral Coded Aperture for Compressive Sensing on GPUs. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 932–944. [Google Scholar] [CrossRef]
- Nascimento, J.M.P.; Martin, G. On the use of Jetson TX1 board for parallel hyperspectral compressive sensing. Int. Soc. Opt. Eng. 2017, 10430, 1043002. [Google Scholar]
- Nascimento, J.M.P.; Martin, G. Hyperspectral compressive sensing on low energy consumption board. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018; pp. 5065–5068. [Google Scholar]
- Nascimento, J.M.P.; V’Estias, M.; Duarte, R. Hyperspectral compressive sensing: A low-power consumption approach. Int. Soc. Opt. Eng. 2018, 10792, 1079202. [Google Scholar]
- Báscones, D.; González, C.; Mozos, D. An Extremely Pipelined FPGA Implementation of a Lossy Hyperspectral Image Compression Algorithm. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7435–7447. [Google Scholar] [CrossRef]
- Nascimento, J.M.P.; Véstias, M. FPGA-Based Architecture for Hyperspectral Compressive Sensing. In Proceedings of the 2021 Telecoms Conference (ConfTELE), Leiria, Portugal, 11–12 February 2021; pp. 1–6. [Google Scholar]
- Ndajah, P.; Kikuchi, H.; Yukawa, M.; Watanabe, H.; Muramatsu, S. An investigation on the quality of denoised images. Int. J. Circuit Syst. Signal Processing 2011, 5, 423–434. [Google Scholar]
- Miguel, A.C.; Askew, A.R.; Chang, A.; Hauck, S.; Ladner, R.E.; Riskin, E.A. Reduced Complexity Wavelet-Based Predictive Coding of Hyperspectral Images for FPGA Implementation. In Proceedings of the Data Compression Conference, Snowbird, UT, USA, 23–25 March 2004; pp. 469–478. [Google Scholar]
- Sánchez, S.; Plaza, A. Real-time lossy compression of hyperspectral images using iterative error analysis on graphics processing units. Int. Soc. Opt. Eng. 2012, 8437, 84370G. [Google Scholar]
- Tsimpouris, E.; Tsakiridis, N.L.; Theocharis, J.B. Using autoencoders to compress soil VNIR–SWIR spectra for more robust prediction of soil properties. Geoderma 2021, 393, 114967. [Google Scholar] [CrossRef]
- Giordano, R.; Guccione, P. ROI-based on-board compression for hyperspectral remote sensing images on GPU. Sensors 2017, 17, 1160. [Google Scholar] [CrossRef] [Green Version]
- Bernabé, S.; Martín, G.; Nascimento, J.M.; Bioucas-Dias, J.M.; Plaza, A.; Silva, V. GPU Implementation of a Hyperspectral Coded Aperture Algorithm for Compressive Sensing. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 521–524. [Google Scholar]
- Bernabé, S.; Martín, G.; Nascimento, J.M.P. Parallel hyperspectral compressive sensing method on GPU. Int. Soc. Opt. Eng. 2015, 9646, 96460P. [Google Scholar]
- Sevilla, J.; Martin, G.; Nascimento, J.; Bioucas-Dias, J. Hyperspectral Image Reconstruction from Random Projections on GPU. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 280–283. [Google Scholar]
- Fernandez, D.; Gonzalez, C.; Mozos, D.; Lopez, S. FPGA implementation of the principal component analysis algorithm for dimensionality reduction of hyperspectral images. J. Real-Time Image Processing 2019, 16, 1395–1406. [Google Scholar] [CrossRef]
- Deng, L.; Sun, J.; Chen, Y.; Lu, H.; Duan, F.; Zhu, L.; Fan, T. M2H-Net: A Reconstruction Method For Hyperspectral Remotely Sensed Imagery. ISPRS J. Photogramm. Remote Sens. 2021, 173, 323–348. [Google Scholar] [CrossRef]
- Simek, V.; Asn, R.R. GPU Acceleration of 2D-DWT Image Compression in MATLAB with CUDA. In Proceedings of the 2008 Second UKSIM European Symposium on Computer Modeling and Simulation, Liverpool, UK, 8–10 September 2008; pp. 274–277. [Google Scholar]
- Banerjee, T.P.; Konar, A.; Chowdhury, J.R. High-speed Communication System Development using FPGA based CAM Implementation. In Proceedings of the 2009 2nd International Conference on Emerging Trends in Engineering and Technology (ICETET 2009), Nagpur, Maharashtra, India, 16–18 December 2009; pp. 352–357. [Google Scholar]
- Sendamarai, P.; Giriprasad, M. FPGA implementation of combined compression & denoising scheme for remote sensing images. In Proceedings of the 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 20–21 May 2016; pp. 401–404. [Google Scholar]
- Du, Q.; Fowler, J.E. Hyperspectral image compression using JPEG2000 and principal component analysis. IEEE Geosci. Remote Sens. Lett. 2007, 4, 201–205. [Google Scholar] [CrossRef]
- Kwan, C.; Larkin, J. New results in perceptually lossless compression of hyperspectral images. J. Signal Inf. Processing 2019, 10, 96. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.C.; Lin, C.H.; Kao, C.H.; Lin, Y.C. DCSN: Deep Compressed Sensing Network for Efficient Hyperspectral Data Transmission of Miniaturized Satellite. IEEE Trans. Geosci. Remote Sens. 2021, 59, 7773–7789. [Google Scholar] [CrossRef]
- Egho, C.; Vladimirova, T. Adaptive Hyperspectral Image Compression using the KLT and Integer KLT Algorithms. In Proceedings of the 2014 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), Leicester, UK, 14–17 July 2014; pp. 112–119. [Google Scholar]
- Orlandic, M.; Fjeldtvedt, J.; Johansen, T.A. A Parallel FPGA Implementation of the CCSDS-123 Compression Algorithm. Remote Sens. 2019, 11, 673. [Google Scholar] [CrossRef] [Green Version]
- Santos, L.; Berrojo, L.; Moreno, J.; Lopez, J.F.; Sarmiento, R. Multispectral and Hyperspectral Lossless Compressor for Space Applications (HyLoC): A Low-Complexity FPGA Implementation of the CCSDS 123 Standard. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 757–770. [Google Scholar] [CrossRef]
- Tsigkanos, A.; Kranitis, N.; Theodorou, G.; Paschalis, A. A 3.3 Gbps CCSDS 123.0-B-1 Multispectral Hyperspectral Image Compression Hardware Accelerator on a Space-Grade SRAM FPGA. IEEE Trans. Emerg. Top. Comput. 2021, 9, 90–103. [Google Scholar] [CrossRef]
- Báscones, D.; González, C.; Mozos, D. Parallel implementation of the CCSDS 1.2. 3 standard for hyperspectral lossless compression. Remote Sens. 2017, 9, 973. [Google Scholar] [CrossRef] [Green Version]
- Penalver, M.; Frate, F.D.; Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. Onboard Payload-Data Dimensionality Reduction. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 783–786. [Google Scholar]
- Xu, R.; Gao, C.; Jiang, J. Study of Multilevel Parallel Algorithm of KPCA for Hyperspectral Images. In Theoretical Computer Science; Springer: Singapore, 2018; pp. 99–115. [Google Scholar]
- Dua, Y.; Kumar, V.; Singh, R.S. Parallel lossless HSI compression based on RLS filter. J. Parallel Distrib. Comput. 2021, 150, 60–68. [Google Scholar] [CrossRef]
- Plaza, A.; Plaza, J.; Paz, A. Improving the scalability of hyperspectral imaging applications on heterogeneous platforms using adaptive run-time data compression. Comput. Geosci. 2010, 36, 1283–1291. [Google Scholar] [CrossRef]
- Plaza, A.J. Clusters versus FPGAs for spectral mixture analysis-based lossy hyperspectral data compression. Int. Soc. Opt. Eng. 2008, 7084, 708402. [Google Scholar]
- Santos, L.; López, J.F.; Sarmiento, R.; Vitulli, R. FPGA Implementation of a Lossy Compression Algorithm for Hyperspectral Images with a High-Level Synthesis Tool. In Proceedings of the 2013 NASA/ESA Conference on Adaptive Hardware and Systems (AHS-2013), Torino, Italy, 24–27 June 2013; pp. 107–114. [Google Scholar]
- Garcia, A.; Santos, L.; Lopez, S.; Marrero, G.; Lopez, J.F.; Sarmiento, R. High level modular implementation of a lossy hyperspectral image compression algorithm on a FPGA. In Proceedings of the 2013 5th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Gainesville, FL, USA, 26–28 June 2013. [Google Scholar] [CrossRef]
- García, A.; Santos, L.; López, S.; Callicó, G.M.; López, J.F.; Sarmiento, R. FPGA implementation of the hyperspectral Lossy Compression for Exomars (LCE) algorithm. Int. Soc. Opt. Eng. 2014, 9247, 924705. [Google Scholar]
- García, A.; Santos, L.; López, S.; Callicó, G.M.; Lopez, J.F.; Sarmiento, R. Efficient lossy compression implementations of hyperspectral images: Tools, hardware platforms, and comparisons. Int. Soc. Opt. Eng. 2014, 9124, 912408. [Google Scholar]
- Barrios, Y.; Sanchez, A.; Santos, L.; Lopez, S.; Lopez, J.F.; Sarmiento, R. Hardware Implementation of the CCSDS 123.0-B-1 Lossless Multispectral and Hyperspectral Image Compression Standard by means of High Level Synthesis Tools. In Proceedings of the 2018 9th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The Netherlands, 23–26 September 2018. [Google Scholar] [CrossRef]
- Yu, G.; Vladimirova, T.; Sweeting, M.N. FPGA-Based on-Board Multi/Hyperspectral Image Compression System. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Cape Town, South Africa, 12–17 July 2009; pp. V212–V215. [Google Scholar]
- Millón, R.; Frati, E.; Rucci, E. A comparative study between HLS and HDL on SoC for image processing applications. arXiv 2020, arXiv:2012.08320. [Google Scholar] [CrossRef]
- Song, H.; Song, Z.; Deng, G.; Ma, Y.; Ma, P. Differential Prediction-Based Lossless Compression with Very Low-Complexity for Hyperspectral Data. In Proceedings of the 2011 IEEE 13th International Conference on Communication Technology, Jinan, China, 25–28 September 2011; pp. 323–327. [Google Scholar]
- Bascones, D.; Gonzalez, C.; Mozos, D. FPGA Implementation of the CCSDS 1.2.3 Standard for Real-Time Hyperspectral Lossless Compression. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1158–1165. [Google Scholar] [CrossRef]
- Santos, L.; Gomez, A.; Sarmiento, R. Implementation of CCSDS Standards for Lossless Multispectral and Hyperspectral Satellite Image Compression. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 1120–1138. [Google Scholar] [CrossRef]
- Barrios, Y.; Sanchez, A.J.; Santos, L.; Sarmiento, R. SHyLoC 2.0: A Versatile Hardware Solution for On-Board Data and Hyperspectral Image Compression on Future Space Missions. IEEE Access 2020, 8, 54269–54287. [Google Scholar] [CrossRef]
- Aranda, L.A.; Sánchez, A.; Garcia-Herrero, F.; Barrios, Y.; Sarmiento, R.; Maestro, J.A. Reliability analysis of the shyloc ccsds123 ip core for lossless hyperspectral image compression using cots FPGAs. Electronics 2020, 9, 1681. [Google Scholar] [CrossRef]
- Abrardo, A.; Barni, M.; Magli, E.; Nencini, F. Error-resilient and low-complexity onboard lossless compression of hyperspectral images by means of distributed source coding. IEEE Trans. Geosci. Remote Sens. 2009, 48, 1892–1904. [Google Scholar] [CrossRef]
- Dai, Y.; Fang, Y.; Yang, L.; Jeon, G. Graphics processing unit-accelerated joint-bitplane belief propagation algorithm in DSC. J. Supercomput. 2016, 72, 2351–2375. [Google Scholar] [CrossRef]
- Qian, S.E. Optical Satellite Data Compression and Implementation; SPIE Press: Washington, DC, USA, 2013. [Google Scholar]
- Aranki, N.; Bakhshi, A.; Keymeulen, D.; Klimesh, M. Fast and Adaptive Lossless On-Board Hyperspectral Data Compression System for Space Applications. In Proceedings of the 2009 IEEE Aerospace conference, Big Sky, MT, USA, 7–14 March 2009; pp. 1–8. [Google Scholar]
- Aranki, N.; Keymeulen, D.; Bakhshi, A.; Klimesh, M. Hardware Implementation of Lossless Adaptive and Scalable Hyperspectral Data Compression for Space. In Proceedings of the 2009 NASA/ESA Conference on Adaptive Hardware and Systems, San Francisco, CA, USA, 29 July–1 August 2009; pp. 315–322. [Google Scholar]
- Keymeulen, D.; Aranki, N.; Hopson, B.; Kiely, A.; Klimesh, M.; Benkrid, K. GPU Lossless Hyperspectral Data Compression System for Space Applications. In Proceedings of the 2012 IEEE Aerospace Conference Proceedings, Big Sky, MT, USA, 3–10 March 2012. [Google Scholar]
- Keymeulen, D.; Aranki, N.; Bakhshi, A.; Luong, H.; Sarture, C.; Dolman, D. Airborne Demonstration of FPGA Implementation of Fast Lossless Hyperspectral Data Compression System. In Proceedings of the 2014 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), Leicester, UK, 14–18 July 2014; pp. 278–284. [Google Scholar]
- Schmidt, A.G.; Walters, J.P.; Zick, K.M.; French, M.; Keymeulen, D.; Aranki, N.; Klimesh, M.; Kiely, A. Applying Radiation Hardening by Software to Fast Lossless Compression Prediction on FPGAs. In Proceedings of the 2012 IEEE Aerospace Conference Proceedings, Big Sky, MT, USA, 3–10 March 2012. [Google Scholar]
- Schmidt, A.G.; French, M. Fast Lossless Image Compression with Radiation Hardening by Hardware/Software Co-Design on Platform FPGAs. In Proceedings of the 2013 IEEE 24th International Conference on Application-Specific Systems, Architectures and Processors, Washington, DC, USA, 5–7 June 2013; pp. 103–106. [Google Scholar]
- Keymeulen, D.; Shin, S.; Riddley, J.; Klimesh, M.; Kiely, A.; Liggett, E.; Sullivan, P.; Bernas, M.; Ghossemi, H.; Flesch, G. High Performance Space Computing with System-on-Chip Instrument Avionics for Space-Based Next Generation Imaging Spectrometers (NGIS). In Proceedings of the 2018 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), Edinburgh, UK, 6–9 August 2018; pp. 33–36. [Google Scholar]
- Hihara, H.; Yoshida, J.; Ishida, J.; Takada, J.; Senda, Y.; Suzuki, M.; Seki, T.; Ichikawa, S.; Ohgi, N. Fast compression implementation for hyperspectral sensor. In Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques, and Applications III; International Society for Optics and Photonics: Bellingham, WA, USA, 2010; Volume 7857, p. 78570C-1-8. [Google Scholar] [CrossRef]
- Nambu, T.; Takada, J.; Kawashima, T.; Hihara, H.; Inada, H.; Suzuki, M.; Seki, T.; Ichikawa, S. Development of onboard fast lossless compressors for multi and hyperspectral sensors. Int. Soc. Opt. Eng. 2012, 8527, 85270W. [Google Scholar]
- Wu, X.; Memon, N. Context-based, adaptive, lossless image coding. IEEE Trans. Commun. 1997, 45, 437–444. [Google Scholar] [CrossRef]
- Weinberger, M.J.; Seroussi, G.; Sapiro, G. The LOCO-I lossless image compression algorithm: Principles and standardization into JPEG-LS. IEEE Trans. Image Processing 2000, 9, 1309–1324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, Y.-T.; Lin, C.-C.; Hung, R.-T. Lossless hyperspectral image compression system-based on HW/SW codesign. IEEE Embed. Syst. Lett. 2010, 3, 20–23. [Google Scholar] [CrossRef]
- Mamatha, A.; Singh, V. Lossless Hyperspectral Image Compression using Intraband and Interband Predictors. In Proceedings of the 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Delhi, India, 24–27 September 2014; pp. 332–337. [Google Scholar]
- Santos, L.; Vitulli, R.; López, J.F.; Sarmiento, R. GPU implementation of a lossy compression algorithm for hyperspectral images. In Proceedings of the 2012 4th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Shanghai, China, 4–7 June 2012. [Google Scholar] [CrossRef]
- Santos, L.; Magli, E.; Vitulli, R.; Lopez, J.F.; Sarmiento, R. Highly-parallel gpu architecture for lossy hyperspectral image compression. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 670–681. [Google Scholar] [CrossRef]
- Wu, J.; Kong, W.; Mielikainen, J.; Huang, B. Lossless compression of hyperspectral imagery via clustered differential pulse code modulation with removal of local spectral outliers. IEEE Signal Processing Lett. 2015, 22, 2194–2198. [Google Scholar] [CrossRef]
- Li, J.; Wu, J.; Jeon, G. GPU Acceleration of Clustered DPCM for Lossless Compression of Hyperspectral Images. IEEE Trans. Ind. Inform. 2020, 16, 2906–2916. [Google Scholar] [CrossRef]
- Li, C. Parallel implementation of the recursive least square for hyperspectral image compression on GPUs. KSII Trans. Internet Inf. Syst. 2017, 11, 3543–3557. [Google Scholar] [CrossRef]
- Mielikainen, J.; Toivanen, P. Lossless compression of ultraspectral sounder data using linear prediction with constant coefficients. IEEE Geosci. Remote Sens. Lett. 2009, 6, 495–498. [Google Scholar] [CrossRef]
- Mielikainen, J.; Honkanen, R.; Toivanen, P.; Huang, B. GPUs for data parallel spectral image compression. In Satellite Data Compression, Communication, and Processing V; SPIE: San Francisco, CA, USA, 2009. [Google Scholar]
- Hopson, B.; Benkrid, K.; Keymeulen, D.; Aranki, N. Real-Time CCSDS Lossless Adaptive Hyperspectral Image Compression on Parallel GPGPU & Multicore Processor Systems. In Proceedings of the 2012 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), Nuremberg, Germany, 25–28 June 2012; pp. 107–114. [Google Scholar]
- De Nino, M.; Capuano, G.; Romano, M.; Magli, E. Lossy Multi/Hyperspectral Compression hw Implementation at High Data Rate. In Proceedings of the 2014 International Astronautical Congress (IAC), Toronto, ON, Canada, 29 September–3 October 2014; pp. 2579–2584. [Google Scholar]
- Lopez, G.; Napoli, E.; Strollo, A.G.M. FPGA Implementation of the CCSDS-123.0-B-1 Lossless Hyperspectral Image Compression Algorithm Prediction Stage. In Proceedings of the 2015 IEEE 6th Latin American Symposium on Circuits and Systems, LASCAS 2015—Conference Proceedings, Montevideo, Uruguay, 24–27 February 2015. [Google Scholar]
- Davidson, R.; Bridges, C. GPU Accelerated Multispectral EO Imagery Optimised CCSDS-123 Lossless Compression Implementation. In Proceedings of the 2017 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2017; pp. 1–12. [Google Scholar]
- Davidson, R.L.; Bridges, C.P. Error resilient GPU accelerated image processing for space applications. IEEE Trans. Parallel Distrib. Syst. 2018, 29, 1990–2003. [Google Scholar] [CrossRef]
- Pereira, L.M.V.; Santos, D.A.; Zeferino, C.A.; Melo, D.R. A Low-Cost Hardware Accelerator for CCSDS 123 Predictor in FPGA. In Proceedings of the 2019 IEEE International Symposium on Circuits and Systems, Sapporo, Japan, 26–29 May 2019. [Google Scholar]
- Digital Embedded Systems @ CEI-UPM: ARTICo3. Available online: https://des-cei.github.io/tools/artico3 (accessed on 15 October 2021).
- Rodriguez, A.; Santos, L.; Sarmiento, R.; Torre, E.D.L. Scalable hardware-based on-board processing for run-time adaptive lossless hyperspectral compression. IEEE Access 2019, 7, 10644–10652. [Google Scholar] [CrossRef]
- Ferraz, O.; Silva, V.; Falcao, G. 1.5GBIT/S 4.9W Hyperspectral Image Encoders on a Low-Power Parallel Heterogeneous Processing Platform. In Proceedings of the 2020 ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 4 May 2020; pp. 1693–1697. [Google Scholar]
- Ferraz, O.; Falcao, G.; Silva, V. Gbit/s throughput under 6.3-W lossless hyperspectral image compression on parallel embedded devices. IEEE Embed. Syst. Lett. 2021, 13, 13–16. [Google Scholar] [CrossRef]
- Ferraz, O.; Silva, V.; Falcao, G. Hyperspectral parallel image compression on edge gpus. Remote Sens. 2021, 13, 1077. [Google Scholar] [CrossRef]
- Fjeldtvedt, J.; Orlandic, M.; Johansen, T.A. An efficient real-time FPGA implementation of the CCSDS-123 compression standard for hyperspectral images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3841–3852. [Google Scholar] [CrossRef] [Green Version]
- Tsigkanos, A.; Kranitis, N.; Theodoropoulos, D.; Paschalis, A. High-Performance COTS FPGA SoC for Parallel Hyperspectral Image Compression with CCSDS-123.0-B-1. IEEE Trans. Very Large Scale Integr. Syst. 2020, 28, 2397–2409. [Google Scholar] [CrossRef]
- Jain, R.; Sharma, S.; Aggarwal, K.; Goyal, T.; Sundhar, A.; Anand, U.; Sahu, N.; Parikh, J. Modes of operation for a 3U CubeSat with hyperspectral imaging payload. In Proceedings of the 2018 the International Astronautical Congress (IAC), Bremen, Germany, 1–5 October 2018. [Google Scholar]
- Prasad, A.; Jain, Y.; Joshi, N.; Gupta, N.; Singhania, V.; Sreedharan, Y. Interfacing Architecture between Telemetry and On-Board Computer for a Nanosatellite. In Proceedings of the 2020 IEEE Aerospace Conference Proceedings, Big Sky, MT, USA, 7–14 March 2020. [Google Scholar]
- Zhang, L.; Liu, T.; Zhang, K. Design and Implementation of Lossless Compression System for CCSDS Hyperspectral Images. J. Phys. Conf. Ser. 2021, 1748, 042021. [Google Scholar] [CrossRef]
- Fang, Q.; Liu, Y.; Zhang, L. Design and implementation of a lossless compression system for hyperspectral images. Traitement Du Signal 2020, 37, 745–752. [Google Scholar] [CrossRef]
- Wu, J.; Li, W.; Kong, W. GPU-based parallel clustered differential pulse code modulation. Int. Soc. Opt. Eng. 2015, 9646, 96460R. [Google Scholar]
- Cook, S.; Harsanyi, J.C.; Faber, V. Evaluation of algorithms for compressing hyperspectral data. In Sensors, Systems, and Next-Generation Satellites VII; SPIE: Barcelona, Spain, 2004; pp. 712–717. [Google Scholar]
- Báscones, D.; González, C.; Mozos, D. An FPGA Accelerator for Real-Time Lossy Compression of Hyperspectral Images. Remote Sens. 2020, 12, 2563. [Google Scholar] [CrossRef]
- Duan, H.; Fang, Y.; Huang, B.M. Parallel design of JPEG-LS encoder on graphics processing units. J. Appl. Remote Sens. 2012, 6, 061508. [Google Scholar] [CrossRef]
- Egho, C.; Vladimirova, T. Hardware Acceleration of the Integer Karhunen-Loève Transform Algorithm for Satellite Image Compression. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 4062–4065. [Google Scholar]
- Santos, L.; Blanes, I.; García, A.; Serra-Sagristà, J.; López, J.; Sarmiento, R. On the hardware implementation of the arithmetic elements of the pairwise orthogonal transform. J. Appl. Remote Sens. 2015, 9, 097496. [Google Scholar] [CrossRef] [Green Version]
- Fang, M.Q.; Fang, J.B.; Zhang, W.M. Efficient and portable parallel framework for hyperspectral image dimensionality reduction on heterogeneous platforms. J. Appl. Remote Sens. 2017, 11, 015022. [Google Scholar] [CrossRef]
- Guerra, R.; Barrios, Y.; Diaz, M.; Baez, A.; Lopez, S.; Sarmiento, R. A Hardware-friendly hyperspectral lossy compressor for next-generation space-grade field programmable gate arrays. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4813–4828. [Google Scholar] [CrossRef]
- Guerra, R.; Barrios, Y.; Díaz, M.; Santos, L.; López, S.; Sarmiento, R. A new algorithm for the on-board compression of hyperspectral images. Remote Sens. 2018, 10, 428. [Google Scholar] [CrossRef] [Green Version]
- Ciżnicki, M.; Kierzynka, M.; Kopta, P.; Kurowski, K.; Gepner, P. Benchmarking Data and Compute Intensive Applications on Modern CPU and GPU Architectures. Procedia Comput. Sci. 2012, 9, 1900–1909. [Google Scholar] [CrossRef] [Green Version]
- Ciżnicki, M.; Kierzynka, M.; Kopta, P.; Kurowski, K.; Gepner, P. Benchmarking JPEG 2000 implementations on modern CPU and GPU architectures. J. Comput. Sci. 2014, 5, 90–98. [Google Scholar] [CrossRef]
- Nascimento, J.M.P.; Vestias, M.P.; Martin, G. Hyperspectral Compressive Sensing with a System-On-Chip FPGA. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3701–3710. [Google Scholar] [CrossRef]
- Patel, V.M.; Chellappa, R. Sparse Representations and Compressive Sensing for Imaging and Vision; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Martin, G.; Bioucas-Dias, J.M.; Plaza, A. Hyperspectral coded Aperture (HYCA): A New Technique for Hyperspectral Compressive Sensing. In Proceedings of the 21st European Signal Processing Conference (EUSIPCO 2013), Marrakech, Morocco, 9–13 September 2013; pp. 1–5. [Google Scholar]
- Dragotti, P.L.; Gastpar, M. Distributed Source Coding: Theory, Algorithms and Applications; Elsevier Science: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Cheung, N.-M.; Ortega, A. Distributed compression of hyperspectral imagery. In Distributed Source Coding: Theory, Algorithms and Applications; Academic Press: Cambridge, MA, USA, 2009; pp. 269–292. [Google Scholar]
- Deng, C.; Cen, Y.; Zhang, L. Learning-Based Hyperspectral Imagery Compression through Generative Neural Networks. Remote Sens. 2020, 12, 3657. [Google Scholar] [CrossRef]
- Aeronautics, U.S.N. The Earth Observer; EOS Project Science Office, NASA/Goddard Space Flight Center: Greenbelt, MD, USA, 2013.
- Chen, H.S. Remote Sensing Calibration Systems: An Introduction; A Deepak Pub: Hampton, VA, USA, 1997. [Google Scholar]
- Zikiou, N.; Lahdir, M.; Helbert, D. Support vector regression-based 3D-wavelet texture learning for hyperspectral image compression. Vis. Comput. 2020, 36, 1473–1490. [Google Scholar] [CrossRef] [Green Version]
- Kulu, E. NanoSats Database. Available online: https://www.nanosats.eu (accessed on 29 June 2021).
- AAC Clyde Space. Available online: https://www.aac-clyde.space/ (accessed on 15 October 2021).
- Nvidia. Graphics Cards. Available online: https://www.nvidia.com (accessed on 29 June 2021).
- Nervold, A.K.; Berk, J.; Straub, J.; Whalen, D. A pathway to small satellite market growth. Adv. Aerosp. Sci. Technol. 2016, 1, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Manthey, K.; Krutz, D.; Juurlink, B. Reconfigurable architecture for real-time image compression on-board satellites. J. Appl. Remote Sens. 2015, 9, 097497. [Google Scholar] [CrossRef] [Green Version]
- Dean, J.; Patterson, D.; Young, C. A new golden age in computer architecture: Empowering the machine-learning revolution. IEEE Micro 2018, 38, 21–29. [Google Scholar] [CrossRef]
- Hennessy, J.L.; Patterson, D.A. Computer Architecture: A Quantitative Approach; Elsevier Science: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Gewali, U.B.; Monteiro, S.T.; Saber, E. Machine learning based hyperspectral image analysis: A survey. arXiv 2018, arXiv:1802.08701. [Google Scholar]
Authors, Year | Area of Interest |
---|---|
(Lambert-Nebout and Moury, 1999) | Lossy compression algorithms used onboard CNES missions. |
(Yu, Vladimirova et al., 2009) | Lossless and lossy image compression systems onboard space missions with a focus on multispectral images. |
(Mat Noor and Vladimirova, 2013) | Lossless compression techniques of HSI onboard spaceborne hyperspectral missions. |
(Lopez, Vladimirova et al., 2013) | FPGA-based HSI compression and linear unmixing techniques in remote sensing applications. |
(Sanjith and Ganesan, 2014) | A short review on HSI compression algorithms covering lossless, lossy, and near-lossless algorithms. |
(Babu, Ramachandran et al., 2015) | Statistical and wavelet-based compression algorithms of hyperspectral images. |
(Rusyn, Lutsyk et al., 2016) | FPGA-based lossless image compression techniques in remote sensing applications. |
(Dusselaar and Paul, 2017) | Intra-band and inter-band compression of hyperspectral images at the algorithm level. |
(Gunasheela and Prasantha, 2018) | Multispectral and hyperspectral image compression algorithms onboard satellites. |
(Hussain, Al-Fayadh et al., 2018) | Lossless and lossy compression algorithms with the focus on medical images. |
(Dua, Kumar et al., 2020) | Classification of HSI compression algorithms according to multiple parameters. |
Excluded Studies | Reason for Exclusion |
---|---|
[71] | The paper addresses only the image reconstruction phase of compressive sensing. |
[72] | The described application is not related to remote sensing (medical imaging). |
[73] | The algorithm is intended for large video data, e.g., high-definition television (HDTV), and is not validated using hyperspectral data. |
[74] | The compression technique is validated using a gray-scale image. |
[75] | The compression algorithm is not accelerated using one of the defined hardware platforms. |
[76] | The compression algorithm is not accelerated using one of the defined hardware platforms. |
[77] | The paper was published after the cutoff deadline required for inclusion in this review. |
Compression Algorithm | Hardware Platform | Programming Method | Ref. |
---|---|---|---|
Fast Lossless (adaptive filtering-Rice code) | Xilinx Virtex-IV LX160 FPGA | - | [103] |
VS-3DGAP-ExtRice (CCSDS based) | Xilinx Virtex-5 FPGA | Matlab-AccelDSP | [93] |
Fast Lossless (adaptive filtering-Rice code) | Xilinx Virtex-IV LX25 FPGA | - | [104] |
LP-CC | Nvidia GeForce 9600 GT GPU | CUDA | [122] |
FELICS based- Improved Prediction-Simplified Rice | FPGA-embedded CPU | - | [110] |
Median prediction-LUTs-Adaptive Arithmetic Coding | Xilinx Spartan3 XC3S4000 FPGA-ARM926EJ-S processor | - | [114] |
(MED-GAP)-Huffman Coding | Xilinx SPARTAN-3E FPGA | Verilog | [95] |
FELICS based- Improved Prediction-Simplified Rice | Radiation tolerant FPGA | - | [111] |
LCE | Nvidia Tesla C2075 GPU | CUDA | [116] |
Fast Lossless-Adaptive Linear Prediction | Nvidia GeForce GTX 580 GPU | CUDA | [105] |
CCSDS Lossless | Nvidia GeForce 560M GTX GPU | OpenMP | [123] |
RHBSW (FL-based) | Xilinx Virtex-4 FX60 FPGA ×2 | - | [107] |
LCE | Nvidia Tesla C2075-GeForce GTX 480 GPUs | CUDA | [55] |
RHBSW (FL-based) | Xilinx Virtex-4 FX60 FPGA | - | [108] |
Adaptive predictive-LCE | Xilinx Virtex-5 5VFX130 FPGA | CatapultC HLS tool | [88] |
Adaptive predictive-LCE | Xilinx Virtex-5 FPGA | CatapultC HLS tool | [89] |
Adaptive predictive-LCE | Nvidia Tesla C2075 GPU | CUDA | [117] |
Fast Lossless-Adaptive Linear Prediction | Xilinx Virtex-V-VI FPGA | Verilog | [106] |
LCE | Microsemi RTAX2000 FPGA | CatapultC HLS tool | [90] |
Inter-band and Intra-band Prediction based | Xilinx Virtex-5 Pro FPGA | Verilog | [115] |
LCE | Xilinx Virtex-5 FPGA/Actel RTAX2000S | CatapultC HLS tool | [91] |
Extended CCSDS 123 | Xilinx Virtex-5 XQR5VFX130 FPGA | - | [124] |
CCSDS-123.0-B-1 | Xilinx Virtex-5QV FX130T FPGA | - | [125] |
C-DPCM | Nvidia Tesla K20C GPU | CUDA | [140] |
CCSDS 123 based (HyLoc) | Microsemi RTAX- Xilinx Virtex-4,5 FPGAs | VHDL | [80] |
SHyLoc (CCSDS 123 and 121) | FPGA 1 | SystemC | [10] |
CCSDS123 | Nvidia GeForce GTX 750 Ti GPU | CUDA | [126] |
CCSDS 123 | Xilinx Virtex-4,5,7 FPGAs-Nvidia GT 440, 610 GPUs | VHDL | [82] |
Optimized RLS | Nvidia Kepler GTX 690 GPU | CUDA | [120] |
CCSDS 123 | Xilinx Virtex-4,7 FPGA | VHDL | [96] |
CCSDS123 | SoC FPGA ARM Cortex-A9 MPCore | - | [136] |
CCSDS 123 | Xilinx Zynq-7020 SoC | VHDL | [134] |
CCSDS 123 | Nvidia GeForce GTX 750 Ti GPU-Jetson TX1 board | CUDA | [127] |
CCSDS 123 | Xilinx Zynq-7000 SoC | Vivado HLS-Catapult C | [92] |
FLEX | Xilinx Zynq Z7045Q SoC | - | [109] |
CCSDS 123 | Xilinx Zynq-7000 SoC | VHDL | [128] |
CCSDS 123 | Xilinx Zynq-7035 SoC | VHDL | [79] |
CCSDS 123 | Xilinx Zynq-7000 SoC | VHDL | [130] |
Clustered DPCM-Prediction based | Nvidia GeForce GTX 1080Ti-TITAN X GPU | CUDA | [119] |
CCSDS 123 | Nvidia Jetson TX2 board | CUDA | [131] |
LCPLC | Xilinx Virtex-7 FPGA | VHDL and Verilog | [60] |
CCSDS 123 | Xilinx Zynq-7045 SoC | HDL | [135] |
SHyLoc (CCSDS 123-CCSDS 121) | Xilinx Virtex-5 FX 130T FPGA, Microsemi RTG4 | VHDL | [97] |
CCSDS 123-bit rate control stage | Xilinx Zynq UltraScale+ FPGA-based MPSoC | VHDL | [50] |
SHyLoc | Xilinx Virtex XQR5VFX130 FPGA | VHDL | [98] |
CCSDS | Xilinx Kintex-7 FPGA | Verilog | [139] |
CCSDS123 | Xilinx Zynq-7000 SoC | Verilog | [137] |
SHyLoc | Xilinx Zynq-7000 SoC | VHDL | [99] |
CCSDS123 | Nvidia Jetson (Nano-TX2-Xavier) GPU | CUDA | [133] |
CCSDS123 | Xilinx Kintex-7 FPGA | - | [138] |
RLS | PARAM-SHIVAY supercomputer | Python | [85] |
CCSDS123 | Nvidia Jetson TX2 board | CUDA | [132] |
CCSDS 123 | Xilinx Virtex-5QV FPGA | VHDL | [81] |
Compression Algorithm | Hardware Platform | Programming Method | Ref. |
---|---|---|---|
Fixed-Order SPIHT | Xilinx Virtex 2000E FPGAs ×3 | VHDL | [52] |
Anomaly detection-wavelet-based transform | DSP-Xilinx XCV1000-XCV300 FPGAs | - | [40] |
Anomaly detection-JPEG2000 | DSP-Xilinx XCV1000-XCV300 FPGAs | - | [141] |
Linear prediction-SPIHT | (FPGA 1) ×2 | - | [63] |
Wavelet-JPEG2000 | Xilinx Virtex-4-Xilinx Virtex-II FPGAs | - | [53] |
JPEG2000 | Xilinx FPGA-ADV212 | - | [54] |
MPEG-4 | H.264/AVC encoder | - | [44] |
JPEG2000 (Integer DWT, No quantization) | Nvidia GeForce GTX 480 GPU | CUDA | [47] |
Integer KLT | Actel SoC (ARM Cortex M-3-flash-based FPGA) | - | [144] |
KLT-JPEG2000 | Nvidia GeForce GTX580 GPU | CUDA | [149] |
JPEG-LS | Nvidia GTX480 GPU | CUDA | [143] |
KLT | Intel Cyclone IV FPGA-ARM Cortex M-3 Processor | HDL | [78] |
KLT-JPEG2000 | Nvidia GeForce GTX580 GPU | CUDA | [150] |
POT | Microsemi RTAX2000S-DSP FPGA | - | [145] |
FastICA | (8-core Intel Xeon E5-2650 CPUs-Nvidia Tesla K20c GPUs) ×2 | CUDA/OpenMPI | [146] |
K-means-PCA-DWT-USDZQ-AC | Nvidia GeForce GTX 750 Ti GPU | CUDA | [66] |
KPCA | Nvidia Tesla K20c GPU ×2-Intel Xeon CPU E5-2670 GPU | CUDA | [84] |
PCA | Xilinx Virtex-7 XC7VFX690T FPGA | VHDL | [70] |
HyperLCA | Nvidia Jetson TK1 GPU | CUDA | [49] |
JYPEC (PCA-JPEG2000) | Xilinx Virtex-7 XC7VX690T FPGA | VHDL | [142] |
HyperLCA | Xilinx Zynq-7000 SoC | VHDL-HLS | [51] |
Compression Algorithm | Hardware Platform | Programming Method | Ref. |
---|---|---|---|
P-PPI-P-LSU | Xilinx Virtex-II XC2V6000-6 FPGA | Handel-C | [41] |
P-PPI-P-LSU | Xilinx Virtex-II XC2V6000-6 FPGA | Handel-C | [38] |
PPI-LSU | Xilinx Virtex-II XC2V6000-6 FPGA | Handel-C | [42] |
PPI-Spectral Unmixing | Xilinx Virtex-II XC2V6000-6 FPGA | Handel-C | [87] |
PPI or AMEE-FCLSU | Nvidia GeForce 8800 GTX GPU | CUDA | [43] |
DWT-Spectral Unmixing | (Heterogeneous Workstations) ×16 | C++ | [86] |
IEA | Nvidia GeForce GTX 580 GPU | CUDA | [64] |
IEA | Nvidia GeForce GTX 580 GPU | CUDA | [45] |
Compression Algorithm | Hardware Platform | Programming Method | Ref. |
---|---|---|---|
P-HYCA | Nvidia GeForce GTX 590-GeForce GTX TITAN GPUs | CUDA | [67] |
P-HYCA | Nvidia GeForce GTX 590-GeForce GTX TITAN GPUs | CUDA | [68] |
P-HYCA-P-HYCA-FAST-P-CHYCA-P-CHYCA-FAST | Nvidia GeForce GTX 590-GeForce GTX TITAN GPUs | CUDA | [56] |
SpeCA | Intel i7-4790 CPU-Nvidia GeForce GTX 980 GPU | CUDA | [69] |
P-HYCA | Nvidia Jetson TX1 GPU board | CUDA | [57] |
P-HYCA | Nvidia Jetson TX1 GPU board | CUDA | [58] |
P-HYCA | Nvidia Jetson TX2 GPU board | CUDA | [59] |
HYCA | Xilinx Zynq-7020 SoC | VHDL | [151] |
HYCA | Zynq Zedboard with a XC7Z020 SoC FPGA | VHDL | [61] |
Compression Algorithm | Hardware Platform | Programming Method | Ref. |
---|---|---|---|
K-means clustering | FPGA 1 | - | [37] |
SAMVQ and HSOCVQ | Xilinx Virtex-II FPGA | - | [32] |
Compression Algorithm | Hardware Platform | Programming Method | Ref. |
---|---|---|---|
Scaler Coset Codes | Xilinx Virtex-4 FPGA | VHDL | [100] |
LDPC-JBBP | Nvidia GTX480 GPU | - | [101] |
Compression Algorithm | Hardware Platform | Programming Method | Ref. |
---|---|---|---|
AANN-NLPCA | Intel Sandy Bridge GPU | - | [39] |
Graph theory-based clustering-Online learning dictionary | Nvidia GPU 1 | - | [48] |
Neural Network | Nvidia GeForce GTX 650 Ti GPU-Intel Core-i7-870 CPU | Python | [83] |
Autoencoder | JetStream Cloud Services | Openstack | [46] |
GNN | Nvidia GTX 1060 GPU | - | [156] |
Autoencoder | Nvidia GTX 970 GPU | - | [65] |
Compression Algorithm | Algorithm Class | CR | Throughput (MSps) | Power (Watts) | Efficiency (MSps/W) | Hardware Platform | Programming Method | Scanning Order | Ref. |
---|---|---|---|---|---|---|---|---|---|
Linear prediction-SPIHT | Transform-based (Lossy) | 40 | - | - | - | (FPGA) ×2 | - | - | [63] |
P-PPI-P-LSU | Unmixing-based (Lossy) | 80 | - | - | - | Xilinx Virtex-II XC2V6000-6 FPGA | Handel-C | - | [41] |
SAMVQ and HSOCVQ | VQ-based (Near-Lossless) | 20 | 38 | - | - | Xilinx Vertext-II FPGA | - | - | [32] |
P-PPI-P-LSU | Unmixing-based (Lossy) | - | - | - | Xilinx Virtex-II XC2V6000-6 FPGA | Handel-C | - | [38] | |
PPI-LSU | Unmixing-based (Lossy) | 80 | - | - | - | Xilinx Virtex-II XC2V6000-6 FPGA | Handel-C | - | [42] |
Scaler Coset Codes | DSC-based (Lossless) | 2.9 | 80 | - | - | Xilinx Virtex-4 FPGA | VHDL | BSQ | [100] |
VS-3DGAP-ExtRice (CCSDS based) | Prediction-based (Lossless) | 2.8 | 210 | 0.573 | 366.5 | Xilinx Virtex-5 FPGA | Matlab-AccelDSP | - | [93] |
Median prediction-LUTs-Adaptive Arithmetic Coding | Prediction-based (Lossless) | 3.74 | 16.5 | - | - | Xilinx Spartan3 XC3S4000 FPGA-ARM926EJ-S processor | - | - | [114] |
MPEG-4 | Transform-based (Lossy) | 16 | - | - | - | H.264/AVC encoder | - | - | [44] |
FELICS based-Improved Prediction-Simplified Rice | Prediction-based (Lossless) | 1.7–2.7 | 30 | - | - | Radiation tolerant FPGA | - | - | [111] |
JPEG2000 (Integer DWT, No quantization), JPEG2000 | Transform-based (Lossless, Lossy) | 2–13 | - | 250 | - | Nvidia GeForce GTX 480 GPU | CUDA | - | [47] |
Integer KLT | Transform-based (Lossless) | - | - | 0.25 | - | Actel SoC (ARM Cortex M-3 microcontroller-flash-based FPGA) | - | - | [144] |
IEA–Unmixing | Unmixing-based (Lossy) | 9.89 | - | 244 | - | Nvidia GeForce GTX 580 GPU | CUDA | - | [45] |
KLT-JPEG2000 | Transform-based (Lossy) | - | - | 224 | - | Nvidia GeForce GTX580 GPU | CUDA | - | [149] |
JPEG-LS | Transform-based (Lossless) | 2.2 | - | 250 | - | Nvidia GTX480 GPU | CUDA | - | [143] |
IEA | Unmixing-based (Lossy) | 9.89 | - | 244 | - | Nvidia GeForce GTX 580 GPU | CUDA | - | [64] |
KLT-Integer KLT | Transform-based (Lossless, Lossy) | - | - | 2–1.3 | - | Intel Cyclone IV FPGA, ARM Cortex M-3 Processor | HDL | - | [78] |
KLT-JPEG2000 | Transform-based (Lossy) | - | - | 224 | - | Nvidia GeForce GTX580 GPU | CUDA | - | [150] |
P-HYCA | CS-based (Lossy) | 37.6 | - | 365–250 | - | Nvidia GeForce GTX 590-GeForce GTX TITAN GPUs | CUDA | - | [67] |
P-HYCA | CS-based (Lossy) | 37.6–14.93 | - | 365–250 | - | Nvidia GeForce GTX 590-GeForce GTX TITAN GPUs | CUDA | - | [68] |
P-HYCA-P-HYCA-FAST-P-CHYCA-P-CHYCA-FAST | CS-based (Lossy) | 44.8–14.93–37.6 | - | 365–250 | - | Nvidia GeForce GTX 590-GeForce GTX TITAN GPUs | CUDA | - | [56] |
Prediction-based | CCSDS 123 (Lossless) | - | 179.7 | 3.04 | 59.1 | Xilinx V-5QV FX130T FPGA | VHDL | BIP | [82] |
Prediction-based | CCSDS 123 (Lossless) | - | 116.0 | 0.95 | 122.1 | Xilinx V-4 XC2VFX60 FPGA | VHDL | BIP | [82] |
Prediction-based | CCSDS 123 (Lossless) | - | 219.4 | 5.30 | 41.4 | Xilinx V-7 XC7VX690T FPGA | VHDL | BIP | [82] |
Prediction-based | CCSDS 123 (Lossless) | - | 62.2 | 65 | 0.96 | Nvidia GT 440 GPU | OpenCL | BIP | [82] |
Prediction-based | CCSDS 123 (Lossless) | - | 62.6 | 29 | 2.2 | Nvidia GT 610 GPU | OpenCL | BIP | [82] |
Graph theory-based clustering-Online learning dictionary | Learning-based (Lossy) | 5.3 | - | - | - | Nvidia GPU | - | - | [48] |
Prediction-based | CCSDS 123 (Lossless) | 2.5 | 23.3 | 0.55 | 42.4 | Xilinx Virtex-4 FPGA | VHDL | All | [96] |
Prediction-based | CCSDS 123 (Lossless) | 2.5 | 47.6 | - | - | Xilinx Virtex-7 FPGA | VHDL | All | [96] |
PCA | Transform-based (Lossy) | - | - | - | - | Xilinx Virtex-7 XC7VFX690T FPGA | VHDL | - | [70] |
JYPEC (PCA-JPEG2000) | Transform-based (Lossy) | - | 23.75 | - | - | Xilinx Virtex-7 XC7VX690T FPGA | VHDL | - | [142] |
HYCA | CS-based (Lossy) | - | - | 3.66 | - | Zynq Zedboard with a XC7Z020 SoC FPGA | VHDL | BIL | [61] |
Compression Algorithm | Algorithm Class | CR | Throughput (MSps) | Power (Watts) | Efficiency (MSps/W) | Hardware Platform | Programming Method | Scanning Order | Ref. |
---|---|---|---|---|---|---|---|---|---|
CCSDS123 | Prediction-based (Lossless) | 3.4 | 3.5 | 0.169 | 20.7 | Microsemi RTAX FPGA | VHDL | BSQ | [80] |
CCSDS123 | Prediction-based (Lossless) | 3.4 | 11.3 | 2.345 | 4.8 | Xilinx Virtex-4 FPGA | VHDL | BSQ | [80] |
CCSDS123 | Prediction-based (Lossless) | 3.4 | 11.2 | 2.345 | 4.8 | Xilinx Virtex-5 FPGA | VHDL | BSQ | [80] |
Optimized RLS | Prediction-based (Lossless) | 4.7 | - | - | - | Nvidia Kepler GTX 690 GPU | CUDA | - | [120] |
CCSDS123 | Prediction-based (Lossless) | - | 20.4 | - | - | Xilinx Zynq-7000 SoC | VHDL | BIP | [128] |
CCSDS123 | Prediction-based (Lossless) | 3.2–4 | 165.65 | 2.6 | 63.7 | Xilinx Zynq-7000 SoC | VHDL | BSQ | [130] |
Clustered DPCM-Prediction based | Prediction-based (Lossless) | 4.8 | 280 | 650 | 0.4 | Nvidia TITAN X GPU | CUDA | - | [119] |
CCSDS 123 | Prediction-based (Lossless) | 1.5–5.5 | - | - | - | Nvidia Jetson TX2 board | CUDA | - | [131] |
LCPLC | Prediction-based (Lossy) | 4.3 | 162 | 0.7 | 231.4 | Xilinx Virtex-7 FPGA | VHDL and Verilog | BSQ | [60] |
LCPLC | Prediction-based (Lossy) | 4.3 | 119.96 | 2.73 | 43.9 | Xilinx Virtex-5 FPGA | VHDL and Verilog | BSQ | [60] |
HYCA | CS-based (Lossy) | 8 | 391 | 2.6 | 150.4 | Xilinx Zynq-7020 SoC | VHDL | BIL | [151] |
CCSDS123 | Prediction-based (Lossless) | - | 45 | 5.7 | 7.9 | Nvidia GPU Jetson (Nano) | CUDA | BSQ | [133] |
CCSDS123 | Prediction-based (Lossless) | - | 146.9 | 6.28 | 23.4 | Nvidia GPU Jetson (TX2) | CUDA | BSQ | [133] |
CCSDS123 | Prediction-based (Lossless) | - | 308.13 | 10.9 | 28.3 | Nvidia GPU Jetson (Xavier) | CUDA | BSQ | [133] |
RLS | Prediction-based (Lossless) | - | - | - | - | PARAM-SHIVAY supercomputer | Python | BIL | [85] |
CCSDS123 | Prediction-based (Lossless) | - | 69.8 | 4.56 | 15.3 | Nvidia Jetson TX2 board | CUDA | - | [132] |
Compression Algorithm | Algorithm Class | CR | Throughput (MSps) | Power (Watts) | Efficiency (MSps/W) | Hardware Platform | Programming Method | Scanning Order | Ref. |
---|---|---|---|---|---|---|---|---|---|
Linear prediction-SPIHT | Transform-based (Lossy) | 40 | - | - | - | (FPGA) ×2 | - | - | [63] |
P-PPI-P-LSU-Predictive coding spatially-Huffman | Unmixing-based (Lossy) | 80 | - | - | - | Xilinx Virtex-II XC2V6000-6 FPGA | Handel-C | - | [41] |
RHBSW (FL-based) | Prediction-based (Lossless) | - | 2.58 | - | - | Xilinx Virtex-4 FX60 FPGA ×2 | - | - | [107] |
Inter-band and Intra-band Prediction based | Prediction-based (Lossless) | 3.28 | - | 1.194 | - | Xilinx Virtex-5 Pro FPGA | Verilog | BIP | [115] |
CCSDS123 | Prediction-based (Lossless) | 2.2–4.5 | 183.4 | 60 | 3.1 | Nvidia GeForce GTX 750 Ti GPU | CUDA | - | [126] |
Optimized RLS | Prediction-based (Lossless) | 6.4 | - | - | - | Nvidia Kepler GTX 690 GPU | CUDA | - | [120] |
CCSDS 123 | Prediction-based (Lossless) | - | 116–401 | 15–60 | 6.7–7.7 | Nvidia GTX 750 Ti GPU-Jetson TX1 board | CUDA | - | [127] |
FLEX | Prediction-based (Lossless) | - | - | 9 | - | Xilinx Zynq Z7045Q SoC | - | - | [109] |
Clustered DPCM-Prediction based | Prediction-based (Lossless) | 5 | 233 | - | - | Nvidia TITAN X GPU | CUDA | - | [119] |
CCSDS 123 | Prediction-based (Lossless) | 1.5–5.5 | 129 | 4.9 | 26.3 | Nvidia Jetson TX2 board | CUDA | - | [131] |
LCPLC | Prediction-based (Lossy) | 4 | 162 | 0.7 | 231.4 | Xilinx Virtex-7 FPGA | VHDL and Verilog | BSQ | [60] |
LCPLC | Prediction-based (Lossy) | 4 | 119.96 | 2.73 | 43.9 | Xilinx Virtex-5 FPGA | VHDL and Verilog | BSQ | [60] |
CCSDS123 | Prediction-based (Lossless) | - | 66 | 5.7 | 11.6 | Nvidia GPU Jetson (Nano) | CUDA | BSQ | [133] |
CCSDS123 | Prediction-based (Lossless) | - | 203.3 | 6.28 | 32.3 | Nvidia GPU Jetson (TX2) | CUDA | BSQ | [133] |
CCSDS123 | Prediction-based (Lossless) | - | 402.5 | 10.9 | 36.9 | Nvidia GPU Jetson (Xavier) | CUDA | BSQ | [133] |
RLS | Prediction-based (Lossless) | - | - | - | - | PARAM-SHIVAY supercomputer | Python | BIL | [85] |
CCSDS123 | Prediction-based (Lossless) | - | 93.2 | 4.56 | 20.4 | Nvidia Jetson TX2 board | CUDA | - | [132] |
Compression Algorithm | Algorithm Class | CR | Throughput (MSps) | Power (Watts) | Efficiency (MSps/W) | Hardware Platform | Programming Method | Scanning Order | Ref. |
---|---|---|---|---|---|---|---|---|---|
PPI Spectral Unmixing | Unmixing-based (Lossy) | 80 | - | - | - | Xilinx Virtex-II XC2V6000-6 FPGA | Handel-C | - | [87] |
PPI or AMEE-FCLSU | Unmixing-based (Lossy) | 80 | - | - | - | Nvidia GeForce 8800 GTX GPU | CUDA | - | [43] |
Daubechies wavelet | Unmixing-based (Lossy) | - | - | - | - | (Heterogeneous Workstations) ×16 | - | - | [86] |
KLT-JPEG2000 | Transform-based (Lossy) | - | - | 224 | - | Nvidia GeForce GTX580 GPU | CUDA | - | [149] |
KLT-JPEG2000 | Transform-based (Lossy) | - | - | 224 | - | Nvidia GeForce GTX580 GPU | CUDA | - | [150] |
CCSDS 123 | Prediction-based (Lossless) | - | 179.7 | 3.04 | 59.1 | Xilinx V-5QV FX130T FPGA | VHDL | BIP | [82] |
CCSDS 123 | Prediction-based (Lossless) | - | 116.0 | 0.95 | 122.1 | Xilinx V-4 XC2VFX60 FPGA | VHDL | BIP | [82] |
CCSDS 123 | Prediction-based (Lossless) | - | 219.4 | 5.30 | 41.3 | Xilinx V-7 XC7VX690T FPGA | VHDL | BIP | [82] |
CCSDS 123 | Prediction-based (Lossless) | - | 62.2 | 65 | 0.96 | Nvidia GT 440 GPU | OpenCL | BIP | [82] |
CCSDS 123 | Prediction-based (Lossless) | - | 62.6 | 29 | 2.2 | Nvidia GT 610 GPU | OpenCL | BIP | [82] |
CCSDS 123 | Prediction-based (Lossless) | 2.5 | 23.3 | 0.55 | 42.4 | Xilinx Virtex-4 FPGA | VHDL | All | [96] |
CCSDS 123 | Prediction-based (Lossless) | 2.5 | 47.6 | - | - | Xilinx Virtex-7 FPGA | VHDL | All | [96] |
Compression Algorithm | Algorithm Class | CR | Throughput (MSps) | Power (Watts) | Efficiency (MSps/W) | Hardware Platform | Programming Method | Scanning Order | Ref. |
---|---|---|---|---|---|---|---|---|---|
LCE | Prediction-based (Lossy) | - | 12 | 225 | 0.05 | Nvidia Tesla C2075 GPU | CUDA | BSQ | [116] |
LCE | Prediction-based (Lossy) | - | 130 | 225 | 0.6 | Nvidia Tesla C2075-GeForce GTX 480 GPUs | CUDA | - | [55] |
LCE | Prediction-based (Lossy) | - | 130 | 250 | 0.52 | Nvidia GeForce GTX 480 GPU | CUDA | - | [55] |
Adaptive predictive-LCE | Prediction-based (Lossy) | 2.7–3.2–1.6 | 120–100–110 | 225 | 0.53–0.44–0.5 | Nvidia Tesla C2075 GPU | CUDA | BSQ | [117] |
CCSDS 123 | Prediction-based (Lossless) | 2.3 | 3.5 | 0.169 | 20.7 | Microsemi RTAX FPGA | VHDL | BSQ | [80] |
CCSDS 123 | Prediction-based (Lossless) | 2.3 | 11.3 | 2.345 | 4.8 | Xilinx Virtex-4 FPGA | VHDL | BSQ | [80] |
CCSDS 123 | Prediction-based (Lossless) | 2.3 | 11.2 | 2.345 | 4.8 | Xilinx Virtex-5 FPGA | VHDL | BSQ | [80] |
Compression Algorithm Details | Algorithm Class | CR | Throughput (MSps) | Power (Watts) | Efficiency (MSps/W) | Hardware Platform | Programming Method | Scanning Order | Ref. |
---|---|---|---|---|---|---|---|---|---|
JPEG-LS | Transform-based (Lossless) | 2 | - | 250 | - | Nvidia GTX480 GPU | CUDA | - | [143] |
ANN-NLPCA | Learning-based (Lossy) | - | - | - | - | Intel Sandy Bridge GPU | - | - | [39] |
Graph theory–Online-learning dictionary | Learning-based (Lossy) | 5.3 | - | - | - | Nvidia GPU | - | - | [48] |
Compression Algorithm | Algorithm Class | CR | Throughput (MSps) | Power (Watts) | Efficiency (MSps/W) | Hardware Platform | Programming Method | Scanning Order | Ref. |
---|---|---|---|---|---|---|---|---|---|
Anomaly detection-wavelet-based transform | Transform-based (Lossy) | 100 | - | - | - | DSP-Xilinx XCV1000-XCV300 FPGAs | - | - | [40] |
Anomaly detection-JPEG2000 | Transform-based (Lossy) | 25 | - | - | - | DSP-Xilinx XCV1000-XCV300 FPGAs | - | - | [141] |
CCSDS 123 | Prediction-based (Lossless) | - | 147 | 0.295 | 498.3 | Xilinx Zynq-7020 SoC | VHDL | BIP | [134] |
Autoencoder | Learning-based (Lossy) | - | - | - | - | JetStream Cloud Services | Openstack | - | [46] |
CCSDS 123 | Prediction-based (Lossless) | - | 750 | 0.515 | 1456 | Xilinx Zynq-7035 SoC | VHDL | BIP | [79] |
Rank | Efficiency (MSps/W) | Throughput (MSps) | Power (Watts) | CR | Compression Algorithm Details | Algorithm Class (Compression Type) | Hardware Platform | Programming Method | Scanning Order | Ref. (Year) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1456 | 750 | 0.515 | - | CCSDS 123 | Prediction-based (Lossless) | Xilinx Zynq-7035 SoC | VHDL | BIP | [79] (2019) |
2 | 498.3 | 147 | 0.295 | - | CCSDS 123 | Prediction-based (Lossless) | Xilinx Zynq-7020 SoC | VHDL | BIP | [134] (2018) |
3 | 366.5 | 210 | 0.573 | 2.8 | VS-3DGAP-ExtRice (CCSDS based) | Prediction-based (Lossless) | Xilinx Virtex-5 FPGA | Matlab-AccelDSP | - | [93] (2009) |
4 | 231.4 | 162 | 0.7 | 4 | LCPLC | Prediction-based (Lossy) | Xilinx Virtex-7 FPGA | VHDL and Verilog | BSQ | [60] (2020) |
5 | 150.4 | 391 | 2.6 | 8 | HYCA | CS-based (Lossy) | Xilinx Zynq-7020 SoC | VHDL | BIL | [151] (2020) |
6 | 122.1 | 116.0 | 0.95 | CCSDS 123 | Prediction-based (Lossless) | Xilinx Virtex-4 FPGA FPGA | VHDL | BIP | [82] (2017) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altamimi, A.; Ben Youssef, B. A Systematic Review of Hardware-Accelerated Compression of Remotely Sensed Hyperspectral Images. Sensors 2022, 22, 263. https://doi.org/10.3390/s22010263
Altamimi A, Ben Youssef B. A Systematic Review of Hardware-Accelerated Compression of Remotely Sensed Hyperspectral Images. Sensors. 2022; 22(1):263. https://doi.org/10.3390/s22010263
Chicago/Turabian StyleAltamimi, Amal, and Belgacem Ben Youssef. 2022. "A Systematic Review of Hardware-Accelerated Compression of Remotely Sensed Hyperspectral Images" Sensors 22, no. 1: 263. https://doi.org/10.3390/s22010263
APA StyleAltamimi, A., & Ben Youssef, B. (2022). A Systematic Review of Hardware-Accelerated Compression of Remotely Sensed Hyperspectral Images. Sensors, 22(1), 263. https://doi.org/10.3390/s22010263